Truyền sóng bên trong tòa nhà

Một phần của tài liệu Luận văn: Mô hình phủ sóng & giao thoa doc (Trang 61 - 73)

Có rất nhiều nghiên cứu về lan truyền sóng trong tòa nhà trên một phạm vi tần số rộng. Lan truyền sóng trong nhà chịu ảnh hưởng rất lớn bởi các đặc tính của tòa nhà như các bố trí vật dụng trong nhà, vật liệu dùng để xây dựng tường, sàn nhà, trần nhà.

Hình 4.5. Mô hình phủ sóng trong các tòa nhà cao tầng

Hệ thống thông tin vô tuyến trong nhà khác với hệ thống vô tuyến bình thường ở hai yếu tố quan trọng sau: môi trường can nhiễu và tốc độ fading. Môi trường can nhiễu thường gây ra bởi sự bức xạ của các thiết bị điện tử như máy tính. Mức nhiễu bên trong nhà này đôi khi lớn hơn bên ngoàị Hơn nữa, cường độ tín hiệu thay đổi từ chỗ này sang chỗ khác trong tòa nhà. Tín hiệu có thể bị suy hao rất nhiều khi lan truyền một vài mét qua tường, trần nhà hoặc sàn nhà hay

thậm chí vẫn đủ mạnh sau khi đã lan truyền hàng trăm mét dọc hành lang. Hệ số tín hiệu trên tạp âm SNR rất khó dự đoán và thay đổi liên tục.

Hình 4.6. Sơ đồ mô tả hệ thống phủ sóng trong các tòa nhà cao tầng

Tốc độ fading chậm làm nó không thích hợp cho việc tính toán hoạt động của hệ thống. Có hai khả năng sau: thứ nhất, nếu người sử dụng máy điện thoại vô tuyến di chuyển chậm xung quanh trong tòa nhà trong khi cuộc đàm thoại vẫn liên tục, thì anten sẽ bị ảnh hưởng bởi fading. Trường hợp này được mô tả chính xác nhất bằng tỉ lệ phần trăm của thời gian khi hệ số SNR rơi xuống thấp hơn một giá trị có thể chấp nhận được. Nếu là hệ thống số, thì đó là tỉ lệ phần trăm của tỉ lệ lỗi rơi xuống thấp hơn giá trị cho phép. Tuy nhiên vì các ảnh hưởng thứ cấp (như chuyển động của người, cửa bị đóng hoặc mở), những khả năng này thay đổi chậm theo thời gian.

Sự hoạt động không như mong muốn của hệ thống băng thông rộng có thể gây ra bởi nhiễu giữa các ký tự do sự trễ dải rộng. Điều này làm hạn chế tốc độ truyền dữ liệụ Do vậy, trong hệ thống băng thông hẹp, fading nhiều tia và che khuất làm hạn chế vùng phủ sóng. Nhiễu có thể xuất phát từ tự nhiên, cũng có thể do con người, hoặc cũng có thể do các user khác trong một hệ thống nhiều user tạo rạ Nó làm hạn chế số lượng user cùng tồn tại trong một vùng phủ sóng. Các kỹ thuật như cấp kênh động, điều khiển công suất, thu phân tập có thể được sử dụng để hạn chế vấn đề nàỵ

Đặc tính lan truyền.

Một số các nghiên cứu đã được thực hiện để xác định các đặc tính lan truyền trong nhà, trong tòa nhà văn phòng, trong nhà xưởng. Một trong số các nghiên cứu mới nhất, được thực hiện trên hệ thống điện thoại vô tuyến tại Nhật Bản, có dải tần làm việc từ 250 đến 400MHz. Các kết quả đo được thực hiện với máy phát công suất thấp 10mW. Kết quả nghiên cứu cho thấy suy hao đường truyền trung bình tuân theo quy luật suy hao trong không gian tự do trong khoảng cách rất gần (trong phạm vi 10m). Sau đó, suy hao này tăng tỉ lệ với khoảng cách. Nếu đường lan truyền của tín hiệu bị che chắn bởi đồ vật, thì đặc tính lan truyền sẽ bị ảnh hưởng theo nhiều cách khác nhau và không có quy luật chung nào cả. Sự thay đổi tức thời của tín hiệu rất gần với phân bố Rayleigh, đó là kết quả của quá trình tán xạ bởi sự che chắn của tường, sàn, trần và đồ vật.

