VII: Bộ khuếch đại EDFA và một số vấn đề khi sử dụng EDFA trong mạng WDM
2: Đặc tính của EDFA
2.1: Đặc tính khuếch đại
Khi l = ln thì cường độ nhiễu xạ cực đại và bằng:
I ln = A()ln 2
(2.11) Phân bố phổ của nhiễu xạ được xác định theo biểu thức:
I l é sin(kp - pnl n / l )ù =êú
I ln ë kp - pnl n / l û
2
Từ biểu thức trên, xây dựng đường cong phân bố phổ của năng lượng nhiễu xạ bậc một như hình 2.15 a). Trong trường hợp d nhỏ hơn bước sóng thì phân bố phổ của năng lượng nhiễu xạ phụ thuộc vào f và có dạng như hình 2.15 b).
Hình 1.16. Phân bố phổ năng lượng nhiễu xạ bậc một.
2.2.3. Ứng dụng của cách tử nhiễu xạ phẳng:
Nói chung, các bộ ghép kênh hoặc tách kênh sử dụng cách tử bao gồm 3 phần chính: các phần tử vào và ra (là mảng sợi hoặc một sợi truyền dẫn với các thành phần thu - phát); phần tử hội tụ quang; phần tử tán sắc góc grating.
Hình 2.17 là cấu hình đơn giản của một bộ ghép kênh của Finke. Trong đó, mảng đầu sợi quang được đặt tại tiêu cự của một thấu kính tròn, phần tử tán sắc góc grating được đặt tại tiêu cự bên kia của thấu kính đó. Bộ tách kênh thực tế loại này đã thực hiện tách từ 4 đến 6 kênh với suy hao khoảng 1,2 đến 1,7 dB (triển vọng có thể tách được 10 kênh).
Hình 2.18. Bộ tách Littrow: a) Cấu trúc cơ bản, b) Cấu trúc thực tế sử dụng lăng kính GRIN-rod của bộ tách 2 kênh.
Trên hình 2.19, đầu mảng các sợi quang được đặt trước một khe đã được quang khắc trên mặt cách tử phản xạ phẳng đặt vuông góc với các rãnh cách tử. Gương cầu lõm có tách dụng làm thay đổi hướng của bất kì một tia đa bước sóng phân kỳ nào thành một tia song song quay trở lại cách tử, tia này khi đến cách tử, sẽ bị tán sắc và phản xạ trở lại gương, phản xạ một lần nữa, tạo ảnh trên vùng mảng sợi quang tuỳ thuộc vào giá trị từng bước sóng. Cấu trúc này có hệ số hội tụ và truyền đạt bằng 1; vì vậy, hiệu suất ghép khá cao, đặc biệt nếu sử dụng gương parabol thì quang sai rất nhỏ, gần bằng 0.
Số lượng các kênh có thể ghép trong thiết bị phụ thuộc nhiều vào phổ của nguồn quang: từ năm 1993, đã có thể ghép được 6 kênh (đối với nguốn LED), 22 kênh (đối với nguồn Laser); nếu sử dụng kỹ thuật cắt phổ của nguồn phát LED để nâng cao số kênh ghép thì có thể ghép tới 49 kênh. Đối với nguồn đơn sắc, suy hao xen của thiết bị ghép rất nhỏ (< 2 dB), và có thể đạt đến 0,5 dB cho thiết bị đơn mode vùng bước sóng 1540 nm đến 1560 nm.
Hình 2.19. Bộ tách sử dụng cách tử nhiễu xạ Planar và gương lòng chảo.
2.2.4. Cách tử hình long chảo
Hình 2.20. Cách tử hình lòng chảo.
Cách tử hình lòng chảo được sử dụng để phản xạ ánh sáng, vì vậy góc nghiêng của rãnh cách tử được tính toán giống như cách tử phản xạ phẳng. Theo thuyết vô hướng thì góc nghiêng của rãnh phải thay đổi liên tục để duy trì đường phân giác của góc hợp bởi tia tới và tia phản xạ ABC luôn vuông góc với bề mặt của răng cưa.
