Ứng dụng phƣơng pháp SPME trong chiết xuất hợp chất 2– acetyl –

Một phần của tài liệu Khảo sát các đặc điểm hóa sinh, hóa lý phân tích chất lượng mùi thơm của gạo nàng thơm chợ đào bằng phương pháp SPME-GC (Trang 42 - 47)

1. MỞ ĐẦU

2.6.5.Ứng dụng phƣơng pháp SPME trong chiết xuất hợp chất 2– acetyl –

– pyrroline [32]

Grimm và ctv (2001) đã ứng dụng kỹ thuật SPME để khảo sát qui trình phân tích hàm lƣợng 2 – acetyl – 1 – pyrroline trong gạo thơm. Theo họ, lƣợng 2 – AP thu đƣợc sẽ tăng gấp đôi khi tăng nhiệt độ từ 60oC lên 85oC. Ngƣợc lại, hàm lƣợng chất chuẩn 2,4,6 – trimethylpyridine sẽ giảm khi nhiệt độ tăng. Không có sự khác biệt đáng kể về hàm lƣợng 2 – AP khi chiết xuất mẫu ở 80°C và 85°C, do đó, 80°C đƣợc xem là điểm nhiệt độ thích hợp cho quá trình chiết suất.

Khoảng thời gian từ 10 – 15 phút đủ để thu nhận hầu hết các chất bay hơi, trong khi những thành phần ít bay hơi hơn nhƣ acid hữu cơ hay ester phải tốn hàng giờ mới có thể thu nhận đƣợc. Sau khi so sánh lƣợng 2 – AP thu đƣơc sau khoảng thời gian hấp phụ là 10, 15, 20 phút, họ đã rút ra kết luận thời gian chiết xuất mẫu phù hợp nhất là 15 phút.

Kết quả nghiên cứu cho thấy, việc thêm nƣớc vào mẫu gạo sẽ giúp tăng hàm lƣợng 2 – AP thu nhận đƣợc, đồng thời giảm đƣợc yêu cầu phải nghiền mẫu, góp phần đơn giản hóa quá trình chuẩn bị mẫu. Lƣợng nƣớc cất tối ƣu sử dụng cho quá trình chiết suất là 200 µl.

Để xác định lƣợng 2 – AP hấp thu, diện tích peak đƣợc chuyển thành khối lƣợng bằng cách dựng đƣờng chuẩn dựa trên chuẩn 2 – AP pha loãng trong CHCl3. Theo kết quả nghiên cứu của Casey và ctv (2001), hàm lƣợng 2 – AP trung bình thu đƣợc trong mẫu gạo Jasmine khi phân tích bằng phƣơng pháp SPME là 2,2 ng trong 0,75 g gạo, tƣơng đƣơng với 2,9 ppb. Phƣơng pháp SPME phù hợp cho việc so sánh mối tƣơng quan về nồng độ 2 – AP giữa các mẫu gạo khác nhau. Nhìn chung, trong tất cả các trƣờng hợp, phƣơng pháp SPME có thể phân biệt giữa gạo thơm và gạo thông thƣờng. Cấu tử 2 – AP đƣợc phân tách ở 5 phút 42 giây, và chỉ chiếm 1 lƣợng nhỏ trong tổng số các chất bay hơi, nhƣng lƣợng này đủ để chiếm ƣu thế trong thành phần chất thơm có trong cơm gạo.

2.7. SẮC KÝ KHÍ (Gas Chromatography - GC) [10] 2.7.1. Nguyên tắc

Nguyên tắc của sắc ký khí là mỗi cấu phần trong gạo thơm sẽ bị hấp thụ trên pha tĩnh của cột phân tích khác nhau nên có thời gian lƣu khác nhau. Trên cơ sở khác

nhau về thời gian lƣu này mà ngƣời ta có thể định tính và định lƣợng cấu tử cần nghiên cứu.

