Tách chiết và tinh sạch DNA tổng số từ máu gà

Một phần của tài liệu So sánh đặc điểm hóa sinh trứng và trình tự vùng điều khiển d-loop của ba giống gà ri gà mông và gà sao nuôi tại thái nguyên (Trang 41)

3. Nội dung nghiên cứu

3.2.1.Tách chiết và tinh sạch DNA tổng số từ máu gà

Hầu hết các nghiên cứu về sinh học phân tử đều bắt đầu từ việc thu nhận và tinh sạch một lượng axit nucleic đủ lớn và ở trạng thái tương đối nguyên vẹn cho các thí nghiệm tiếp theo. Một trong những mối quan tâm hàng đầu của các kỹ thuật tách chiết DNA là làm thế nào để giảm tối đa sự phân hủy của chúng. Các phân tử DNA có thể bị phân hủy hay đứt gãy do tác nhân cơ học (nghiền, lắc mạnh) hoặc hóa học (bị thủy phân bởi các enzym phân giải thoát ra môi trường khi các màng tế bào bị phá vỡ). Để đạt được hiệu suất và độ tinh sạch cao nhất thì việc lựa chọn một phương pháp tách chiết có nhiều ưu điểm và phù hợp với đối tượng nghiên cứu là rất quan trọng. Vì mẫu sử dụng trong thí nghiệm này là mẫu máu, cho nên chúng tôi đã lựa chọn phương pháp có sử dụng protease K và SDS của Sambrook và Russell để tách chiết DNA [28].

Máu đông được làm tan trong bể ổn nhiệt ở 39ºC trong 1 giờ. Trong điều kiện về nhiệt độ và thời gian như vậy, plasminogen trong huyết tương sẽ được chuyển sang dạng hoạt động là plasmin, chất này phân hủy các protein như fibrin, fibrinopeptit, prothrombin, nhờ đó mà các tế bào được giải phóng. Sau khi rã đông, đem ly tâm dung dịch máu đã được hòa tan trong dung dịch đệm PBS. Dung dịch muối này có tác dụng duy trì pH của máu. Các tế bào thu được đem hòa tan trong dung dịch đệm tách có chứa EDTA và SDS. Sự có mặt của SDS làm cho màng tế bào bị phá vỡ và giải phóng DNA ra ngoài

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn môi trường. Thành phần EDTA sẽ liên kết với các ion Mg2+, nhờ vậy mà hoạt động của các nuclease bị ức chế. Như vậy, cả SDS và EDTA đều tham gia bảo vệ DNA khỏi sự phân giải của các nuclease. Ngoài ra, protease K có trong đệm chiết sẽ phân hủy các liên kết peptit trong protein. Hơn thế, pH kiềm của dung dịch đệm chiết làm DNA trở nên ổn định cấu trúc hơn do bản chất tích điện âm của nó; đồng thời làm giảm tương tác tĩnh điện giữa DNA với protein histon.

Để loại bỏ protein trong hỗn hợp, mẫu được lắc mạnh với hỗn hợp Phenol:Chloroform:Isoamyl alcohol. Chloroform làm tăng cường hoạt động của phenol trong việc biến tính protein nhưng không làm ảnh hưởng đến cấu trúc của DNA. Đồng thời, nó còn tạo điều kiện thuận lợi cho việc tách pha nước với pha hữu cơ. Isoamyl alcohol có tác dụng làm giảm bọt trong quá trình tách chiết. Sau khi lắc mạnh và đem ly tâm, hỗn hợp được phân làm ba pha: pha trên cùng là pha nước có chứa DNA, pha giữa là protein đã bị biến tính, và pha cuối cùng là hỗn hợp phenol, chloroform và isoamyl alcohol. Pha nước được hút nhẹ nhàng sang ống mới. Dịch chiết này sau đó được xử lý bằng hỗn hợp Chloroform:Isoamyl alcohol nhằm loại bỏ hoàn toàn phenol có lẫn trong dịch chiết và một lần nữa làm sạch DNA. Bước này có thể lặp lại 1-2 lần.

