Các trường hợp ứng dụng UWB

Một phần của tài liệu điều chế tín hiệu [tuyền dẫn vô tuyến] (Trang 74 - 86)

Ở phần này các phương pháp triển khai UWB được kiểm tra và đánh giá

chặt chẽ hơn để xác định tính khả thi và tối đa hiệu năng hệ thống.

Các dạng sử dụng hệ thống UWB khác nhau có thể phân chia thành ba loại tuỳ thuộc vào khoảng cách hoạt động tối đa rmax:

● Khoảng cách hoạt động khoảng cách rmax=1 m: Hoạt động ở khoảng cách rất ngắn, hệ thống UWB có khả năng cung cấp dịch vụ tốc độ rất cao như USB 2.0 hay kết nối WireFire với tốc độ lên đến 500 Mb/s.

● Khoảng cách ngắn hoạt động với rmax<10 m: Sử dụng cho các hệ thống WPAN/WLAN với tốc độ cỡ 100 Mb/s.

● Khoảng cách hoạt động trung bình với rmax<10 m-1000 m: Trong trường hợp này hệ thống được sử dụng với tốc độ thấp cỡ 10-100 b/s có thể kết hợp với khả năng xác định vị trí của các thiết bị đầu cuối UWB tạo thành hệ thống định tuyến multi-hop. Ví dụ, hệ thống có thể sử dụng cho các thiết bị cảm biến (sensor) kết nối với nhau chẳng hạn như các bộ cảm biến hỏa hoạn hay thay thế dây dẫn cho các thiết bị tự động hoá trong các nhà máy mà ở đó phải thiết lập rất nhiều dây cáp.

Các hệ thống UWB từ các cách sử dụng trên được giả thiết hoạt động thoả mãn mặt nạ phổ công suất của FCC giới hạn công suất phát -41.3 dB/MHz hay 75 nW/MHz trong dải tần 3.1 GHz- 10.6 GHz. Tất cả các hệ thống được xem xét ở đây sẽ sử dụng công suất phát tối đa trong băng 3.1 GHz-6.1 GHz với tần số trung tâm fc=4.6 GHz và băng tần 3 dB B=3 GHz. Đây là lựa chọn cho thế hệ các hệ thống UWB đầu tiên và bởi vì suy hao là nhỏ nhất ở dải tần này. Một monocycle thoả mãn các yêu cầu trên là đạo hàm bậc 7 của xung Gaussian có độ rộng xung 2/3 ns tạo ra dung lượng tổng cộng 1.5 Gb/s sử dụng các phương pháp điều chế nhị phân. Một giả thiết khác về hiệu năng của anten và front-end RF. Anten được giả thiết vô hướng có hiệu suất 80 % [16] và front end RF có chỉ số tạp âm xấp xỉ 6 dB [13]. Nhiệt độ để tính tạp âm nền là 290 K. Suy hao đường là

2 2 2 16 n c c PL r f π = (4.21)

Với c là tốc độ ánh sáng và r là khoảng cách. Số mũ n là hàm của môi trường và thường trong khoảng 1.5-6. Trong trường hợp truyền dẫn không gian tự do (FSP) thì n=2. Ba loại hệ thống UWB được xem xét chi tiết hơn dưới đây.

4.4.1 Hoạt động ở khoảng cách rmax<1m

Do hệ thống này chỉ hoạt động trong khoảng cách 1 m, số lượng người dùng đồng thời mà hệ thống phải đáp ứng là rất ít và thường là từ 1 đến 4 người dùng (thiết bị) phụ thuộc vào điều kiện cụ thể. Chúng ta xem xét hệ thống phục vụ một người dùng. Một ứng dụng trong trường hợp này là USB 2.0 không dây.

Lưu ý rằng ứng dụng USB 2.0/ WireFire có hệ số trải phổ là SF=2 nên tốc độ có thể là 750 Mb/s, là đủ để thoả mãn những dịch vụ kiểu này.

