Xác định trình tự đoạn gen mã hóa 16S rRNA của chủng

Một phần của tài liệu Phân lập tuyển chọn và nghiên cứu, khả năng phân hủy sinh học hydrocacbon thơm của một vài chủng vi khuẩn được phân lập từ nước ô nhiễm dầu tại quảng ninh (Trang 56 - 78)

3.4.1. Tách chiết DNA tổng số và nhân đoạn gen mã hóa 16S rRNA bằng kỹ thuật PCR

Tách chiết và làm sạch DNA tổng số vi khuẩn là khâu quan trọng vì chất lượng của DNA sẽ ảnh hưởng đến hiệu quả của các thí nghiệm tiếp theo. DNA tổng số của vi khuẩn BQN31 có độ tinh sạch cao, hàm lượng đủ lớn, băng gọn không đứt gãy (Hình 3.4).

Sử dụng DNA tổng số của vi khuẩn BQN31 làm khuôn, cặp mồi đặc hiệu (27F và 1492R) và chu trình nhiệt như đã trình bày ở phần 2.4, sản phẩm PCR thu được là một băng DNA duy nhất, sắc nét và có kích thước khoảng 1.500 bp đúng như lý thuyết (Hình 3.5).

3.4.2. Tách dòng gen mã hóa 16S rRNA từ chủng BQN31

Hiện nay, để xác định trình tự gen có thể sử dụng hai phương pháp như xác định trình tự nucleotide trực tiếp từ sản phẩm PCR hoặc gắn sản phẩm PCR vào một vector sau đó biến nạp vào tế bào khả biến như E. coli, nuôi cấy tế bào E. coli tái tổ hợp, tách và làm sạch DNA plasmid và xác định trình tự đoạn DNA đã được chèn vào vector sử dụng các mồi của vector.

Hình 3.4: DNA tổng số của chủng BQN31 DNA tổng số

Hình 3.5. Sản phẩm PCR nhân đoạn gene mã hóa 16S rRNA của chủng BQN31. M: thang DNA chuẩn 1 kb

1,5

kb M BQN31

Ưu điểm của phương pháp xác định trình tự trực tiếp là tiết kiệm thời gian. Phương pháp xác định trình tự DNA thông qua bước biến nạp cho kết quả rõ ràng hơn. Ngoài ra, tách dòng gen giúp các nhà nghiên cứu chủ động hơn về gen hoặc đoạn gen đã nhân để sử dụng cho các mục đích nghiên cứu khác. Trong nghiên cứu này, sản phẩm PCR nhân đoạn gen 16S rRNA từ chủng BQN31 được xác định trình tự theo phương pháp gắn sản phẩm PCR vào một vector sau đó biến nạp vào tế bào khả biến E. coli.

*Gắn sản phẩm PCR vào vector pCR 2.1 và biến nạp vào E.coli DH5α

Sản phẩm PCR nhân đoạn gen 16S rRNA đã được gắn vào vector pCR 2.1 nhờ enzyme T4 DNA ligase và biến nạp vào tế bào khả biến E. coli

DH5α. Sau khi nuôi ở 37 oC trong 18 giờ trên môi trường LB đặc chứa ampicillin và X-Gal đã xuất hiện những khuẩn lạc trắng xen kẽ những khuẩn lạc xanh (Hình 3.6). Số lượng khuẩn lạc màu trắng nhiều hơn so với khuẩn lạc màu xanh, chứng tỏ hiệu suất biến nạp là tốt. Các khuẩn lạc trắng E. coli

DH5α có thể mang plasmid đã được chèn sản phẩm PCR nhân đoạn gen 16S rRNA.

Các khuẩn lạc trắng E. coli DH5α được chọn lựa, tách DNA plasmid. Sản phẩm DNA plasmid thu được từ các dòng tế bào chọn lựa được điện di kiểm tra trên gel agaros 1%.

Hình 3.6: Kết quả biến nạp chủng BQN31

(Khuẩn lạc trắng: là những khuẩn lạc có thể mang DNA plasmid đã gắn đoạn DNA ngoại lai. Khuẩn lạc xanh: là những khuẩn lạc không đính đoạn DNA plasmid

Các khuẩn lạc màu trắng có thể mang vector chứa đoạn DNA cần thiết được lựa chọn để tách DNA plasmid cùng với một vài khuẩn lạc xanh được sử dụng làm mẫu đối chứng.

