Truyền sóng bên ngoài vào bên trong tòa nhà

Một phần của tài liệu Mô hình phủ sóng giao thoa (Trang 53 - 61)

Trong những năm gần đây, công nghệ thông tin di động đánh dấu sự phát triển bùng nổ của các thiết bị di động cá nhân cả về số lượng lẫn chủng loạị việc lập kế hoạch trong mạng viễn thông là vấn đề cần thiết để theo kịp với sự phát triển nàỵ Trong thông tin di động, các nhà chuyên môn lấy yếu tố suy hao đường truyền tín hiệu trong tòa nhà để đánh giá chất lượng cho từng mạng di động. Các vấn đề của mô hình lan truyền tín hiệu trong nhà rất khác nhau và phức tạp. Cụ thể là:

Đó là môi trường truyền dẫn 3 chiềụ Bởi vì với một khoảng cách xác định từ BTS đến MS, chúng ta phải quan tâm đến yếu tố chiều cao, nó phụ thuộc vào số tầng của tòa nhà. Trong khu vực thành thị, chung ta dễ nhận thấy rằng tín hiệu sẽ có đường truyền thẳng LOS từ BTS đến MS khi MS đang ở các tầng cao của tòa nhà, trong khi nếu MS ở các tầng thấp hay trên phố, đường truyền LOS rất khó đạt được.

Môi trường truyền dẫn bên trong tòa nhà trong đó chứa nhiều vật cản. những vật cản này làm từ nhiều loại vật liệu khác nhau, và có vị trí gần với máy di động. Với môi trường như vậy, đặc tính lan truyền của tín hiệu sẽ thay đổi rất nhiều so với môi trường ngoài trờị

Chúng ta đã có rất nhiều các công trình nghiên cứu về lan truyền tín hiệu từ ngoài vào bên trong tòa nhà, đặc biệt với các dải tần số sử dụng cho mạng di động. Các công trình nghiên cứu này chia thành hai loại sau:

- Loại thứ nhất nghiên cứu trong môi trường có chiều cao trạm BTS từ 3 đến 9m và máy di động chủ yếu di chuyển trong các tòa nhà cao 1 hoặc 2 tầng

Hình 4.1. Trạm BTS dùng ở ngoại ô

- Loại thứ hai nghiên cứu trong môi trường có chiều cao trạm BTS tương đương với trong mạng di động cellular và máy di động di chuyển trong các tòa nhà cao tầng.

Các nghiên cứu cho loại thứ nhất xuất phát từ hệ thống điện thoại vô tuyến cầm tay vì hệ thống này phục vụ cho một số lượng lớn các thiết bị cầm tay công suất thấp, có bán kính cell nhỏ (<1km). Trong hệ thống này, việc phủ sóng cho một tòa nhà cao tầng được thực hiện thông qua rất nhiều cell nhỏ nằm trong tòa nhà. Đó là lý do tại sao các nghiên cứu lại sử dụng chiều cao của anten thấp, khoảng cách từ BTS đến MS nhỏ hơn 1km, và các phép đo được tiến hành trong nhà.

Trong mạng thông tin di động cellular, anten của các trạm thu phát macrocell thường được đặt trên mái nhà của tòa nhà cao tầng nên thường có chiều cao từ 60 đến 100m so với mặt đất và bán kính cell lớn nhất có thể tới 30km. Do vậy chúng ta không thể áp dụng các kết quả nghiên cứu của loại thứ nhất vào hệ thống nàỵ Tuy nhiên, các nghiên cứu này cũng chỉ ra rằng tín hiệu trong các khu vực nhỏ như trong tòa nhà có fading Rayleigh phân bố xấp xỉ với fading hàm log. Nói cách khác, hàm thống kê tín hiệu trong tòa nhà có thể được mô hình như là sự xếp chồng của quá trình small – scale (Rayleigh) và large – scale (lognormal) là các mô hình truyền sóng ngoài trời cho khu vực thành thị. Mức tín hiệu luôn thay đổi theo chiều cao của anten và chịu ảnh hưởng của sự phản xạ mặt đất.