Vấn đề rất quan trọng trong ước tính hiệu năng của bất kì hệ thống không dây nào là mô hình kênh. Mô hình kênh cho khoảng cách dưới 1 m không có và phải sử dụng mô hình gần đúng. Để giữ cho mô hình đơn giản, mô hình sử dụng cho trường hợp này là kênh AWGN với suy hao truyền sóng không gian tự do (FSP ) có đường nhìn thẳng (LOS)

Dự trữ tuyến cho hệ thống có thể được thiết lập và nó được đưa ra ở bảng 4.1. Có thể thấy từ bảng là SNR của kênh là rất tốt và không cần các phép xử lí khác. Tuy nhiên cũng có thể sử dụng các phương pháp điều chế bậc cao để tăng tốc độ bit. Ngay cả khi giả thiết là kênh AWGN, sẽ là hợp lí để giả thiết rằng có mặt một số thành phần đa đường và nên sử dụng phương pháp TH để giảm ISI và giữ cho bộ thu đơn giản. Một phương pháp điều chế nhị phân, BPSK thường được ưa dùng trong trường hợp này. Do hệ thống được giả thiết là hoạt động trong kênh AWGN, bộ thu được sử dụng đơn giản là bộ thu giải tương quan.

Bảng 4.1: Dự trữ tuyến cho truyền thông UWB khoảng cách rất ngắn rmax<1m, f=3.1- 6.1 GHz, fc=4.6 GHz, K=1, Kênh AWGN

với suy hao FSP LOS

Tx=B.75 nW/MHz -6.5 dBm Nhiễu nhiệt kTB -79.2 dBm Suy hao FSP 2 2 2 2 16 c c r f π , r=1 m -45.7 dBm

SNR kênh -6 dB Độ lợi xử lí PG=2 20 dB

SNR tách sóng 3 dB

Mô phỏng hệ thống với các tham số đưa ra ở trên và kết quả thu được ở hình 4.10. Có thể các giả thiết ở trên là quá tối ưu, đáp ứng xung FSP lí tưởng trong trường hợp UWB không phải là xung delta được giả thiết khi sử dụng kênh AWGN.

Thứ nhất là suy hao FSP phụ thuộc vào tần số trong khi các hệ thống UWB có băng tần lớn. Kết quả là xung bị biến đổi và công suất thu được có thể bị giảm đi.

Thứ hai, giả thiết không có thành phần đa đường nào trong kênh có thể quá đơn giản và năng lượng thu được từ bộ thu tương quan có thể giảm đi. Trong trường hợp với một số ít ngón nên được sử dụng nhưng nói chung với khoảng cách rất ngắn như vậy có nhiều ưu điểm do SNR kênh cao và cấu trúc bộ thu phát tương đối đơn giản.

Hình 4.10: Mô phỏng với hệ thống ở khoảng cách rất ngắn qua kênh AWGN

4.4.2 Hoạt động ở khoảng cách rmax<10 m

Phục vụ chủ yếu cho WPAN/WLAN, số lượng người dùng tối đa có thể sử dụng hệ thống đồng thời trong bán kính 10 m khoảng 8-32 người dùng. Để ước

lượng tôi quyết định cố định số người dùng tối đa là 16 với hệ số trải phổ SF ≈16 với tốc độ xấp xỉ 100 Mb/s.

Môi trường mà hệ thống hoạt động là môi trường trong nhà/công sở với các điều kiện LOS hay NLOS bởi vì tín hiệu có thể gặp vật cản và mô hình kênh sử dụng phải phản ánh điều này. Mô hình kênh được mô tả ở mục 2.2 sẽ được sử dụng làm nền tảng để ước lượng do nó hoạt động chính xác trong trường hợp này.