Một quy luật liên quan giữa suy hao đường truyền và khoảng cách từ máy phát được sử dụng để dự đoán cường độ tín hiệu trong một tòa nhà có cấu trúc, nhưng chúng ta rất khó để đưa ra được một công thức chung. Mô hình chính xác nhất để miêu tả đường truyền thẳng thường xảy ra tại các phòng có diện tích tương đương nhau, có cùng kiểu sắp xếp đồ đạc, có suy hao giống nhau của tường ngăn giữa các phòng. Hệ số mũ n trong công thức tính suy hao thay đổi xung từ 2 khi tín hiệu lan truyền tự do tại sảnh hoặc hành lang đến 6 khi tín hiệu bị che chắn nhiềụ

Motley and Keenan đã báo cáo kết quả nghiên cứu thực nghiệm của họ với môi trường nghiên cứu là tòa nhà văn phòng nhiều tầng, tại tần số là 900MHz và 1700MHz. Một máy phát cầm tay di chuyển trong một phòng được lựa chọn trong tòa nhà này, trong khi máy thu là cố định một chỗ. Máy thu có vị trí tại trung tâm của tòa nhà, nó giám sát các mức của tín hiệụ Họ đã đưa ra một công thức thể hiện mối quan hệ giữa công suất và khoảng cách như sau:

' 10 log (15)

P P kF S= + = + n d

Trong đó:

K: là số tầng.

F: là suy hao tại mỗi tầng của tòa nhà. P’: là tham số suy hao phụ thuộc tần số. d: là khoảng cách từ máy phát đến máy thụ

Bảng 1.2 đưa ra giá trị của các tham số được đo thực nghiệm. Chúng ta thấy rằng hệ số n là tương tự nhau cho cả hai tần số, nhưng F và S lại có giá trị cao hơn 6 và 5dB tại tần số 1700MHz. Kết quả này đã được kiểm tra lại trong các tòa nhà cao tầng khác. Ta thấy rằng tổng giá trị suy hao đường truyền của tín hiệu tại tần số 1700MHz sẽ lớn hơn 5.5dB so với suy hao tín hiệu tại tần số 900MHz. Nhận định này phù hợp với các kết quả dự đoán về mặt lý thuyết.

Tần số F (dB) S (dB) N

900MHz 10 16 4

1700MHz 16 21 3,5

Bảng 4.2. Các tham số lan truyền trong tòa nhà.

vật liệu trên thường nhỏ hơn giá trị suy hao tín hiệu qua sàn nhà, vì sàn nhà thường bằng bê tông có lưới kim loại gia cố. Chúng ta nhận thấy rằng tần số 1700MHz có xu hướng bị giữ lại năng lượng nhiều hơn tần số 900MHz khi truyền qua cầu thang bộ và thang máỵ Các báo cáo cho biết suy hao giữa các tầng chịu ảnh hưởng bởi vật liệu xây dựng, số lượng và kích thước cửa sổ, cũng như chủng loại kính.

Môi trường xung quanh tòa nhà cũng phải được xem xét, vì rõ ràng, năng lượng bên trong tòa nhà có thể lan truyền ra xa gây ảnh hưởng và nhiễu với các tòa nhà xung quanh. Nó có thể phản xạ ngược trở lại tòa nhà tại các tầng cao hoặc thấp hơn, phụ thuộc vào vị trí đặt anten và hướng búp sóng. Các kết quả thực nghiệm đã chỉ ra rằng suy hao giữa các tầng liền nhau sẽ lơn hơn suy hao của tín hiệu của các tầng khác. Sau năm hoặc sáu tầng, tín hiệu không còn ảnh hưởng lẫn nhaụ Một số nghiên cứu cũng đã xuất bản thông tin về suy hao tín hiệu gây ra bởi lan truyền qua các loại vật liệu xây dựng khác nhau, trên các dải tần số khác nhaụ

Các nghiên cứu đã cho thấy, lan truyền tín hiệu bên trong tòa nhà sẽ phụ thuộc nhiều hơn vào cấu trúc, vật liệu xây dựng khi tần số cao hơn (ví dụ 1700MHz so với 900MHz). Băng tần thấp (860MHz) đã được sử dụng cho hệ thống điện thoại vô tuyến số Châu Âu DECT. Hệ thống này được thiết kế cho môi trường kinh doanh và dân dụng. Hệ thống này cung cấp một chất lượng thoại tốt, cung cấp các ứng dụng về dữ liệu và thoạị Nó cho phép người sử dụng các thiết bị cầm tay di chuyển linh hoạt trong tòa nhà. Mặc dù suy hao tín hiệu tăng lên theo tần số, nhưng dải tần 1700MHz có thể sử dụng được cho hệ thống điện thoại vô tuyến trong nhà. Trong bất cứ trường hợp nào, số lượng trạm thu phát sóng sẽ phụ thuộc vào dung lượng và yêu cầu về chất lượng hoạt động, chứ nó không bị giới hạn vào vùng phủ sóng của tín hiệụ

