So sánh với các hệ thống truyền thông băng rộng

Một phần của tài liệu điều chế tín hiệu [tuyền dẫn vô tuyến] (Trang 65 - 74)

Trong mục này chúng ta sẽ đề cập một vài khác biệt và tương tự của các hệ thống truyền thông UWB với các hệ thống trải phổ (SS). Lí do là trong một khoảng cách rất ngắn (chẳng hạn phạm vi trong phòng) chúng ta không thể hi vọng sử dụng bất cứ dạng nào của truyền thông trải phổ hay OFDM. Cụ thể hơn các ứng dụng trong lĩnh vực truyền thông trải phổ thông thường cũng như OFDM cũng không được sử dụng hay dự định sử dụng trong phạm vi này. Để đưa ra một số ví dụ, trải phổ được sử d0ụng trong hệ thống dịch vụ thông tin di động và số liệu thế

hệ thứ ba (3G). Truyền thông từ trạm gốc đến thiết bị di động có thể nằm trong

khoảng vài trăm mét đến hàng kilomét. Trong khi đó, OFDM đang được xem xét sử dụng trong hệ thống di động thế hệ thứ tư (4G). Thực tế OFDM cũng đang được sử dụng trong truyền hình số ở Nhật Bản. Các kĩ thuật UWB hiện nay thường ít được đề cập sử dụng truyền thông ngoài nhà, và các ứng dụng truyền thông khoảng cách lớn.

Hình 4.2: So sánh các phạm vi ứng dụng của các công nghệ truyền thông vô tuyến khác nhau theo khoảng cách

Tuy nhiên, các mạng LAN vô tuyến trong nhà có thể nằm trong cùng phạm vi ứng dụng của UWB và do đó sử dụng để so sánh và đánh giá nó với truyền thông UWB là hợp lí nhất.

Chuẩn IEEE 802.11b áp dụng cho các mạng WLAN sử dụng trải phổ chuỗi trực tiếp (DSSS) có tần số trung tâm 2.4 GHz, và chuẩn 802.11a cho các mạng WLAN sử dụng OFDM có tần số trung tâm 5GHz. Sau đây tôi sẽ so sánh hệ thống UWB với hệ thống WLAN tuân theo chuẩn IEEE 802.11b. Đây là một trong

những chuẩn phổ biến nhất cho truyền thông không dây trong nhà. Nó hoạt động ở dải tần không cấp phép 2.4-GHz. Trong 802.11b, các kĩ thuật trải phổ trực tiếp được sử dụng để chuyển tín hiệu dữ liệu băng hẹp lên toàn bộ dải tần cho trước, để loại bỏ nhiễu từ các người dùng khác hay các nguồn tạp âm. Băng tần 2.4 GHz được biết là băng tần ISM, nó dùng cho công nghiệp, khoa học và y tế.

Hình 4.3: Quan hệ thời gian-tần số của hai người dùng sử dụng trải phổ nhảy tần

Hình 4.4: Quan hệ thời gian-tần số của hai người dùng sử dụng trải phổ chuỗi trực tiếp. Hai người dùng phân biệt với nhau bởi hai mã khác nhau

Có hai kĩ thuật trải phổ phổ biến là: trải phổ nhẩy tần (FHSS) và trải phổ nhẩy thời gian (THSS). Tổng quan về quan hệ tần số thời gian được chỉ ra trên hình 4.3 và 4.4. Trong hình 4.3 chúng ta có thể thấy hai người sử dụng chiếm một băng tần hẹp trong một khoảng thời gian ngắn. Có 79 kênh nhảy tần trong chuẩn IEEE 802.11 và mỗi kênh rộng 1 MHz. Các bước nhảy thực hiện mỗi 224 µs. Trái

lại, hình 4.3 chỉ ra rằng mỗi người dùng chiếm toàn bộ dải tần tại mọi thời điểm và các người dùng khác nhau phân biệt bởi các mã giả ngẫu nhiên (PN). Do đó DSSS còn được gọi là đa truy nhập phân chia theo mã (CDMA). Cả DSSS và FHSS đều được mô tả trong các chuẩn WLAN IEEE 802.11, và gần đây là chuẩn IEEE 802.11b, DSSS mới chỉ định nghĩa được lớp vật lý.

