7. Cấu trúc của đồ án
2.1.3.2 Sinh học hiếu khí
Quá trình xử lý sinh học hiếu khí chất thải gồm 3 giai đoạn sau: - Oxy hóa các chất hữu cơ
CxHyOz + O2 En zym e CO2 + H2O + H - Tổng hợp tế bào mới:
CxHyOz + NH3 + O2 E nzy me tế bào vi khuẩn + CO2 + H2O + C5H7NO2 - H - Phân hủy nội bào:
C5H7NO2 + 5O2 Enzym e
5CO2 + 2H2O + NH3 H
Các quá trình xử lý sinh học bằng phương pháp hiếu khí có thể xảy ra ở điều kiện tự nhiên hoặc nhân tạo. Trong các công trình xử lý nhân tạo, người ta tạo điều kiện tối ưu cho quá trình oxy hóa sinh hóa nên quá trình xử lý có tốc độ và hiệu suất cao hơn rất nhiều. Tùy theo trạng thái tồn tại của vi sinh vật, quá trình xử lý sinh học hiếu khí nhân tạo có thể chia thành:
Xử lý sinh học hiếu khí với vi sinh vật sinh trưởng dạng lơ lửng chủ yếu được sử dụng để khử chất hữu cơ chứa carbon như quá trình bùn hoạt tính, hồ làm thoáng, bề phản ứng hoạt động gián đoạn, quá trình lên men phân hủy hiếu khí. Trong số những quá trình này, quá trình bùn hoạt tính là quá trình phổ biến nhất.
Xử lý sinh học hiếu khí với vi sinh vật sinh trưởng dạng dính bám như quá trình bùn hoạt tính dính bám, bể lọc nhỏ giọt, bể lọc cao tải, đĩa sinh học, bể phản ứng nitrate hóa với màng cố định.
a. Bể bùn hoạt tính vi sinh sinh trưởng lơ lửng
Trong bể bùn hoạt tính hiếu khí với vi sinh vật sinh trưởng dạng lơ lửng, quá trình phân hủy xảy ra khi nước thải tiếp xúc với bùn trong điều kiện sục khí liên tục. Việc sục khí nhằm đảm bảo các yêu cầu cung cấp đủ lượng oxy một cách liên tục và duy trì bùn hoạt tính ở trạng thái lơ lửng. Nồng độ oxy hòa tan trong nước ra khỏi bể lắng đợt 2 không được nhỏ hơn 2mg/L. Tốc độ sử dụng oxy hòa tan trong bể bùn hoạt tính phụ thuộc vào:
- Tỷ số giữa lượng thức ăn / lượng vi sinh vật: ( F/M ) - Nhiệt độ.
- Tốc độ sinh trưởng và hoạt độ sinh lý của vi sinh vật. - Nồng độ sản phẩm độc tích tụ trong quá trình trao đổi chất. - Lượng các chất cấu tạo tế bào.
- Hàm lượng oxy hòa tan.
Để thiết kế và vận hành hệ thống bùn hoạt tính hiếu khí một cách hiệu quả cần phải hiểu rõ vai trò quan trọng của quần thể vi sinh vật. Các vi sinh vật này sẽ phân hủy các chất hữu cơ có trong nước thải và thu năng lượng để có thể chuyển hóa thành tế bào mới, chỉ một phần chất hữu cơ bị oxy hóa hoàn toàn thành CO2, H2O,NO3
,SO24
, … Một cách tổng quát, vi sinh tồn tại trong hệ thống bùn hoạt tính bao gồm Pseudomonas, Zoogleoa, Achromobacter, Flacobacterium, Nocardia, Bdellovibro, Mycobacterium và hai loại vi khuẩn nitrate hóa Nitrosomonas và
Nitrobacter. Thêm vào đó nhiều loại vi kuẩn dạng sợi như Sphaerotilus, Beggiatoa, Thiothrix, Lecicothrix và Geotrichum cũng tồn tại.
Yêu cầu chung khi vận hành hệ thống bùn hoạt tính hiếu khí là nước thải đưa vào hệ thống cần có hàm lượng SS không vượt quá 150 mg/l, hàm lượng sản phẩm dầu mỏ không quá 25 mg/l, pH = 6,5 - 8,5, nhiệt độ 6 – 370C.
b. Bể bùn hoạt tính gián đoạnn theo mẻ SBR
Hệ thống aerotank làm việc theo mẻ kế tiếp (SBR) là quá trình bùn hoạt tính hay được sử dụng để xử lý nước thài đô thị và công nghiệp. Quá trình gồm 5 giai đọan:
1) Làm đầy- Fill- Có hoặc không có sục khí tùy thuộc mục đích quá trình 2) Phản ứng- React- Sục khí làm thoáng tương tự Aerotank
3) Lắng tĩnh- Settle- Điều kiện lắng bùn lý tưởng tạo môi trường yếm khí 4) Gạn nước- Decant- Rút nước trong bằng hệ thống decanter
5) Chờ- Idle- Giai đoạn phụ có hoặc không tùy theo thiết kế
Do nước vào, phản ứng (kị khí, hiếu khí, thiếu khí), lắng, tháo nước ra, nạp mẻ mới được thực hiện trong cùng 1 bể phản ứng, do đó rất tiết kiệm diện tích xây dựng. Đồng thời, bùn hoạt tính không cần tuần hoàn để duy trì nồng độ bùn trong bể như các quá trình bùn hoạt tính khác. SBR có hiệu quả cao khi xử lý nước có hàm lượng chất hữu cơ hòa tan và chất dinh dưỡng cao. Nó còn được áp dụng để xử lý nước thải nhiễm phenol, benzoic axit, các chất béo.