Các kết quả nghiên cứu đã đưa ra công thức suy hao của tín hiệu: 10 log (12)

L S n= + ´ d

Trong đó:

S là hằng số, S = 32.0 @ 900MHz S = 38.0 @ 1800MHz

d là khoảng cách giữa máy phát và máy thụ

Các phép đo thực nghiệm được thực hiện bằng cách sử dụng một máy thu được đặt cố định và một máy phát cầm tay di chuyển khắp mọi vị trí trong tòa nhà, đã cho thấy giá trị của tham số n trong công thức (12) sẽ là:

- Tại tầng 1 là: - 3.9 - Tại tầng 2 là: -3.0 - Tại tầng hầm là: - 2.5

Trong khi đó, các nghiên cứu của loại thứ hai lại liên quan đến các đặc tính thống kê của suy hao trong nhà. Một công trình đầu tiên được giới thiệu bởi Rice, đã chỉ ra sự khác nhau giữa tín hiệu trung bình tại tầng khảo sát của tòa nhà với mức tín hiệu trung bình bên ngoài tòa nhà, trên phố nằm kề với tòa nhà. Rõ ràng là có hai khả năng xảy ra, hoặc là ta có thể thực hiện các phép đo trên đường phố nằm xung quanh tòa nhà để tìm được mức tín hiệu trung bình bên ngoài tòa nhà, như Rice đã đưa ra, hoặc là ta có thể lấy kết quả của phép đo tức thời bên ngoài tòa nhà tại vị trí nằm trên đường thẳng nối từ tâm tòa nhà đến vị trí máy phát.

Phương pháp thứ hai sẽ chính xác hơn nếu tồn tại một đường truyền LOS giữa máy phát và tòa nhà. Nhưng trường hợp này rất ít khả năng vì tín hiệu truyền vào trong tòa nhà qua rất nhiều đường truyền tán xạ, nên phương pháp một mang tính thực tiễn hơn. Phương pháp phân tích số liệu cũng rất khác nhaụ Mặc dù trong hầu hết các nghiên cứu, tín hiệu được lấy mẫu tại theo từng khoảng thời gian và từng vị trí. Nhưng nhìn chung, các phương pháp khác nhau này không làm ảnh hưởng đến giá trị trung bình phép đo suy hao tín hiệu trong tòa nhà.

Vì những lí do này, chúng ta đôi khi rất khó so sánh kết quả của các công trình nghiên cứụ Suy hao phụ thuộc rất nhiều các yếu tố, nhưng chủ yếu là phụ thuộc vào tần số, điều kiện lan truyền và chiều cao của máy thu trong tòa nhà. Tuy nhiên, một số yếu tố khác cũng có ảnh hưởng đến suy hao tín hiệu như

hướng của tòa nhà so với anten BTS, cấu trúc tòa nhà (vật liệu xây nhà, số lượng và kích thước cửa sổ) và cách bố trí vật dụng trong tòa nhà. Trong hầu hết các mô hình để dự đoán cường độ tín hiệu trong tòa nhà đều sử dụng phương pháp kỹ thuật được đưa ra bởi Ricẹ Cụ thể là trước tiên, chúng ta dự đoán mức tín

hiệu trung bình trên các con phố nằm xung quanh tòa nhà, sau đó cộng thêm phần suy hao bởi tòa nhà.

Một nghiên cứu khác của Barry và Williamson – New Zealand tập trung nghiên cứu vào tòa nhà, tại các tầng chính có đường truyền thẳng tới trạm thu phát gốc BTS. Hai ông đã sử dụng các tiêu chuẩn tương tự như việc tính toán trong môi trường giao thông. Phương pháp mô tả thống kê của Suzuki cho thấy tín hiệu trên bất cứ tầng nhà nào tại tần số 900MHz có độ lệch tiêu chuẩn là 6.7dB. Mô hình cũng cho rằng suy hao qua cửa sổ có ô kính nhỏ có giá trị là 10dB.