2.7.2. Sơ đồ thiết bị sắc ký khí

Hình 2.9. Sơ đồ thiết bị sắc ký khí detector ion hóa ngọn lửa FID

Hai bộ phận quan trọng nhất của thiết bị sắc ký khí là hệ thống cột tách và detector. Nhờ có khí mang, mẫu từ buồng bay hơi đƣợc dẫn vào cột tách nằm trong buồng điều nhiệt. Quá trình sắc ký xảy ra tại đây. Sau khi rời khỏi cột tách tại các thời điểm khác nhau, các cấu tử lần lƣợt đi vào detector, tại đó chúng đƣợc chuyển thành tín hiệu điện. Tín hiệu này đƣợc khuếch đại rồi chuyển sang bộ ghi, tích phân kế hoặc máy vi tính. Các tín hiệu đƣợc xử lý ở đó rồi chuyển sang bộ phận in và lƣu kết quả .

Trên sắc đồ nhận đƣợc, sẽ có các tín hiệu ứng với các cấu tử đƣợc tách gọi là peak. Thời gian lƣu của peak là đại lƣợng đặc trƣng (định tính) cho chất cần tách. Còn diện tích của peak là thƣớc đo định lƣợng cho từng chất trong hỗn hợp cần nghiên cứu.

Hình 2.10. Sơ đồ cấu tạo hình học của detector ion hóa ngọn lửa

Detector có nhiệm vụ chuyển hóa một đại lƣợng không điện (trong trƣờng hợp này là nồng độ của các chất đƣợc tách khỏi cột sắc ký) thành đại lƣợng điện. Ngày nay, đã có gần 30 loại detector khác nhau. Trong đó, 3 loại detector phổ biến nhất là: detector dẫn nhiệt (TCD), detector ion hóa ngọn lửa (FID) và detector cộng kết điện tử (ECD).

Detector FID (hình 2.10) là một trong những detector có độ nhạy cao. Nguyên tắc làm việc của nó dựa trên sự biến đổi độ dẫn điện của ngọn lửa hydro đặt trong một điện trƣờng khi có chất hữu cơ cần tách chuyển qua. Nhờ nhiệt độ cao của ngọn lửa hydro, các chất hữu cơ từ cột tách đi vào detector bị bẻ gãy mạch, bị ion hóa nhờ có oxy của không khí để tạo thành các ion trái dấu tƣơng ứng. Các ion tạo thành đƣợc chuyển về các bản điện cực trái dấu nằm ở hai phía của ngọn lửa. Dòng ion đó đƣợc giảm áp trên một điện trở có trị số rất cao (108

– 1012 Ω) và độ giảm hiệu điện thế này đƣợc khuếch đại và ghi lại trên máy tự ghi. Số lƣợng ion tạo thành (chính là độ nhạy của detector) phụ thuộc vào các yếu tố sau:

Cấu trúc hình học của detector Tỉ lệ thành phần hydro/không khí Nhiệt độ của ngọn lửa

Cấu trúc của các phân tử mẫu cần xác định

Các hợp chất hữu cơ đƣợc đốt cháy bằng ngọn lửa hydro – không khí tạo thành các ion. Khí mang từ cột sẽ đƣợc trộn trƣớc với hydro và đốt cháy bằng ngọn lửa ở buồng đốt. Một điện cực hình trụ đƣợc đặt cách vài milimet phía trên ngọn lửa để thu

thập các ion sinh ra. Dòng ion này sẽ đƣợc đo bằng cách đặt một hiệu điện thế giữa đầu phun của ngọn lửa và điện cực hình trụ. Để hạn chế đến mức tối đa sự tái kết hợp của các ion, phải đặt điện thế chọn lọc vào vùng bão hòa (vùng mà khi tăng điện thế sẽ không làm tăng dòng ion). Các tín hiệu tạo thành sẽ đƣợc khuếch đại bằng bộ khuếch điện tử rồi qua bộ xử lý và ghi tín hiệu.

Detector FID sử dụng thích hợp nhất đối với các hợp chất chứa cacbon.