Để có một một ý tưởng về khả năng của hệ thống, dự trữ tuyến được tính toán và đưa ra trên bảng 4.2. Suy hao đường được sử dụng dựa trên mô hình kênh biểu diễn suy hao đường gần với suy hao FSP trong khoảng 10 m. Một điều cần ghi nhớ là khi quan sát dự trữ tuyến là SNR đưa ra là tổng công suất khi tất cả các thành phần đa đường được thu lại. Dự trữ tuyến cũng không tính đến suy giảm hiệu năng xảy ra khi nhiều người dùng hoạt động trong hệ thống và do đó dự trữ tuyến trên chỉ có thể áp dụng chính xác cho hệ thống thực tế nếu năng lượng đa đường có thể được thu lại và có thể loại bỏ đáng kể nhiễu đa truy nhập. Như thấy trên bảng 4.2 SNR là tương đối nhỏ và đây là lí do tại sao chỉ có BPSK nên được sử dụng trong trường hợp này.

Bảng 4.2: Dự trữ tuyến cho truyền thông UWB khoảng cách ngắn rmax<1m, f=3.1- 6.1 GHz, fc=4.6 GHz, K≤16, Kênh đa đường

NLOS với suy hao FSP

Tx=B.75 nW/MHz -6.5 dBm Nhiễu nhiệt kTB -79.2 dBm Suy hao FSP 2 2 2 2 16 c c r f π , r=1 m -45.7 dBm (adsbygoogle = window.adsbygoogle || []).push({});

Hiệu suất anten η =80% -1 dB

SNR kênh 0 dB

Độ lợi xử lí PG=2 12 dB

SNR tách sóng 12dB

Có thể không thể đạt được tốc độ 100 Mb/s cho tất cả người dùng đồng thời, nếu khoảng cách là 10 m. Một giải pháp cho vấn đề này là sử dụng các hệ số trải phổ biến thiên phụ thuộc vào điều kiện tín hiệu và dẫn đến các tốc độ khác nhau trong các điều kiện khác nhau

Nói chung trường hợp truyền thông này rất hứa hẹn, bởi vì nó chỉ ra các liên kết tốc độ cao. Vấn đề chủ yếu của trường hợp này là sự phức tạp của máy thu.

4.4.3 Hoạt động ở khoảng cách từ trung bình đến lớn với rmax<10-1000 m

Hệ thống giống như vậy có tốc độ bit trong khoảng 10-100kb/s được sử dụng cho truyền thông thoại và các loại truyền thông tốc độ thấp khác.

Số lượng người dùng đồng thời trong hệ thống có thể lớn, nó có thể phục vụ 1000 người dùng. Trong bảng 4.3 chỉ ra hai trường hợp: Một với hệ số luỹ thừa suy hao đường bằng 2 và trường hợp kia là bằng 4. Lí do là không có mô hình kênh cho hệ thống với khoảng cách trung bình và lớn như vậy cho truyền thông UWB và chỉ có thể thử và đưa ra một phỏng đoán về giá trị của số mũ suy hao đường. Nhưng do bản chất của kênh này là kênh NLOS và các khoảng cách là tương đối lớn, nên giả thiết số mũ suy hao đường gần với 4 hơn là với 2 hợp lí hơn. Bảng bao gồm độ lợi xử lí là 105, có tốc độ bit là 10 kb/ s nếu truyền dẫn 1 tỉ xung/s và do đó đạt được độ lợi xử lí cao.

Truyền thông ở các khoảng cách hơn 100 m do đó không thực tế và thậm chí ở khoảng cách 100 m SNR tách sóng có thể gần 0 dB. Hơn nữa, có thể thấy rằng năng lượng trải trên kênh sẽ kém hơn mô hình mô tả trong mục 2.2 bởi vì khoảng cách lớn hơn và để đạt được SNR như trong bảng 4.3 thì phải được thu thập tất cả năng lượng từ các thành phần đa đường đến.