3.4.3. Tách DNA plasmid và kiểm tra các dòng khuẩn lạc thích hợp

Các khuẩn lạc lựa chọn được nuôi trên môi trường LB dịch để tách DNA plasmid. Sản phẩm DNA plasmid được điện di kiểm tra trên gel agarose để lựa chọn dòng tế bào mang vector tái tổ hợp (Hình 3.7 ).

Hình 3.7. Sản phẩm điện di kiểm tra DNA plasmid của các dòng được lựa chọn

C: DNA plasmid dòng khuẩn lạc màu xanh (đối chứng) 1: DNA plasmid của dòng khuẩn lạc số 13 màu trắng

Kết quả ở hình 3.7 cho thấy, DNA plasmid của dòng số 13 nằm ở vị trí cao hơn mẫu đối chứng. Dòng vi khuẩn số 13 này có thể mang vector tái tổ hợp chứa đoạn gen 16S rRNA nhân lên từ DNA tổng số của vi khuẩn BQN31. Enzyme giới hạn EcoRI đã được sử dụng để kiểm tra liệu thực sự DNA plasmid của dòng số 13 có mang sản phẩm PCR hay không. Sản phẩm cắt của dòng 13 cho băng có kích thước phù hợp khoảng 1.500 bp (Hình 3.8).

C 1

Như vậy, sản phẩm PCR nhân đoạn gen 16S rRNA đã được chèn vào vector và được biến nạp vào E. coli DH5α. DNA plasmid dòng số 13 được làm sạch để phục vụ cho việc xác định trình tự gen mã hóa 16S rRNA của vi khuẩn BQN31 (Hình 3.9).

Kết quả hình 3.9 cho thấy DNA plasmid dòng số 13 sau khi loại RNA có độ sạch cao, đủ điều kiện sử dụng để xác định trình tự gen mã hóa 16S rRNA của chủng vi khuẩn BQN31.

3.4.4. Trình tự gen 16S rRNA của chủng vi khuẩn BQN31

C 1

Hình 3.9. Sản phẩm làm sạch DNA plasmid dòng số 13 của chủng vi khuẩn BQN31

Giếng C: Mẫu đối chứng (DNA plasmid dòng màu xanh) Giếng 1: DNA plasmid dòng số 13

Trình tự đoạn gen mã hóa 16S rRNA chủng BQN31 được xác định hai chiều với sử dụng cặp mồi M13R và M13F. Sau khi phân tích và xử lý số liệu, trình tự đầy đủ của đoạn gen mã hóa 16S rRNA của vi khuẩn BQN31 được xác định (Hình 3.10)

Trình tự đoạn gen mã hóa 16S rRNA của chủng BQN31 đã được xác định và đăng ký trên GenBank với mã số EU814953.

Kết quả so sánh trình tự đoạn gen 16S rRNA của chủng BQN31 với trình tự của các VSV prokaryote đã được công bố trên GenBank cho thấy, chủng BQN31 quan hệ gần gũi với các chủng vi khuẩn thuộc chi

Sphingomonas (Hình 3.11). Chủng BQN31 có độ tương đồng cao với các chủng Sphingomonas sp. JQL4-5 (98%), Sphingomonas sp. A4 (98%),