2.7.2.2. Cột mao quản

Sắc ký khí mao quản là một hình thái đặc biệt của phƣơng pháp sắc ký khí, đƣợc đặc trƣng bởi năng suất tách và hiệu suất phân giải rất cao. Sở dĩ nhƣ vậy là nhờ việc sử dụng các cột mao quản hở với chiều dài khá lớn (25m, 50m, 100m,...).

Cột mao quản (hình 2.11) là loại cột tách với đƣờng kính nhỏ hơn 1mm và thành trong của cột đƣợc tẩm pha tĩnh. Nhờ cấu trúc đặc biệt này của cột mao quản, khí mang sẽ đƣa mẫu đi qua cột tách rất dài (do vậy năng suất rất cao) mà không gặp trở kháng gì lớn (về độ chênh lệch áp suất), các cấu tử sẽ tƣơng tác với pha tĩnh bám trên thành cột và đƣợc pha tĩnh lƣu giữ lại với mức độ khác nhau,…

Hình 2.11. Cột mao quản

2.8. SẮC KÝ KHÍ GHÉP KHỐI PHỔ (GC/MS) [10]

Sắc ký khối phổ là một loại sắc ký đặc biệt, vì sau khi ra khỏi cột sắc ký, các cấu phần đƣợc lần lƣợt cho vào buồng MS để thực hiện việc ghi phổ của từng cấu phần. Nhờ một phần mềm, các phổ MS này đƣợc so sánh với các phổ MS chuẩn chứa trong thƣ viện của máy tính. Do đó để tăng độ chính xác cho sự dò tìm và so sánh, thƣ viện phổ khối lƣợng cần phải có nhiều phổ chuẩn. Độ tƣơng hợp giữa phổ MS của các cấu phần và phổ mẫu có tính tƣơng đối tùy thuộc phần mềm phụ trách việc so sánh, thƣờng thì độ tƣơng hợp càng lớn thì xác suất định danh càng cao. Kinh nghiệm về thành phần hóa học và kiến thức về phổ khối lƣợng có tính quyết định rất lớn đến độ chính xác của kết quả định danh. Đầu dò phổ khối lƣợng có độ nhạy cao, khoảng 10-6

phƣơng pháp khác không thể thực hiện đƣợc. Sắc ký khối phổ có khả năng định danh cao, khả năng dò tìm nhanh, lƣợng mẫu sử dụng ít.

2.9. PHƢƠNG PHÁP KJELDAHL [5] Nguyên tắc

Trƣớc tiên mẫu đƣợc vô cơ hóa bằng H2SO4 đặc ở nhiệt độ cao và có chất xúc tác. Các phản ứng của quá trình vô cơ hóa xảy ra nhƣ sau:

2H2SO4 = 2H2O + 2SO2↑ + O2 (adsbygoogle = window.adsbygoogle || []).push({});

Oxi tạo thành trong phản ứng lại oxi hóa các nguyên tố khác. Các phân tử chứa nitơ dƣới tác dụng của H2SO4 tạo thành NH3. Ví dụ các protein bị thủy phân thành acid amin, carbon và hidro của acid amin tạo thành CO2 và H2O, còn nitơ đƣợc giải phóng dƣới dạng NH3 kết hợp với H2SO4 dƣ tạo thành (NH4)2SO4 tan trong dung dịch

2NH3 + H2SO4 = (NH4)2SO4

Các nguyên tố P, K, Ca, Mg…chuyển thành dạng oxid: P2O5, K2O, CaO, MgO…

Đuổi NH3 ra khỏi dung dịch bằng NaOH:

(NH4)2SO4 + 2NaOH = NaSO4 + H2O + 2NH3 NH3 bay ra cùng với nƣớc sang bình hứng, bình hứng chứa H3BO3

Một phần của tài liệu Khảo sát các đặc điểm hóa sinh, hóa lý phân tích chất lượng mùi thơm của gạo nàng thơm chợ đào bằng phương pháp SPME-GC (Trang 42 - 47)