So sánh UWB với DSSS và FHSS

So sánh giữa ba kĩ thuật điều chế: DSSS, FHSS, và UWB. Thiết lập cho mỗi phương pháp chiếm băng tần 3.2 MHz, truyền dẫn ở tốc độ 3.125 Mb/s, và cung cấp cho 30 người dùng đồng thời. Với hệ thống DSSS SNR có thể viết là:

0 1 ( 1) / 3 / 2 DSSS b SNR K N N E = − − (4.12) Trong đó K là số người dùng và N là số chip trên một bit. BER có thể tính được từ DSSS DSSS SNR 1 ER erfc 2 2 B   =  ÷÷   (4.13) Trong đó “erfc” là hàm lỗi bù, được định nghĩa là:

( )2 u 2 erfc(z)= exp -z dz π ∞ ∫ (4.14) Trong khi đó BER của FHSS tính được như sau:

1 1 1 1 i 1 1 S R= 1 erfc 2 2N 1 1 S erfc 2 2N+S M i M i i M BE k C k − − = −    −   ÷  ÷  ÷         +  ÷  ÷÷     ∑ (4.15)

Trong đó k là số khe nhẩy tần, M là số lượng của người dùng, S là công suất tín hiệu, và N là công suất tạp âm. Do đó, Si biểu diễn công suất nhiễu từ các người dùng.

Với UWB, SNR đầu ra trung bình có thể được tính với giả thiết chuỗi nhảy thời gian ngẫu nhiên. Để số người dùng (được kích hoạt) là Nu. Từ [14] SNR là:

( )2 1 2 2 2 2 u s p N rec s a k k N A m SNR N A σ σ = = + ∑ (4.16)

Trong đó 2

rec

σ là phương sai của thành phần tạp âm thu ở đầu ra bộ tích phân chuỗi xung. Các tham số phụ thuộc vào dạng sóng monocycle mp và 2

a σ được tính: mp ∞ωrec(x δ) ( )v x dx −∞ = ∫ − (4.17) Và 2 2 1 rec( ) ( ) a Tf x s v x dx ds σ − ∞ ∞ω −∞ −∞   =  −    ∫ ∫ (4.18) Tương ứng, trong đó A1 là biên độ momocycle, Tf là chu kì khung giả thiết bằng 10 ns, và Ns là số xung trên một kí hiệu.

Hình 4.5: So sánh BER của ba hệ thống băng rộng DSSS, FHSS, và UWB trong trường hợp một người dùng

Kết quả thứ nhất được chỉ ra trong hình 4.5 với trường hợp một người dùng chúng ta có thể dễ dàng thấy rằng cả ba phương pháp có cùng đường cong BER theo SNR. Khi 30 người dùng đồng thời phát tín hiệu sẽ thấy sự khác biệt. Điều này được minh hoạ trên hình 4.6.

Hình 4.6: So sánh BER của ba hệ thống khi 30 người dùng đồng thời truyền dẫn Chi tiết hơn hình 4.6, hình 4.7 ta so sánh hiệu năng của hai phương pháp DSSS và UWB, có thể thấy rõ rằng về mặt lí thuyết với các giả thiết này hiệu năng của DSSS cao hơn của UWB.

Hình 4.7: So sánh BER theo số người dùng với các hệ thống UWB và DSSS Tuy nhiên, băng tần chip giả thiết cho DSSS là 0.37 ns, có nghĩa là việc xử lí tín hiệu rất phức tạp (và do đó rất đắt) so với các hệ thống UWB. Do đó, chúng ta có thể tổng quát hoá với phát biểu rằng hiệu năng đạt được là tương tự nhau đối với các hệ thống băng rộng DSSS và UWB, với băng tần giống nhau. Tuy nhiên, trên thực tế UWB có thể thực hiện với giá cả thấp hơn, mặt khác nếu băng tần làm việc tăng lên thì xử lí tín hiệu đối với các hệ thống DSSS và FHSS sẽ phức tạp hơn, nên các hệ thống UWB hấp dẫn hơn. Hơn nữa chúng ta chú ý rằng băng tần

giả thiết trong ví dụ này chỉ là 3 MHz, trong khi băng tần hoạt động thực tế của UWB lớn hơn rất nhiều: tối thiểu là 500 MHz.

4.3 Ảnh hưởng nhiễu qua lại giữa hệ thống truyền thông UWB và các hệ thống truyền thông khác

Bởi vì các tín hiệu UWB có băng tần rất rộng, phổ tần hoạt động của chúng chồng lấn phổ tần với các phương pháp truyền thông không dây khác. Hình 4.8 chỉ ra một số hệ thống có thể gây khó khăn cho UWB. Vấn đề được gói gọn làm hai. Thứ nhất, UWB có thể hoạt động trong điều kiện xuất hiện những nhiễu này. Thứ hai, UWB phải không gây nhiễu đáng kể cho các người dùng thuộc các hệ thống này.