Sphingomonas sp. AMS7 (98%), Sphingomonas sp. VX-MXL9 (97%),

1 AGAGTTTGAT CATGGCTCAG AACGAACGCT GGCGGCATGC CTAATACATG CAAGTCGAAC

61 GAGATCTTCG GATCTAGTGG CGCACGGGTG CGTAACGCGT GGGAATCTGC CCTTGGGTTC 121 GGAATAACAT CGGGAAACTG ATGCTAATAC CGGATGATGA CGTAAGTCCA AAGATTTATC 181 GCCCAGGGAT GAGCCCGCGT AGGATTAGCT AGTTGGTGGG GTAAAGGCTC ACCAAGGCGA 241 CGATCCTTAG CTGGTCTGAG AGGATGATCA GCCACACTGG GACTGAGACA CGGCCCAGAC 301 TCCTACGGGA GGCAGCAGTA GGGAATATTG GACAATGGGG GCAACCCTGA TCCAGCAATG 361 CCGCGTGAGT GATGAAGGCC TTAGGGTTGT AAAGCTCTTT TACCCGGGAT GATAATGACA 421 GTACCGGGAG AATAAGCTCC GGCTAACTCC GTGCCAGCAG CCGCGGTAAT ACGGAGGGAG 481 CTAGCGTTGT TCGGAATTAC TGGGCGTAAA GCGCACGTAG GCGGCGATCC AAGTCAGRGG 541 TGAAAGCCCG GGGCTCAACC CCGGAATAGC CCTTGAGACT GGATTGCTTG AATCCGGGAG 601 AGGTGAGTGG AATTCCGAGT GTAGAGGTGA AATTCGTAGA TATTCGGAAG AACACCAGTG 661 GCGAAGGCGG CTCACTGGAC CGGCATTGAC GCTGAGGTGC GAAAGCGTGG GGAGCAAACA 721 GGATTAGATA CCCTGGTAGT CCACGCCGTA AACGATGATA ACTAGCTGCT GGGGTGCATG 781 GCACTTCGGT GGCGCAGCTA ACGCATTAAG TTATCCGCCT GGGGAGTACG GTCGCAAGAT 841 TAAAACTCAA AGGAATTGAC GGGGGCCTGC ACAAGCGGTG GAGCATGTGG TTTAATTCGA 901 AGCAACGCGC AGAACCTTAC CAACGTTTGA CATCCCCAGT ATGGTTTCCA GAGATGGATT 961 CCTTCAGTTC GGCTGGCTGG GTGACAGGTG CTGCATGGCT GTCGTCAGCT CGTGTCGTGA 1021 GATGTTGGGT TAAGTCCCGC AACGAGCGCA ACCCTCGCCT TTAGTTGCCA TCATTCAGTT 1081 GGGTACTCTA AAGGAACCGC CGGTGATAAG CCGGAGGAAG GTGGGGATGA CGTCAAGTCC 1141 TCATGGCCCT TACGCGTTGG GCTACACACG TGCTACAATG GCGACTACAG TGGGTAGCGA 1201 CCTCGCGAGG GGAAGCTAAT CTCCAAAAGT CGTCTCAGTT CGGATTGTTC TCTGCAACTC 1261 GAGAGCATGA AGGCGGAATC GCTAGTAATC GCGGATCAGC ATGCCGCGGT GAATACGTTC 1321 CCAGGCCTTG TACACACCGC CCGTCACACC ATSGGAGTTG GATTCACTCG AAGGCGTTGA 1381 GCTAACCGCA AGGAGGCAGG CGACCACAGT GGGTTTAGCG ACTGGGGTGA AGTCGTAACA 1441 AGGTAACCGT AAA

Sphingomonas paucimobilis EPA 505 (96%). Bốn chủng Sphingomonas sp. A4 , Sphingomonas sp. AMS7, Sphingomonas sp. VX-MXL9, Sphingomonas paucimobilis EPA 505 đều là các chủng vi khuẩn sử dụng PAH được phân lập từ các nguồn ô nhiễm khác nhau. Các vi khuẩn phân hủy PAH chiếm ưu thế trong đất thường thuộc các chi như Sphingomonas, Burkholderia,

PseudomonasMycobacterium [36]. Trong số các chủng vi khuẩn phân lập từ môi trường, số lượng vi khuẩn thuộc chi Sphingomonas chiếm tỷ lệ cao trong số các chủng có khả năng phân hủy nhiều loại chất độc hại trong đó có cả PAH, các hợp chất dioxin, các hợp chất phenol chứa clo. Các vi khuẩn

Sphingomonas cũng phân bố rộng rãi trong các môi trường không ô nhiễm như các hệ thống phân phối nước và môi trường biển [36].

Sphingomonas sp. AMS7 Sphingomonas sp. JQL4-5 Sphingomonas sp. BQN31 Sphingomonas sp. A4 Sphingomonas sp. P2 S. yanoikuyae B1 Sphingomonas sp. CFO6 Sphingobium sp. 2F5-2 Sphingomonas sp. 3Y S. paucimobilis EPA 505 0.002 Hình 3.11. Cây phát sinh loài dựa trên so sánh trình tự các đoạn gien mã hóa 16S rRNA của chủng BQN31 và một số chủng vi khuẩn đại diện.