Một ứng dụng của cách tử hình lòng chảo như chỉ ra trên hình 2.21, thiết bị loại này có vẻ như đơn giản hơn vì không sử dụng phần tử hội tụ quang (thấu kính hoặc lăng kính). Thiết bị loại này đã thực hiện ghép 4 kênh, suy hao 2,6 dB; nó có nhược diểm là quang sai không ổn định trong giải phổ rộng.
Hình 2.21. Sơ đồ cấu trúc bộ tách sử dụng cách tử lòng chảo. Tóm lại thiết bị WDM dùng cách tử như phần tử tán sắc góc để tách/ghép bước sóng thường sử dụng theo cách như chỉ ra trên các hình 2.17 đến 2.21; trong hình 2.19 nếu thay gương lòng chảo bằng gương parabol thì có thể hiệu chỉnh quang sai.
2.2.5. Cách tử Bragg:
Cách tử Bragg là cách tử được chế tạo ngay bên trong sợi quang. Cáh tử sợi Bragg thông thường trước đây khó sản xuất được với độ dài sợi quá 15 cm do hạn chế về chiều dài sợi cách tử đối với bán kính chùm tia laser hoặc do chiều dài của mạt nạ phase. Hiện nay công nghệ chế tạo hiện đại đã cho phép thay đổi các thông số như độ dài cách tử, chiết suất có thể được điều biến theo yêu cầu, tạo nên cách tử sợi dạng nhiều bậc như bước ren; nhờ đó một số lớn các bộ lọc được tạo ra voiư các thông số khá hoàn thiện.
ứng dụng của cách tử sợi Bragg trong module xen/rẽ bước sóng như sau: điều chỉnh bước sóng xen/rẽ dùng cách tử sợi Bragg mạng lại nhiều ưu điểm cho thiết bị OADM. Trong đó, đặc biệt là suy hao xen của thiết bị thấp, đặc tính phổ của bộ lọc có dạng bộ lọc băng thông BPF với khả năng đạt được khoảng cách kênh bước sóng là 50 GHz, đó là một tính năng hoàn toàn thuyết phục. Có hai phương pháp điều khiển bước sóng xen/rẽ đối với thiết bị sử dụng sợi cách tử Bragg, đó là: điều khiển nhiệt hoặc thay đổi độ nén dãn của sợi bằng tải cơ, song cách thứ hai đạt được tốc độ điều chỉnh cao hơn.
ứng dụng cách tử sợi Bragg trong bù tán sắc: phổ của xung quang chứa nhiều thành phần bước sóng khác nhau, khi truyền xung dọc sợi quang, thành phần bước sóng ngắn sẽ đi nhanh hơn thành phần bước sóng dài, đây chính là hiệu ứng tán sắc, làm dãn phổ xung quang đó và có thể gây xuyên nhiễu lên các xung quang lân cận. Trước đây đã có nhiều giải pháp bù tán sắc, như sử dụng sợi bù tán sắc DCF, nhưng cách này thực ra còn nhiều nhược điểm như: gây suy hao lớn, gây ra các hiệu ứng phi tuyến khác... Gần đây, cách tử bù tán sắc đã được xem là giải pháp có nhiều hứa hẹn. Bước cách tử trong cách tử bù tán sắc được dịch đi để phản xạ các bước sóng chậm (bước sóng dài) trước khi các thành phần bước sóng nhanh (bước sóng ngắn) đi đến cuối cách tử và bị phản xạ trở lại (xem hình 2.22), module bù tán sắc kiểu này cũng sẽ làm co xung đã bị dãn rộng ra trước khi được truyền đi tiếp hoặc được xử lý. Nếu sợi
cách tử càng dài, mức bù tán sắc càng lớn và phổ thiết bị có thể làm việc càng được mở rộng. Nếu quá trình chế tạo sợi không tốt, sẽ gây hiện tượng nhấp nhô (ripple) đối với trễ nhóm tín hiệu quang, do đó có thể làm sai khác đi việc bù tán sắc của thiết bị.