Các nghiên cứu thực nghiệm tại Anh cho tần số 441, 896.5 và 1400MHz đã cho ra cùng một kết quả về sự thay đổi tín hiệu, tương tự như những nghiên cứu ở trên. Các nghiên cứu này đưa ra cách nhìn về bản chất ảnh hưởng của điều kiện lan truyền đến độ sai lệch tiêu chuẩn.

Bảng 4.1 đưa ra giá trị suy hao xâm nhập cho 3 tần số tín hiệu khác nhau khi máy thu ở các vị trí khác nhau của một tòa nhà 6 tầng hiện đạị Giá trị suy hao tăng khoảng 1.5dB khi tần số thay đổi từ 441 lên 896.5MHz và khoảng 4.3dB khi tần số tăng lên 1400MHz.

Các phép đo thử khác nhau được thực hiện trong tòa nhà lớn, có tầng hầm thì giá trị suy hao là 14.2, 13.4 và 12.8 tương ứng với các tần số 900, 1800 và 2300MHz. Đối với các nhà thiết kế hệ thống, sự suy hao tín hiệu tại tầng hầm là rất quan trọng. Bởi vì nếu một hệ thống được thiết kế mà đạt được chất lượng tốt nhất tại tầng hầm thì chất lượng tại các tầng trên của tòa nhà cũng sẽ tốt.

Chúng ta cũng phải nhấn mạnh một điều là, tổng suy hao tín hiệu lan truyền từ trạm BTS đến MS được chia ra làm hai thành phần: một là suy hao tín hiệu từ BTS đến vị trí xung quanh tòa nhà; thứ hai là suy hao của tín hiệu khi xâm nhập vào tòa nhà. Sự phân chia này tạo thuận lợi khi chúng ta ước lượng suy hao của tín hiệụ Theo các kết quả nghiên cứu ở trên, suy hao xâm nhập vào tòa nhà và suy hao trong không khí của tín hiệu tăng tỉ lệ thuận với tần số.

Suy hao xâm nhập Số tầng 441.0 MHz 896.5 MHz 1400.0 MHz Tầng trệt 16.37 11.61 7.56 Tầng 1 8.11 8.05 4.85 Tầng 2 12.76 12.50 7.98 Tầng 3 13.76 11.18 9.11 Tầng 4 11.09 8.95 6.04 Tầng 5 5.42 5.98 3.31 Tầng 6 4.20 5.23 5.24

Bảng 4.1 Giá trị suy hao xâm nhập theo số tầng.

Các điều kiện của môi trường truyền dẫn cũng có ảnh hưởng rất lớn đến giá trị sai lệch chuẩn và cũng ảnh hưởng đến giá trị gốc của hàm phân bố lognormal. Hình 4.3 chỉ ra rằng, khi tín hiệu không có đường truyền thẳng LOS, sự thay đổi của tín hiệu theo tỉ lệ lớn (large-scale) sẽ tuân theo sự phân bố lognormal và khi đó giá trị sai lệch chuẩn sẽ là 4dB. Trong trường hợp khác, khi tín hiệu tồn tại đường truyền thẳng đến toàn bộ tòa nhà hoặc một phần của tòa nhà, thì sự thay đổi của tín hiệu theo tỉ lệ lớn (large-scale) sẽ xuất phát từ một giá trị nào đó của hàm lognormal và giá trị sai lệch chuẩn sẽ cao hơn. Đối với môi trường truyền dẫn hoàn toàn LOS, giá trị sai lệch chuẩn sẽ là 6 – 7dB.

Hình 4.3 Phân bố tích lũy của sự thay đổi tín hiệu tại tần số 900MHz trong tòa nhà không có đường truyền LOS.