Chúng ta có thể dễ dàng thấy rằng một trong những lí do để tránh băng tần nhỏ là quá nhiều dịch vụ không dây mà UWB có thể đụng chạm tới. Dải tần giữa 3 GHz và 10 GHz là nguồn nhiễu cho các hệ thống không dây trong nhà chính được giả thiết là các mạng WLAN 5-GHz dựa trên OFDM.

Hình 4.8: Các hệ thống truyền thông vô tuyến khác vận hành trên dải tần của hệ thống UWB gây nhiễu lên hệ thống UWB và ngược lại

4.3.1 Các mạng nội hạt không dây (WLAN)

Với những hệ thống tần số trung tâm 5.2 GHz và tần số trung tâm hệ thống UWB ở 4.2 GHz, ảnh hưởng lên hiệu năng BER là tối thiểu khi công suất của tín hiệu 802.11a nhỏ hơn tín hiệu UWB 10 dB. Hệ thống UWB mô phỏng sử dụng dạng xung s0(t) điều chế bởi sóng dạng sin(2π f t0 ) ở tần số f0 Hz và dẫn đến biểu thức

2 /2

0( ) at sin(2 0 )

s t =e− τ π f t (4.19) Mô phỏng với a=loge10 vàτ =0.5ns. Các xung được gửi mỗi 5 ns và thực hiện điều pha hai trạng thái. Công suất của hệ thống UWB với Eb/N0 (năng lượng mỗi bit chia cho mật độ công suất tạp âm) và tỉ lệ mong muốn với không mong muốn (DU) được định nghĩa là công suất của một xung đơn để loại bỏ ảnh hưởng của khoảng cách giữa các xung. Khi tín hiệu 802.11a mạnh hơn, như khi bộ phát WLAN gần bộ thu UWB, xảy ra nhiễu đáng kể. Để loại bỏ nhiễu này, hai kĩ thuật được đề nghị. Một là sử dụng bộ lọc để loại bỏ nhiễu không mong muốn. Ví dụ, có thể sử dụng bộ lọc Chebyshev bậc sáu với tần số cắt ở 4 GHz, độ gợn nhỏ hơn 0.2 dB, và suy hao -20 dB ở 5.18 GHz. Bộ lọc này làm tổn hao 1-dB khi không có nhiễu; tuy nhiên nó cải thiện hiệu năng đáng kể khi không có nhiễu.

Đề nghị thứ hai là sử dụng hệ thống UWB đa băng. Các sóng mang con tần số cao nhất bị loại bỏ bởi vì chúng chồng lấn với phổ tần 802.11a. Sử dụng một hệ thống với 11 sóng mang con với khoảng cách là 200 MHz từ 3.2 đến 5.2 GHz

2 2 2 / 2 / 0 0 11 / 0 1 ( ) sin(2 ) sin(2 ) at at n n s t e f t X e f t τ τ π π − − = = ≈∑ (4.20) Trong đó τ =/ 0.5ns.

Tóm lại, ở tỉ số DU là 0 dB, loại bỏ hai sóng mang lớn nhất được hiệu năng tốt nhất, trong khi với DU là -10 dB loại bỏ ba sóng mang thu được hiệu năng tốt nhất. Một thí nghiệm thực hiện được mô tả ở hình 4.9 để xác định hoạt động của card mạng WLAN với dưới tác dụng của các tín hiệu UWB công suất cao, và có thể tổng kết là 802.11b có thể chịu nhiễu từ UWB khi công suất truyền dẫn cao và khoảng cách gần giữa các máy phát UWB và bộ thu WLAN.

Hình 4.9 Thiết lập thí nghiệm để xác định ảnh hưởng của nhiễu từ các bộ phát UWB công suất cao tới card WLAN

Trong thí nghiệm này, các xung với độ rộng 500 ps được tạo ra từ vài bộ phát UWB. Tần số lặp xung được cố định ở 87 MHz. Tần số trung tâm khoảng 1.8 GHz. Cường độ đỉnh-đỉnh để đo xung từ cổng ra của bảng mạch xấp xỉ 300mV. Các anten đẳng hướng được sử dụng và có EIRP từ -2 dBm tới 3 dBm phụ thuộc vào tần số lặp xung. Cấu hình này không phù hợp với quy định của FCC, phần mở rộng mặt nạ phổ cho truyền dẫn trong nhà cỡ 30 dB ở băng tần 2.4 GHz