Hình 2.22. Nguyên lý cách tử Bragg bù tán sắc.
Suy hao của module bù tán sắc kiểu này gây ra bởi: suy hao cố định của circulator và các chỗ ghép nối (tổng suy hao này nhỏ hơn 2 dB), suy hao của cách tử sợi Bragg phụ thuộc vào độ dài sợi, khoảng 0,3 dB/m (theo công nghệ chế tạo cảm ứng tia cực tím). Ngoài ra, suy hao này cũng phụ thuộc dải bước sóng làm việc khoảng 0,3 dB/nm. Thực nghiệm cho thấy ưu thế của module bù tán sắc dùng cáh tử sợi Bragg so với bù tán sắc dùng sợi DCF được chỉ ra như trong bảng dưới đây:
Bảng 2.1. So sánh độ suy hao giữa các thiết bị bù tán sắc. Suy haoSuySuy hao
Cách bù tán
cực tiểuhao thôngcực đại sắc thường Sợi DCF 404,4 dB4,8 dB6,2 dB km Sợi DCF 406,0 dB6,5 dB6,7 dB km Sợi DCF 407,7 dB8,3 dB8,9 dB km Sợi cách tử2,0 dB2,5 dB3,0 dB Bragg bù tán sắc
Với những ưu thế như vậy, thiết bị bù tán sắc bằng cách tử sợi Bragg đã được chế tạo hàng loạt nhờ quá trình chế tạo cách tử điều khiển bằng phần mềm máy tính, chúng sẽ trở thành các module không thể thiếu trong các thiết bị WDM thế hệ thứ hai như OADM, khuếch đại EDFA hai tầng có bù tán sắc.
II. CÁC THIẾT BỊ WDM GHÉP SỢI
Các thiết bị WDM ghép sợi phù hợp hơn đối với các sợi đơn mode vì có thể tránh được quang sai, giảm trễ, giảm suy hao do các quá trình xử lý chùm sáng qua các đoạn phản xạ, chuẩn trực, hội tụ vv... gây ra. Thiết bị WDM ghép sợi hoạt động dựa trên nguyên lý: khi lõi các sợi quang đặt gần nhau thì công suất quang từ một sợi sẽ chuyển vào các sợi khác.
Xét trường hợp hai lõi sợi quang đơn mode, có kích thước và đặc tính quang như nhau nằm song song với nhau trong cùng một vỏ. Khi một lõi có tín hiệu quang thì hệ số ghép đối với lõi thứ hai được xác định theo biểu thức (2.13).
æ pd ö A = 2ç÷ è Wad ø 1/ 2 U 2 1 -(Wd / a ) e V 3 WK12 (2.13) Trong đó: A - bán kính lõi d - khoảng cách giữa 2 tần số n1 - hệ số chiết suất của lõi n2 - hệ số chiết suất của vỏ K1 - hàm Bessel bậc nhất loại hai
b - thành phần dọc của véc tơ truyền lan mode, gọi là hằng số truyền lan. d = 1 - n2/n1- hệ số chiết suất tương đối
V = (2pa/l)(n12 - n22)1/2- tần số chuẩn hoá
U = a[(2pn1/l)2 - b2]1/2- hằng số truyền lan ngang trong lõi sợi W = a[b2 - (2pn2/l)2]1/2- độ suy biến tốc độ của trường trong vỏ.
Từ biểu thức (2.13) nhận thấy: hệ số ghép phụ thuộc vào các đặc tính hình học, các đặc tính quang (chiết suất), và bước sóng (thông qua V, U, W). Nếu bước sóng cố định, thì khi giảm d sẽ tăng hệ số ghép. Còn nếu d cố định, thì hệ số ghép tăng khi tần số chuẩn hoá giảm (l giảm), vì khi đó sự phân bố trường mode có xu hướng dãn rộng tới vùng vỏ.
Công suất ghép giữa hai sợi có dạng sin2(A0L) và công suất lan truyền là
cos2(A0L); trong đó L là độ dài đoạn ghép; A0 là hệ số ghép. Trong thực tế ghép theo độ dài z biến đổi, nên công suất ghép sẽ là: sin2òA(z)dz và công suất lan truyền là cos2òA(z)dz.