(Thước đo thể hiện hai nucleotide khác nhau trên 1.000 nucleotide so sánh)

Bảng 3.5: Độ tương đồng các đoạn gen 16S rRNA của chủng BQN31 và một số chủng vi khuẩn đại diện

STT Chủng vi khuẩn Số nucleotide tương đồng Mức độ tương đồng (%) 1 Sphingomonas sp. AMS7 1353*/1374# 98,47 2 Sphingomonas sp. JQL4-5 1433*/1456# 98,42 3 Sphingomonas sp. A4 1392*/1420# 98,02 4 Sphingomonas sp. VX- MXL9 398 * /408# 97,54 5 S. paucimobilis EPA 505 1385*/1430# 96,85

Chú thích: *- số nucleotide của đoạn gen 16S rRNA chủng BQN31

#- số nucleotide của đoạn gen 16S rRNA các chủng đại diện

Theo một số công trình nghiên cứu đã được công bố ở trong và ngoài nước, các chủng vi khuẩn Sphingomonas sp. A4, Sphingomonas sp. VX- MXL9, S. paucimobilis EPA 505 đều có khả năng phân hủy các hợp chất PAHs khá tốt. Chủng vi khuẩn S. yanoikuyae MXL-9 phân lập từ cặn dầu thô mỏ Bạch Hổ phân hủy phenanthrence và anthracene [8]. Chủng

Sphingomonas sp. A4 có khả năng sử dụng acenaphthene và acenaphthylene như nguồn cacbon và năng lượng duy nhất. [41]. Chủng vi khuẩn S. paucimobilis EPA 505 có khả năng sử dụng fluoranthene như nguồn cacbon và năng lượng duy nhất, ngoài ra chúng còn có thể chuyển hóa được nhiều loại PAH khác. Dingyi Ye và cộng sự đã chỉ ra rằng, sau 16h nuôi cấy với nồng độ 10 ppm mỗi PAH, chủng vi khuẩn S. paucimobilis EPA 505 đã phân hủy 80.0, 72.9, 31.5, 33.3, 12.5, và 7.8% của pyrene, benz[a]anthracene

(B[a]A), chrysene, benzo[a]pyrene (B[a]P), benzo[b]fluoranthene (B[b]F), and dibenz[a,h]anthracene (DB[a,h]A) [24].

Như vậy, dựa trên một số đặc điểm hình thái và so sánh trình tự đoạn gen 16S rRNA, chủng vi khuẩn BQN31 được xếp vào chi Sphingomonas và được đặt tên là Sphingomonas sp. BQN31. Chủng vi khuẩn Sphingomonas sp. BQN31 cũng thuộc trong số các vi khuẩn sử dụng PAH thường gặp trên thế giới và ở Việt Nam.

3.5. Nhân đoạn gen mã hóa catechol 2,3 dioxygenase từ chủng BQN31

Phân hủy sinh học của hydrocarbon thơm ở điều kiện hiếu khí thường xảy ra qua các bước cắt vòng thơm và tạo thành catechol, đây là một sản phẩm trung gian phổ biến nhất của quá trình phân hủy các hợp chất hydrocarbon thơm. Quá trình cắt vòng của catechol bởi enzyme dioxygenase có thể xảy ra ở hai vị trí metaortho. Tuy nhiên, cắt vòng tại vị trí meta

được thực hiện bởi enzyme C23O được coi là quá trình phổ biến nhất ở các giai đoạn tiếp theo của phân hủy sinh học PAH.

Xuất phát từ vị trí quan trọng của gen mã hóa enzyme C23O trong việc phân hủy sinh học PAH, gen mã hóa C23O đã được nhiều tác giả nghiên cứu quan trắc. Việc nghiên cứu sự tồn tại của gen này trong tự nhiên cũng như trong các chủng vi khuẩn sử dụng PAH là rất cần thiết. Trong nghiên cứu này, trình tự đoạn gen mã hóa enzyme catechol 2,3-dioxygenase của chủng BQN31 đã được xác định nhằm mục đích tìm hiểu sự đa dạng gen chức năng cũng như bản chất quá trình làm sạch dầu và PAH ô nhiễm ở mức độ phân tử. Các kết quả thu được sẽ giúp chúng ta hiểu rõ hơn về quá trình làm sạch ô nhiễm dầu cũng như sự đa dạng các gen chức năng trong nước nhiễm dầu tại khu vực Quảng Ninh.

Sản phẩm DNA đã được tách sạch như ở phần 3.3.1 được dùng làm khuôn để tiến hành phản ứng PCR với cặp mồi C23OF và C23OR. Sản phẩm

PCR thu được có kích thước khoảng 750 bp phù hợp với tính toán lý thuyết (Hình 3.12).