Bảng 4.3: Dự trữ tuyến cho truyền thông UWB khoảng cách từ trung bình đến lớn rmax<10-1000 m, f=3.1- 6.1 GHz, fc=4.6 GHz, K≤1000, Kênh đa đường NLOS

n=2 n=4 Tx=B.75 nW/MHz -6.5 dB Nhiễu nhiệt kTB -79.2 dB Suy hao FSP 2 2 2 2 16 c c r f π , r=1 m -85.7 dB -125.7 dB

Hiệu suất anten η =80% -1 dB

Front end RF (NF=6 dB) -6 dB

SNR kênh -20 dB -60 dB

Độ lợi xử lí PG=2 12 dB

SNR tách sóng 30 dB -10 dB

Do đó có thể tổng kết rằng loại hệ thống UWB này không thực tế với với hạn công suất đã cho, do bộ thu sẽ rất phức tạp để thu được đủ năng lượng. Loại hệ

thống này thích hợp hơn với các hệ thống băng hẹp hoạt động có mật độ phổ công suất cao hơn để có SNR tốt.

4.4.4 Kết luận

Trong phần này các trường hợp sử dụng khác nhau được xem xét cùng với khả năng đáp ứng của hệ thống UWB và các mô phỏng để đánh giá hiệu năng của chúng. Có thể kết luận rằng các hệ thống UWB rất mạnh khi sử dụng trong các khoảng cách ngắn và cực ngắn. Hoạt động ở khoảng cách cỡ 1 m có thể sử dụng bộ thu phát đơn giản với tốc độ lên đến 500 Bb/s phù hợp cho các ứng dụng USB 2.0/ FireWire.

Tăng khoảng cách lên 10 m, có thể cho phép tốc độ lên đến 100 Mb/s cho mỗi người dùng với 15 người dùng đồng thời. Cái giá phải trả cho việc tăng khoảng cách lên 10 m là tăng độ phức tạp của máy thu để thu được các thành phần đa đường và loại bỏ nhiễu đa truy nhập (MAI).

Trường hợp cuối là khoảng cách hoạt động có thể lên tới 1000 m với tốc độ thấp nhưng cho phép nhiều người dùng hoạt động đồng thời. Từ dự trữ tuyến của trường hợp này, có thể kết luận là trường hợp này không thực tế do bộ thu sẽ vô cùng phức tạp để thu được năng lượng một cách hiệu quả. Hệ thống băng hẹp hoạt động tốt hơn trong những hệ thống kiểu này.

Như vậy phạm vi hoạt động hiệu quả nhất của thiết bị UWB là trong khoàng 10m.

4.5 Tổng kết

Chương này trình bày một số khía cạnh quan trọng của hệ thống truyền thông UWB. Thực hiện tính toán dung lượng hệ thống UWB trong điều kiện đơn giản; so sánh hiệu năng của hệ thống UWB với hệ thống WLAN chuẩn IEEE 802.11b; xem xét ảnh hưởng nhiễu qua lại giữa hệ thống UWB với các hệ thống vô tuyến khác đặc biệt là hệ thống WLAN IEEE 802.11a, và chứng minh khoảng cách hoạt động hiệu quả thực tế của hệ thống UWB là cỡ 10m. Những khía cạnh này là hết sức quan trọng khi triển khai hệ thống truyền thông UWB. Nó quyết định mức độ hiện thực hay thành công của hệ thống. Tuy nhiên trong nội dung đồ án này các khía cạnh này cũng chưa được xem xét thật sự tỉ mỉ.

Kết luận

Trong đồ án này các hệ thống UWB đã được nghiên cứu và phân tích dưới quan điểm xử lí tín hiệu, với muc đích sử dụng cho kĩ thuật truyền thông không dây khoảng cách ngắn với các liên kết tốc độ cao.