Các thiết bị WDM ghép sợi có thể có hai dạng như hình 2.23, đó là: nung nóng chảy các sợi kề nhau và đánh bóng chỗ tiếp xúc giữa hai sợi. Trong kỹ thuật đánh bóng, mỗi sợi được lắp vào một thấu kính đã đục cong sẵn, có đường kính cong thường bằng 25 cm, cho nên dạng này còn gọi là bộ ghép khối. Còn trong kỹ thuật xoắn nóng chảy, hai lõi sợi được xoắn vào nhau và được nung nóng chảy thành một lõi chung.
Khi hai sợi ghép là như nhau thì hiệu suất ghép là tuần hoàn của bước sóng, khoảng cách kênh cực tiểu giữa hai bước sóng được phân tích là:
Dl = p /2
(d ( A0 L ) / dl )l (2.14)
Trong đó: d(A0L)/ dl là đạo hàm của hệ số ghép theo bước sóng và L là khoảng cách hiệu dụng đoạn ghép.
Khi hai sợi ghép khác nhau thì hiệu suất ghép không tuần hoàn nên có Dl:
Dl = 5
dbdb L 1- 2
dldl
(2.15)
Trong đó: db1/dl và db2/dl là các đạo hàm của b theo mode của mỗi sợi.
Hình 2.24. Hai phương pháp tạo ra các bộ ghép sợi cho thiết bị WDM. Các bước sóng tương ứng với sự đồng nhất các hàm số lan truyền của hai đường dây này là các bước sóng mà ở đó sự truyền năng lượng được đổi chỗ từ sợi này sang
sợi kia. Băng thông của bộ ghép sợi nóng chảy có dạng gần như hình sin làm hạn chế việc lựa chọn nguồn phát. Rõ ràng rằng các LED không thể được sử dụng vì phổ của nó rộng. Như vậy chỉ có các diode laser có độ rộng phổ hẹp được sử dụng nếu tránh được suy hao xen và xuyên kênh lớn.
Hình 2.25. Đáp ứng của bộ tách kênh 1300/1550nm với kỹ thuật ghép nóng chảy 2 sợi như nhau.
Trong cấu trúc nóng chảy, đoạn ghép được kéo dài cho đến khi giá trị ghép theo yêu cầu đạt được ở những bước sóng đã định. Ví dụ ghép nóng chảy 1300/1550nm có độ dài ghép 20 nm, suy hao xen nhỏ khoảng 0,04 dB. Đường cong truyền dẫn của thiết bị này như trên hình 2.25.
Khi cần ghép nhiều hơn hai bước sóng, phải ghép nối tiếp các bộ ghép (cấu hình rẽ nhánh). Trên hình 2.26 là bộ ghép gồm 3 mối ghép nối tiếp các bước sóng: l1 = 1320nm, l2 = 1280nm, l3 = 1240nm và l4 = 1200nm.
Hình 2.26. Bộ ghép kênh 4 bước sóng bằng ghép nóng chảy nối tiếp các sợi đơn mode
Ưu điểm chính của ghép đơn mode theo phương pháp mài bóng so với phương pháp ghép nóng chảy là có thể điều hưởng được bằng cách dịch chuyển vị trí tương
đối của hai sợi với nhau. Ghép theo phương pháp nóng chảy thì giá thành hạ. Có thể kết hợp cả hai phương pháp để đạt được hiệu quả tối ưu.
Các thiết bị WDM ghép sợi phù hợp với các bộ ghép kênh đơn, suy hao phổ biến ở mức 4 đến 6 dB. Đối với bộ tách kênh, yêu cầu xuyên kênh phải nhỏ, thường thích hợp với các bộ grating vi quang.
III. MỘT SỐ KỸ THUẬT KHÁC ĐƯỢC SỬ DỤNG TRONG GHÉP WDM.1. Bộ ghép bước sóng dùng công nghệ phân phối chức năng quang học SOFT. 1. Bộ ghép bước sóng dùng công nghệ phân phối chức năng quang học SOFT.