Trong tòa nhà, không gian được chia thành các phòng riêng biệt, fading thường xuất hiện thành từng cụm, kéo dài trong vài giây với phạm vi dao động khoảng 30dB. Trong môi trường văn phòng thoáng rộng, fading xuất hiện liên

tục nhưng lại có phạm vi dao động hẹp hơn, khoảng 17dB. Sự thay đổi đường biên theo thời gian là Fading Racian với giá trị của K từ 6dB đến 12dB. Giá trị của K là một hàm mở rộng, có sự bổ sung yếu tố chuyển động, thay cho cấu trúc nhiều tia tồn tại gần máy thụ Sự chuyển động của máy thu đầu cuối cũng gây ra fading, vì sự chuyển động này xuyên qua các khu vực có trường điện từ biến đổị

Có một số công thức mở rộng của (12) trong mô hình suy hao tín hiệu trong nhà.

10 log d (16)

L S= + n d X+ Trong đó:

Xd: là tham số lognormal (dB) với độ sai lệch tiêu chuẩn là s.

Anderson đã đưa ra giá trị tiêu chuẩn của s và n cho các loại tòa nhà khác nhau trên một phạm vi tần số, n nằm trong khoảng 1.6 đến 3.3 , còn s nằm trong khoảng từ 3 đến 14dB.

Seidel cũng đưa ra các giá trị cho n và s cho các tòa nhà khác nhaụ Các giá trị này được tìm ra thông qua các phép đo thực nghiệm tại rất nhiều vị trí. Các giá trị này được sử dụng để mô hình hóa lan truyền thông qua công thức sau:

10 SFlog (17)

L S= + n d F+ Trong đó:

nSF: là hệ số mũ cho các phép đo trên cùng một sàn.

Giả thiết rằng nếu có một giá trị nSF chính xác, thì suy hao lan truyền trên các sàn khác nhau có thể được xác định bằng cách cộng thêm vào một giá trị thích hợp cho hệ số suy hao F giữa các sàn. Một cách khác, trong công thức (17) F có thể được loại bỏ bằng cách sử dụng hệ số nMF . Hệ số này đã bao gồm ảnh hưởng cách ly giữa các sàn. Khi đó công thức suy hao sẽ trở thành:

10 MFlog (18)

Devarsirvatham đã nhận thấy suy hao trong nhà có thể được mô hình hóa như suy hao trong không gian tự do và công thêm phần suy hao phụ có tính chất tăng hàm mũ theo khoảng cách. Do đó, công thức tính suy hao sẽ được sửa lại như sau:

10 SFlog (19)

L S= + n d +ad F+ Trong đó:

a: là hằng số suy hao (dB/m).

Các công thức tính suy hao trong nhà đã được Rappaport tổng hợp lạị Rappaport là nhà nghiên cứu hàng đầu trên thế giới về lĩnh vực truyền sóng indoor.

Cuối cùng, xuất phát từ công thức cơ bản (12), Toledo và Turkmani đã tiến hành nghiên cứu có sử dụng thêm các yếu tố khác. Hai ông đưa ra công thức cuối cùng dự đoán suy hao đường truyền cho tần số 900MHz và 1800MHz, với máy phát đặt tại một sàn xác định trong tòa nhà cao tầng:

18.8 39.0log 5.6 r 13.0 win 11.0 0.024 f

L= + d+ k + S - G - A

24.5 33.8log 4.0 r 16.6 win 9.8 0.017 f (20)

L= + d+ k + S - G- A

Trong đó:

kf: Là số sàn giữa máy phát và máy thụ

Swin: Là hệ số thể hiện cho mức năng lượng thoát ra và quay lại tòa nhà. Swin có giá trị 0 hoặc 1, phụ thuộc vào vị trí của máy thụ

G: Thể hiện cho mức năng lượng tại hai tầng thấp nhất của tòa nhà. Af: Là diện tích sàn của phòng đặt máy thụ

Đối với các phòng nằm cùng phía với máy phát, Swin =1, phía đối diện Swin = 0.25; phía vuông góc Swin = 0.5; Đối với các phòng bên trong, không có cửa sổ Swin =0.

Hệ số G có giá trị bằng 1 đối với 2 tầng thấp hơn so với tầng đặt máy phát, và bằng 0 với các tầng khác.

Vùng phủ sóng tốt nhất trong bất kỳ tòa nhà nào khi vị trí của máy phát nằm trong một phòng rộng và tại trung tâm của tòa nhà.

b. Nghiên cứu lan truyền sóng với hệ thống băng rộng.

Ngoài các nghiên cứu với hệ thống băng thông hẹp để tìm ra sự thay đổi cường độ tín hiệu so với khoảng cách, chúng ta cũng có một số nghiên cứu trên hệ thống băng thông rộng về đặc tính lan truyền của tín hiệu bên trong tòa nhà.