Hiệu quả xử lý kim loại của các công trình sinh học bùn hoạt tính khi xử lý rất cao. Tuy nhiên, khi các kim loại như Fe, Mn, Al, Cr, Ca, Pb, Ni bị loại ra khỏi nước thải sẽ lắng trong các công trình xử lý sinh học cũng như hấp phụ trong bùn hoạt tính, thì tỉ lệ MLVSS/MLSS sẽ giảm xuống rất thấp ảnh hưởng đến hiệu quả xử lý sinh học. Do vậy cần có những công trình sơ bộ giảm nồng độ kim loại trước khi xử lý sinh học.
c. Bể bùn hoạt tính sinh trưởng bám dính
Nguyên lý hoạt động của bể này tương tự như trường hợp vi sinh vật sinh trưởng dạng lơ lửng, chỉ khác là vi sinh vật sinh trưởng bám dính trên vật liệu tiếp xúc đặt trong bể. Quá trình sinh học dính bám là quá trình phát triển của vi sinh vật trên bề mặt các vật liệu rắn trong môi trường hiếu khí hoặc kị khí. Vi sinh vật sẽ tiết ra chất gelatin và chúng có thể di chuyển trong lớp gelatin dính bám này. Đầu tiên, vi khuẩn chỉ hình thành ở một khu vực, sau đó màng vi sinh vật sẽ không ngừng phát triển phủ kín toàn bộ bề mặt vật liệu tiếp xúc. Chất dinh dưỡng (chất hữu cơ, muối khoáng) và oxy có trong nước thải sẽ khuếch tán vào lớp màng biofilm và từ đó quá trình ổn định chất hữu cơ sẽ diễn ra làm giảm nồng độ các chất ô nhiễm có khả năng phân hủy sinh học trong nước thải.
Hình 2.11: Bể bùn hoạt tính với vi sinh vật sinh trưởng bám dính.
d. Bể lọc sinh học nhỏ giọt
Bể lọc sinh học nhỏ giọt là một thiết bị phản ứng sinh học trong đó các vi sinh vật sinh trưởng cố định trên các vật liệu lọc. Bể lọc hiện đại bao gồm một lớp vật liệu dễ thấm nước với vi sinh vật kết dính trên đó. Nước thải đi qua lớp vật liệu này sẽ thấm hay nhỏ giọt lên đó. Vật liệu thường là đá dăm hoặc các vật liệu tổng hợp. Nếu vật liệu lọc là đá hoặc sỏi thì kích thước hạt dao động trong khoảng 25-100 mm, chiều sâu lớp vật liệu dao động trong khoảng 0,9-2 m, trung bình là 1,8 m. Bể lọc với vật liệu là đá dăm thường có dạng tròn. Nước thải được phân phối đều lên lớp vật liệu nhờ hệ thông phân phối. Bể lọc với vật liệu lọc là chất dẻo tổng hợp thì có chiều cao từ 4-12 m. Ba dạng vật liệu lọc tổng hợp thường dùng là: (1) vật liệu tạo dòng chảy thẳng đứng; (2) vật liệu tạo dòng chảy ngang; (3) vật liệu tạo dòng chảy ngẫu nhiên.
Chất hữu cơ sẽ bị phân hủy bởi quần thể vi sinh vật dính kết trên lớp vật liệu lọc. Các chất hữu cơ có trong nước thải bị hấp thụ vào màng vi sinh vật dày 0,1-0,2 mm và bị phân hủy bởi vi sinh vật hiếu khí. Khi vi sinh vật sinh trưởng và phát triển, bề dày lớp màng tăng lên do đó oxy bị tiêu thụ trước khi khuếch tán hết chiều dày lớp màng vi sinh. Như vậy môi trường kỵ khí hình thành ngay sát màng vật liệu lọc.
Khi chiều dày lớp màng tăng lên, quá trình đồng hóa chất hữu cơ xảy ra trước khi chúng tiếp xúc với vi sinh vật ở gần vật liệu lọc. Kết quả là vi cinh vật ở đây bị phân hủy nội bào, không còn khả năng bám dính trên bề mặt vật liệu lọc và bị rửa trôi.
Hình 2.12 :Cấu tạo bể lọc sinh học nhỏ giọt.
e. Đĩa sinh học tiếp xúc quay RBC
Đĩa sinh học gồm hàng loạt đĩa tròn, phẳng, bằng polystyren hoặc polyvinylclorua lắp trên một trục. Các đĩa được đặt ngập trong nước một phần va quay chậm. Trong
quá trình vận hành, vi sinh vật sinh trưởng, phát triển thành màng mỏng bám trên bề mặt đĩa. Khi đĩa quay, lớp màng sinh học tiếp xúc với nước thải và với khí quyển để hấp thụ oxy. Đĩa quay sẽ ảnh hưởng đến sự vận chuyển oxy và đảm bảo vi sinh tồn tại trong điều kiện hiếu khí.