Chương 1 giới thiệu về các thuộc tính của tín hiệu và hệ thống UWB và phạm vi UWB có thể ứng dụng. Chương 2 đưa ra mô hình kênh trong nhà phù hợp để mô tả đặc tính truyền sóng đặc biệt của tín hiệu UWB. Mô hình kênh này là một cơ sở quan trọng cho những phân tích đánh giá hệ thống ở những chương tiếp theo. Chưong 3 nghiên cứu hệ thống truyền thông UWB. Chương 4 xem xét các khía cạnh đặc biệt quan trọng của hệ thống truyền thông UWB như ảnh hưởng nhiễu qua lại giữa hệ thống truyền thống UWB với các hệ thống truyền thông vô tuyến khác, tính toán đơn giản dung lượng của hệ thống.

Có thể thấy trong đồ án là các hệ thống truyền thông UWB có thể đạt được các kết nối tốc độ cao và các cấu hình thích hợp cho truyền thông khoảng cách ngắn. Tuy nhiên, để làm các hệ thống UWB có tính thương mại thì cần phải giải quyết nhiều vấn đề khác: Để tăng tính hiệu quả của hệ thống UWB cần phải mở rộng khoảng cách hoạt động của nó, nhưng điều này lại dẫn đến tăng độ phức tạp của các máy thu; Các vấn đề thực sự khó khăn khác của hệ thống UWB mà nội dung đồ án chưa đề cập như lấy mẫu tín hiệu, đồng bộ. (adsbygoogle = window.adsbygoogle || []).push({});

Để giải quyết những vấn đề trên, một xu hướng là sử dụng giải pháp UWB đa băng. Lí do là giải pháp đa băng rất mềm dẻo, do có thể điều chỉnh số lượng của các băng được sử dụng. Hơn nữa có thể loại bỏ các băng gây nhiễu mạnh đến các hệ thống khác. Mặt trái của phương pháp này là băng tần của mỗi băng nhỏ hơn và các lợi thế về băng tần siêu rộng của tín hiệu UWB giảm đi nhiều.

Tài liệu tham khảo

[1] Federal Communication Commission (FCC), “Revision of part 15 of the commission’s rule regarding ultra-wideband transmission systems”, Firsr report & order,11/2002.

[2] C.E Shannon, “A mathematical theory of communication”,1948. [3] S.Zeisberg “PPM based UWB system thrughput optimisation”

[4] Liuging Yang and Georgios B.Giannkis-“Ultra Wideband-An Idea Whose Time

Has Come”

[5] Q.Li, “Multiuser receivers for DS-CDMA UWB”, 2002.

[6] J.Foerster, “The effects of multipath interference on th performance of UWB system in a indoor wireless channel”, 2001.

[7] H.F. Engler, “Technical issues in ultra-wideband radar system”, 1994. [8] F. Ramirez-Mireles and R. A. Scholtz. Wireless multiple-access using SS timehopping

and block waveform pulse position modulation, part 2: Multipleaccess

[9] H. Kikuchi. UWB arrives in Japan. Nikkei Electronics, pages 95–122, February 2003

[10] John Wiley & Sons “Ultra wideband-signals and systems in communication

engineering”,

[11] Lars Puggaard Boglild Christensen “Signal processing for Ultra-Wideband systems”, Technical University of Denmark, 5-2003.

[12] D. Cassioli, “The ultra-wideband indoor channel: from statistical model to simulations”, 2002.

[13] General Atomics, “Overview of general atomics PHY proposal to IEEE 802.15.3a”

[14] S.W.Golomb, “Construcstion and properties of Costas arrays”, 1984 [15] S.Verdu, “Multiuser detection”, 1998

[16] H.G.Schantz, “Ultra wideband technology gains a boost from new antennas”, Time Domain Corp.

[18] T. S. Rappaport. “Wireless Communications: Principles and Practice”. PrenticeHall, 1996.

Một phần của tài liệu điều chế tín hiệu [tuyền dẫn vô tuyến] (Trang 74 - 86)