1.1 Nguyên lý chung
Chức năng ghép hoặc ghép bước sóng của một hệ thống quang hai hoặc ba chiều, thường tạo nên quan hệ giữa sợi quang truyền dẫn và một tập sợi quang đầu vào hoặc đầu ra. Thí dụ trong coupler Y, sợi quang truyền dẫn được phản ảnh đến hai sợi quang khác thông qua thiết bị chia quang và một hoặc nhiều thấu kính hội tụ. Trong thiết bị ghép bước sóng, sợi quang truyền dẫn được phản ảnh tới các vị trí khác nhau trên mặt phẳng tiêu (là mặt phẳng nằm trên tiêu điểm của thấu kính và vuông góc với trục của thấu kính), tuỳ thuộc vào bước sóng khi sử dụng cách tử và các thấu kính hội tụ. Như vậy, những dụng cụ trên tạo nên mối quan hệ giữa chủ thể và trường ảnh. Nếu vị trí của sợi quang trong các trường khác nhau được điều khiển thích hợp thì một số coupler hoặc một số bộ ghép được thực hiện ngay trên một phần tử. Những thiết bị này được gọi là những phần tử công nghệ phân phối chức năng quang học SOFT.
Trong một phần tử SOFT, một bộ tách quang học được sử dụng gồm một dãy P sợi quang chia thành từng tập con có n+1 sợi quang. Chẳng hạn, một dãy p = 21 sợi quang, các dụng cụ quang như nhau tách tín hiệu quang từ một sợi quang đầu vào thành n = 2 sợi quang đầu ra thì sẽ có P/n+1 = 7 tập con (nghĩa là có 7 coupler quang giống nhau trên cùng một phần tử).
Hình 2.27. Bộ tách SOFT 2 bước sóng (P = 21).
Nguyên lý này đặc biệt thích hợp để tiết kiệm chi phí cho các mạng có một số coupler hoặc một số bộ tách/ghép bước sóng đặt ở cùng một địa điểm. Thí dụ trong một trung tâm, trong trạm đầu cuối xa, hoặc điểm rẽ nhánh của mạng thông tin video.
Trên một thiết bị, mỗi tập các sợi quang đầu vào và đầu ra khác nhau có thể thích ứng với một tập hợp các bước sóng khác nhau, nghĩa là các bộ ghép không nhất thiết phải như nhau. Điều này đặc biệt quan trọng khi thiết kế máy đo quang phổ nhiều kênh hoặc bộ ghép bước sóng.
1.2. Bộ ghép nhân kênh dùng cách tử:
Hình 2.28 là bộ ghép dùng cách tử nhiễu xạ phẳng (R), thấu kính hội tụ (O) và dãy sợi đơn mode đặt trên mặt phẳng tiêu F.
Hình 2.28. Bộ ghép kênh nhiều sợi dùng cách tử theo phương pháp SOFT. Sợi quang được đánh số thứ tự từ 1 đến P, i là sợi quang đầu vào và j là sợi quang đầu ra, nếu li j là bước sóng truyền trong môi trường giữa mặt phẳng tiêu và cách tử thì viết được:
d(sinai + sinaj) = li j(2.16) d - chu kỳ cách tử.
Nếu sợi quang trên mặt phẳng tiêu F sắp xếp sao cho sinai+1 = sinai + u, với u là hằng số, ta được:
Sinaj = sinai + (j - i)u(2.17) Vàd[2sinai + (j - i)u]] = li j(2.18)
Có thể tìm được li j đối xứng qua đường chéo i = j và các bước sóng tương ứng với đường chéo i + j = const là như nhau.
Hình 2.29. Ma trận chỉ rõ mối liên hệ sợi đầu vào và bước sóng tại sợi đầu ra. 1.3. Thiết kế bộ ghép n bước sóng.
Về mặt lý thuyết, một bộ tách hoặc một bộ ghép có thể tách hoặc hép n bước sóng,