Devarsirvatham đã sử dụng thiết bị hoạt động ở tần số 850MHz, có độ phân giải trễ lan truyền là 25ns (nghĩa là có thể phân biệt các đường truyền có chiều dài khác nhau 7,5m ) để tiến hành các phép đo về trề lan truyền của tín hiệu trong tòa nhà và khu dân cư. Thiết bị này cho thấy hình dạng chi tiết của hiện trạng trề công suất có ảnh hưởng rất ít đến hoạt động của hệ thống vô tuyến. Do vậy, các nghiên cứu sẽ tập trung vào trễ là trễ lan truyền.

Nói chung, trễ của tín hiệu indoor sẽ rất nhỏ hơn so với tín hiệu lan truyền outdoor. Hình 20 thể hiện dạng trề trung bình trong một tòa nhà cao 6 tầng, diện tích rộng. Hình 21 thể hiện phân bố tích lũy của trễ lan truyền cho tòa nhà này và một tòa nhà văn phòng khác có 2 tầng với diện tích nhỏ hơn. Một hệ thống thông tin di động sẽ phải làm việc trong điều kiện trễ lan truyền tồi nhất, 250ns cho cả hai tòa nhà.

Hình 4.7. Dạng trễ tín hiệu lan truyền trong một tòa nhà 6 tầng.

Bultitude đã so sánh các đặc tính indoor tại tần số 900MHz và 1.75GHz sử dụng thiết bị có tham số giống với Devarsirvatham. Các phép đo được thực hiện tại một tòa nhà xây bằng gạch, cao 4 tầng, và một tòa nhà hiện đại xây bằng bê tông. Chúng ta có thể thấy được sự khác nhau trong kết quả đo, nhưng nó chịu ảnh hưởng nhiều về vị trí hơn là tần số làm việc. Trong một tòa nhà, trễ lan truyền RMS có giá trị lớn hơn một chút tại tần số 1.75GHz ở trên 90% vị trí được đo (28ns so với 26ns). Kết quả đo cũng cho thấy vùng phủ sóng trong cả hai tòa nhà là có bán kính nhỏ hơn tại tần số 1.75GHz so với tại tần số 900MHz.

Một mô hình thống kê cho lan truyền nhiều tia tín hiệu trong nhà được tiến hành bởi Salah và Valenzuela trên tần số 1.5GHz sử dụng máy phát xung 10ns trong một tòa nhà kích thước trung bình. Kết quả của hai ông cho thấy, kênh thông tin indoor gần như tĩnh, nghĩa là chúng biến đổi rất chậm. Đặc tính tự nhiên và thống kê của đáp ứng xung được xem là độc lập với phân cực của tín hiệu phát và thu khi không tồn tại đường truyền thẳng LOS. Trễ lan truyền lớn nhất trong phòng từ 100 đến 200ns, nhưng thỉnh thoảng giá trị này đạt 300ns khi đo tại sảnh. Trễ lan truyền RMS đo được trong tòa nhà có giá trị trung bình 25ns, và có giá trị lớn nhất (tồi nhất) là 50ns (bằng 1/5 so với giá trị của Devarsirvatham đo trong tòa nhà rộng ).

Cuối cùng, Rappaport, một lần nữa sử dụng các thiết bị đo tương tự, nghiên cứu lan truyền nhiều tia trong một nhà xưởng tại tần số 1300MHz. Ta thấy rõ sự khác nhau về mặt vật lý của các tòa nhà, về kỹ thuật xây dựng, về bố trí nội thất…sẽ là nguyên nhân làm cho đặc tính lan truyền tín hiệu sẽ khác nhaụTrên thực tế, ta thấy rằng hệ số suy hao n có giá trị xấp xỉ 2.2 và phading Racian là tiêu chuẩn. Trễ lan truyền RMS có giá trị từ 30 đến 300ns, và có giá trị trung bình là 96ns cho đường truyền LOS và 105ns cho đường truyền NLOS.

RMS delay spread (ns) Investigator s Frequenc y Environ- ment Median value Standar d deviati on Worst case (ns) Propag ation law expone nt n Bultitude et al 910MHz 1.75 GHz Within brick and concrete office builings 26 – 30 28 – 29 8 – 11 17 – 22 Saleh and Valenzuela 1.5GHz Within office buildings 25 – 50 100– 200 3 – 4 Devasirvath am and Murphy 850MHz 1.7GHz Within office builings In the range 50 – 150 400 Rappaport 1.3GHz In factory buildings 96 (LOS) 105 (NLOS) 300 2.2

LOS = line of sight.

NLOS = non line of sight.

Một phần của tài liệu Luận văn: Mô hình phủ sóng & giao thoa doc (Trang 61 - 73)

Tải bản đầy đủ (PDF)

(142 trang)