Các phép đo phổ trên kênh 1 (fc=2.412 GHz) chỉ ra đỉnh nhiễu UWB nhỏ hơn cỡ 20 dBmV đỉnh tín hiệu 802.11b với 20 bộ phát UWB ở khoảng cách 100 cm. Ở khoảng cách 15 cm từ anten đo đỉnh UWB thấp hơn đỉnh tín hiệu WLAN cỡ 5 dBmV. Các phép đo SNR được tiến hành, và kết quả là với nếu khoảng cách từ bộ thu WLAN đến các bộ phát UWB lớn hơn 50 cm, sẽ không có suy giảm đáng kể với SNR. Với khoảng cách nhỏ hơn 50 cm, SNR suy giảm cỡ 10-15 dB. Thông qua những phép đo chỉ ra một số xu hướng: với cách khoảng cách nhỏ hơn 30 cm, dung lượng WLAN giảm rõ rệt khi có 15 bộ phát UWB công suất cao hoặc nhiều hơn và nếu khoảng cách lớn hơn 40 cm ảnh hưởng có thể bỏ qua.

4.3.2 Bluetooth

Hiệu năng của các mạng WLAN Bluetooth được xem xét dưới ảnh hưởng của các tín hiệu UWB công suất lớn. Có thể tổng kết là kết nối Bluetooth chịu ảnh hưởng ít hơn các kênh 802.11b tương ứng.

Bởi vì các thiết bị Bluetooth có thể điều chỉnh trạng thái các kênh riêng để tránh các kênh “xấu”. Chỉ suy giảm dung lượng khoảng 530 kb/s xuống 490 kb/s các bộ thu phát Bluetooth cách nhau 10 m, và không suy giảm dung lượng khi các thiết bị Bluetooth đặt cách nhau cỡ 3 m, trong thí nghiệm các thiết bị UWB đặt cách bộ thu Bluetooth 15 cm.

4.3.3 GPS

GPS đóng một vai trò quan trọng trong nhiều lĩnh vực như thương mại, quân sự, và xã hội. Ví dụ các hệ thống hàng không cũng như các thiết bị giao thông hiện đại, hàng hải v,v nhận thông tin dẫn đường từ hệ thống GPS. Các thiết bị thông tin di động trang bị bộ thu GPS cũng đang được thương mại hoá. Do đó ảnh hưởng của tín hiệu UWB lên tín hiệu GPS cần được đặc biệt quan tâm. Điều này cũng được thể hiện rõ trong mặt nạ phổ công suất do FCC đưa ra khi công suất phát được phép của tín hiệu UWB trong dải tần này là thấp nhất chỉ khoảng -76 dBm/MHz nên có thể bỏ qua ảnh hưởng của tín hiệu UWB nên tín hiệu GPS.

4.3.4 Các hệ thống thông tin tế bào

Xem lại hình 4.7 dễ thấy rằng phần lớn các hệ thống di động hoạt động ở dải tần dưới 1 GHz và do đó không nằm trong dải tần mà phần lớn các hệ thống truyền thông UWB sử dụng. Băng tần 1.5 GHz được bảo vệ mạnh bởi các điều lệ của FCC. Các dịch vụ ở dải tần 2 GHz có thể chịu một số ảnh hưởng; tuy nhiên nó nằm ở rìa của băng tần UWB trung tâm và không phổ biến như các dịch vụ di động tổ ong khác tại thời điểm hiện nay. Trong một số thí nghiệm về ảnh hưởng của hệ thống UWB (thoả mãn yêu cầu của FCC) lên dịch vụ di động PCS 1.9 GHz. Và nhận thấy không có ảnh hưởng rõ rệt của tín hiệu UWB đối với các dịch vụ thoại ở dải tần này. Trong thí nghiệm các thiết bị di động đặt ở khoảng cách 1.5 m so với anten phát UWB.

4.3.5 Kết luận

Do đặc điểm băng tần trải rất rộng nên vấn đề ảnh hưởng nhiễu qua lại giữa các hệ thống truyền thông vô tuyến băng hẹp khác với hệ thống UWB có ý nghĩa quyết định đến tính hiện thực của hệ thống UWB. Vấn đề này đã được xem xét khá chi tiết ở trên và có thể kết luận là các hệ thống UWB hoạt động thoả mãn mặt nạ phổ công suất của FCC thì có thể hoạt động đồng thời cùng các hệ thống băng hẹp khác mà không có hiện tường gây nhiễu đáng kể nào. Chỉ lưu ý đối với các hệ

thống WLAN do hoạt động ở băng tần trung tâm của UWB nên các bộ thu và phát của hai hệ thống này không nên đặt quá gần nhau.

Một phần của tài liệu điều chế tín hiệu [tuyền dẫn vô tuyến] (Trang 65 - 74)

Tải bản đầy đủ (DOC)

(86 trang)
w