x nf p g pup)()().
2.2.12. Những hạn chế và chú ý.
Trong mỗi cấu trúc của các bộ điều khiển nơ ron chúng ta đều đánh giá về những thuận lợi và không thuận lợi của các bộ điều khiển nàỵ Ví dụ với phương pháp kỹ thuật hồi quy tuyến tính chỉ có thể được áp dụng trong những hệ thống cho bởi biểu thức 2.17. Phương pháp kỹ thuật điều khiển thích nghi trực tiếp thì xuất hiện tính phi tuyến và nó được xem như một ẩn số của đầu vào điều khiển biểu diễn trong không gian trạng tháị Phương pháp kỹ thuật điều khiển theo mô hình mẫu không đảm bảo độ ổn định, phương pháp kỹ thuật điều khiển ngược thích nghi cần đến trạng thái thực ổn định của thiết bị ngược…
Nói chung những phương pháp kỹ thuật trên đều đảm bảo sự ổn định nhưng chỉ được áp dụng trong một giới hạn nào đó của hệ thống. Lĩnh vực điều khiển nơ ron tiếp tục được nghiên cứu, cách thức ổn định hoá trong hệ thống sẽ được phát triển rộng khắp trong các hệ thống.
Từ các vấn đề thực tế cho thấy, vấn đề mấu chốt cho những hệ thống điều khiển nơ ron là khả năng hoạt động tốt của một mạng trong các trạng thái mớị Ví dụ cấu trúc mô hình điều khiển dự báo cần đến một mô hình mạng nơ ron nhận dạng thiết bị, mô hình thiết bị là một ánh xạ từ các đầu vào và đầu ra của thiết bị trước tới đầu ra của thiết bị saụ Trong trình tự tính toán mô hình thiết bị, mạng cần được huấn luyện với dữ liệu bao gồm toàn bộ phạm vi đầu vào mạng có thể thực hiện được. Điều khó có thể thực hiện được ở đây là dữ liệu, bởi vì chúng ta không có điều khiển trực tiếp vượt trước đầu ra của thiết bị. Nhiều lúc chúng ta có thể có điều khiển độc lập trên đầu vào thiết bị, nhưng chỉ có điều khiển gián tiếp trên đầu ra của thiết bị (mà sau đó trở thành đầu vào mạng). Những hệ thống bậc cao sẽ khó khăn để đạt được dữ liệu cho phản ứng đầu ra của thiết bị thích hợp cho việc phân vùng không gian trạng tháị Trạng thái sẽ trở nên quan trọng để mạng có thể phát hiện ra trạng thái trong đó đầu vào rơi ra ngoài miền dữ liệu được cho là đúng mà mạng đã được huấn luyện.
KẾT LUẬN CHƢƠNG 2