Hình 19 là cây phát sinh chủng vi khuẩn đại diện.

Hình 3.12. Sản phẩm PCR nhân đoạn gen mã hóa enzyme catechol 2,3-dioxygenase từ DNA tổng số chủng BQN31 và cặp mồi C23OF và C23OR. M- thang DNA chuẩn 1kb.

kb M 1 0,75 0,50 atggatgttatgggtttcaaggtcgccaaggacgcggacttggaccattttaccgagcgc M D V M G F K V A K D A D L D H F T E R ttgctcgatatcggtgtccatgtcgacgtgatcccggcgggggaagatcccggtgtaggc L L D I G V H V D V I P A G E D P G V G cgcaagattcggtttaacacgccgacacagcacgtcttcgaactttacgccgagatggcg R K I R F N T P T Q H V F E L Y A E M A ctgtcggccaccggtccggccgtcaagaaccccgatgtctgggtcgtggagccacgtggc L S A T G P A V K N P D V W V V E P R G atgcgtgccacccgctttgatcactgtgcgctcaacggcgtggatatagccagttcggcc M R A T R F D H C A L N G V D I A S S A aagatttttgtcgatgcgcttgatttctcagtcgccgaggaactggtcgatgaaacca gc K I F V D A L D F S V A E E L V D E T S ggcgcccggctcggcatctttcttagctgcagcaacaaagcacacgatgtcgccttctta G A R L G I F L S C S N K A H D V A F L ggctatcccgaagacggtaagatccaccatacctcgttcaacctggaatcctggcacgat G Y P E D G K I H H T S F N L E S W H D gttggccatgccgccgacatcatcagccgctacgatatttcgctggatatcgggccgacc V G H A A D I I S R Y D I S L D I G P T cgtcatgggatcacccgcgggcagacgatctacttcttcgatccctcgggcaaccgcaac R H G I T R G Q T I Y F F D P S G N R N gaaaccttcagcggcggttacatttattatccggacaatccgcagcgcctgtggcaggca E T F S G G Y I Y Y P D N P Q R L W Q A gagaacgccggcaaggccatcttctactacgaaaaggcgctcaacgaccgcttcctgaca E N A G K A I F Y Y E K A L N D R F L T gt

Sản phẩm PCR được gắn vào vector pCR®

2.1 nhờ enzyme T4 ligase ở 14oC, biến nạp vào tế bào E. coli INV F’, tách chiết và kiểm tra DNA plasmid theo Sambook và cộng sự. Xác định trình tự đoạn gen mã hóa C23O trên máy xác định trình tự nucleotide tự động ABI PRISM 3100 Avant Genetic Analyzer, được xử lý trên phần mềm Bioedit 6.0.7 (5/17/04), và suy diễn ra trình tự axít amin, so sánh mức độ tương đồng bằng chương trình Blast (Hình 3.13). Trình tự nucleotide và axit amin suy diễn đoạn gen mã hóa C23O của chủng BQN31 đã được đăng ký trình tự các đoạn gen trên GenBank với mã số lần lượt là EU814954 và ACF24468.1

C23O-Sphi- C230 (DQ873681)

C23O-Sphi. BQN31

C23O-Pseu- ZP2 (EU082778)

phnE-Pseu- DJ77 (U83882)

catE-Sphi. agrestis - HV3 (L10655)

cmpE-Sphi- HV3 (Z84817)

xylE-Sphi- B1 (U23375)

xylE-Sphi- KMG425 (AF494100)

C23O-Rhiz- ZJF08 (DQ534019)

C23O-Sphi. B2-7 (EU596533)

C23O-Sphi. A8AN3 (U73127)

Hình 3.14. Cây phát sinh chủng loại các đoạn gen mã hóa enzyme catechol 2,3-dioxygenase của chủng Sphingomonas sp. BQN31

So sánh mức độ tương đồng giữa trình tự đoạn gen mã hóa enzyme catechol-2,3 dioxygenase của chủng BQN31 và của các chủng khác trên GenBank và EMBL cho thấy, đoạn gen này ở chủng BQN31 có độ tương đồng rất cao đối với các đoạn gen mã hóa enzyme catechol-2,3 dioxygenase tương tự ở các chủng vi khuẩn thuộc chi Sphingomonas, Pseudomonas(Hình 3.14, Bảng 3.6). Đoạn gen mã hóa catechol 2,3-dioxygenase của chủng BQN31 có mức tương đồng 99 % với các đoạn gen phnE ở chủng vi khuẩn

Pseudomonas sp. DJ77, cmpE ở chủng Sphingomonas sp. HV3, catE ở chủng

Sphingomonas agrestis HV3 và C23O ở chủng Pseudomonas sp. ZP2 (Bảng 3.6).