: giá trị đo

: giá trị lý thuyết của phân bố lognormal với độ lệch chuẩn 4dB.

Tóm lại, giá trị sai lệch chuẩn của tín hiệu có liên quan đến diện tích của sàn, với sàn có diện tích nhỏ thì giá trị sai lệch chuẩn cũng sẽ nhỏ và ngược lạị Suy hao xâm nhập sẽ giảm khi MS di chuyển lên các tầng cao của tòa nhà, vì sẽ có nhiều đường truyền LOS đến các tầng cao hơn là các vị trí thấp trên các con phố xung quanh tòa nhà.

Hình 4.4. Mối quan hệ giữa suy hao xâm nhập và số tầng tòa nhà.

Tuy nhiên, cũng có những trường hợp cá biệt, đó là giá trị suy hao xâm nhập lại tăng lên cùng với số tầng của tòa nhà. Điều này gây ra bởi điều kiện môi trường lan truyền đặc biệt tồn tại giữa BTS và MS. Hình 4.4 chỉ ra sự thay đổi 2dB trên mỗi tầng.

Tổng kết lại, khi trạm thu phát nằm bên ngoài, tín hiệu bên trong tòa nhà sẽ có những đặc tính sau:

- Sự thay đổi tín hiệu theo tỉ lệ nhỏ (small – scale) tuân theo phân bố Rayleigh.

- Sự thay đổi tín hiệu theo tỉ lệ rộng (large – scale) tuân theo phân bố lognormal với độ lệch chuẩn phụ thuộc vào điều kiện môi trường lan truyền và diện tích từng tầng.

- Suy hao xâm nhập vào tòa nhà của tín hiệu sẽ giảm khi tần số tăng.

- Khi không có đường truyền thẳng LOS giữa BTS và tòa nhà (cơ chế tán xạ chiếm ưu thế), sự sai lệch tiêu chuẩn của giá trị trung bình cục bộ xấp xỉ 4dB. Khi có đường truyền thẳng LOS, sự sai lệch tiêu chuẩn là 6 đến 9dB.

Cuối cùng, chúng ta thảo luận về vấn đề mô hình hóạ Hầu hết các mô hình lan truyền ngoài trời được phát triển và tối ưu cho macrocell, và chúng không chính xác khi áp dụng cho microcell. Ngoài ra, việc dự đoán suy hao đường truyền từ một trạm BTS bên ngoài đến một máy thu nằm bên trong tòa nhà sẽ chính xác hơn nếu nó được tính toán trực tiếp và không đơn thuần là sự mở rộng của các mô hình ngoài trờị Barry và Williamson đã đưa ra một hệ số kết hợp liên quan đến sự lan truyền của tín hiệu từ ngoài vào trong tòa nhà và hệ số liên quan đến sự lan truyền của tín hiệu bên trong tòa nhà để cho ra đời một mô hình toàn diện.

Toledo đã thực hiện các phân tích hồi quy nhiều bước với một cơ sở dữ liệu to lớn, và nghiên cứu mối quan hệ của các tham số. Kết quả tốt nhất của ông là đưa 3 tham số vào công thức toán hồi quỵ Đó là khoảng cách d giữa máy phát và thu, diện tích sàn Af, và hệ số SQ thể hiện cho số sàn của tòa nhà có đường truyền thẳng LOS. Mô hình cho tần số 900MHz và 1800MHz như sau:

37.7 40log 17.6log f 27.5 (13)Q

L= - + d+ A - S

27.9 40log 23.3log f 20.9 (14)Q

L= - + d+ A - S

Sai số giữa công thức toán học trên với giá trị đo thực nghiệm là 2.4 và 2.2dB tương ứng. Sai số này nhỏ hơn một chút so với kết quả nghiên cứu của Barry và Williamson.

Một phần của tài liệu Mô hình phủ sóng giao thoa (Trang 53 - 61)

Tải bản đầy đủ (PDF)

(142 trang)