Bảng 3.6: Độ tương đồng của đoạn gen mã hóa enzyme catechol 2,3 dioxygenase của chủng BQN31 so với một số đại diện đã được công bố trên

ngân hàng gen quốc tế

Chú thích: *- số nucleotide của đoạn gen 16S rRNA chủng BQN31

#- số nucleotide của đoạn gen 16S rRNA các chủng đại diện

Các trình tự nucleotide đã công bố về gen mã hóa C23O của các đại diện thuộc chi Pseudomonas (P. aeruginosa JI104, P. putida CF600, P. putida P 35X, P. putida pDK1, P. putida H, P. putida pW0, P. putida NAH, và Pseudomonas sp. IC) cho thấy mức tương đồng từ 75% đến trên 95% [45]. Trong khi đó, mức tương đồng về trình tự nucleotide của gen này ở các vi STT Chủng vi khuẩn Số nucleotide tương đồng Mức độ tương đồng (%) 1 Sphingomonas sp. strain HV3 716*/719# 99,58 2 Pseudomonas sp. DJ77 716*/719# 99,58 3 Pseudomonas sp. ZP2 714*/719# 99,30

khuẩn thuộc nhóm Sphingomonas (Sphingomonas sp. HV3 và S. yanoikuyae

B1) là 76,5%. Sự giống nhau về trình tự nucleotide gen mã hóa C23O ở các chủng vi khuẩn của hai chi này vào khoảng 50% [45]. Trình tự C23O của các chi khác như Ralstonia (R. pickettii U20258, R. eutropha JMP 52415, R. rhodochous X69504, R. rhodochous NCIB 13064 và Bacillus (B. stearothermophilus FDTP-3) không đồng nhất. Các trình tự này cũng không hoàn toàn giống nhau giữa các thành viên, với nhóm Sphingomonas và nhóm

Pseudomonas.

Kết quả thu được trong nghiên cứu của chúng tôi một lần nữa khẳng định sự phân bố rộng rãi của vi khuẩn sử dụng PAH thuộc nhóm

Sphingomonas. Chủng vi khuẩn BQN31 có thể là vi sinh vật hữu ích trong quá trình tự làm sạch hoặc xử lý nước thải nhiễm dầu bằng phương pháp phân hủy sinh học hoặc được sử dụng để xây dựng tập đoàn giống phục vụ cho các mục đích xử lý ô nhiễm PAH trong các điểm có thể kiểm soát được.

KẾT LUẬN

1. Trong số 15 chủng vi khuẩn có khả năng sử dụng các nguồn PAH đã được phân lập, chủng BQN31 có khả năng phân hủy mạnh nhất.

2. Chủng BQN31 thuộc nhóm vi khuẩn Gram âm, khuẩn lạc hình tròn, trơn, lồi nhẹ, trắng đục có ánh xanh, kích thước khoảng 1-2 mm. Tế bào vi khuẩn BQN31 có hình que, bề mặt tương đối nhẵn, kích thước khoảng 0,29 – 0,5 m x 0,95 - 1,1 m.

3. Sau 5 ngày nuôi lắc ở nhiệt độ 30oC và 200 vòng/phút, trong môi trường có nồng độ ban đầu 100ppm cho mỗi loại PAH, chủng BQN31 có khả năng sử dụng 69,38% naphthalene, 60,24% phenanthrene, 18,52% fluorene, 25,9% anthracene và 18,75% pyrene.

4. Dựa trên một số đặc điểm hình thái và so sánh trình tự đoạn gen 16S rRNA, chủng BQN31 được xếp vào chi Sphingomonas và được đặt tên là

Sphingomonas sp. BQN31. Trình tự đoạn gen mã hóa 16S rRNA của chủng BQN31 được đăng ký trên GenBank với mã số EU814953.

Một phần của tài liệu Phân lập tuyển chọn và nghiên cứu, khả năng phân hủy sinh học hydrocacbon thơm của một vài chủng vi khuẩn được phân lập từ nước ô nhiễm dầu tại quảng ninh (Trang 56 - 78)

Tải bản đầy đủ (PDF)

(78 trang)