Thu tủa bằng cách bổ sung vào dịch chiết 50 l CH3COONa 3M, pH5,2 và 1ml EtOH 100%. EtOH có tác dụng hút lớp nước bao quanh phân tử DNA, để lộ ra các gốc phosphate tích điện âm. Khi đó các ion Na+ sẽ kết hợp với các gốc phosphate này khiến cho lực đẩy giữa các chuỗi nuleotide giảm, do đó DNA bị kết tủa. Trong điều kiện - 20ºC trong 15 giờ thì DNA kết tủa gần như hoàn toàn. Rửa tủa bằng EtOH 70%, làm khô và hòa tan tủa trong nước. Trong dung dịch lúc này có lẫn nhiều RNA, vì thế chúng tôi đã loại RNA bằng RNAse, ủ ở 37ºC trong 2-3 giờ. Hòa tan DNA tinh sạch trong nước khử ion vô trùng và điện di kiểm tra trên gel agarose 0,8%.

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Kết quả được thể hiện trên hình 3.5.

Hình 3.5.Ảnh kết quả điện di DNA tổng số M: Marker DNA lamda; 1. DNA tổng số của gà Ri; 2. DNA tổng số của gà Mông; 3. DNA tổng số của gà Sao

Kết quả điện di cho thấy, cả 3 băng DNA tổng số của mẫu gà Ri, Mông, Sao đều sáng tập trung và tương đối rõ nét, không có những “mảnh vụn” tạo nên vệt sáng kéo dài phía dưới. Hai băng DNA thu được có kích thước tương đương với vạch 21kb của marker DNA lamda Như vậy, có thể sơ bộ đánh giá DNA tổng số thu được đã đạt yêu cầu về nồng độ và độ tinh sạch để dùng cho các thí nghiệm tiếp theo.

3.2.2. Nhân vùng điều khiển D-Loop của DNA ty thể

D-loop là vùng không mã hóa duy nhất trên DNA ty thể ở động vật có xương sống. Vùng này có chứa các điểm khởi đầu sao chép và các promoter phiên mã của DNA ty thể. Với đặc trưng tích lũy các đột biến cao gấp 5-10 lần so với các gen khác trong ty thể và so với DNA trong nhân, D-loop trở thành vùng ý nghĩa quan trọng trong nghiên cứu đa dạng sinh học và sự phát sinh chủng loại của sinh vật. Vì thế, để đánh giá tính đa dạng di truyền của các cá thể gà thuộc 3 giống Ri, Mông, Sao, chúng tôi chọn trình tự nuleotide của vùng D-loop như một công cụ để nghiên cứu.

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Sử dụng cặp mồi H1255 và L16725 [3] để nhân vùng D-Loop từ mẫu DNA tổng số đã thu được. Các thông tin về cặp mồi này như sau:

L16725 (Tm = 60ºC): 5‟-AGGACTACGGCTTGAAAGC-3‟(19 nuleotide) H1255 (Tm = 55ºC): 5‟-CATCTTGGCATCTTCAGTGCC-3‟(21 nuleotide)

Cặp mồi H1255 - L16725 được lựa chọn bởi vì đây là cặp mồi “bảo thủ”, nó có thể được dùng cho nhiều loài, giống khác nhau trong bộ Gà (Galliformes) [3]. Khi sử dụng cặp mồi này, chúng tôi dự tính sẽ nhân được đoạn điều khiển có kích thước 1227 bp.

PCR là loại phản ứng đòi hỏi sự chính xác về chu trình nhiệt của phản ứng cũng như thành phần và nồng độ các chất tham gia.

Chu trình nhiệt của PCR

Điều quan trọng nhất là sự lựa chọn và tìm ra nhiệt độ gắn mồi thích hợp. Nhiệt độ gắn mồi phải thấp hơn Tm của các cặp mồi được sử dụng từ 3 - 5ºC để cho mồi có thể bắt cặp tốt với DNA khuôn. Tổng số chu kỳ chúng tôi tiến hành là 30, mỗi chu kỳ gồm ba giai đoạn chính như sau:

- Giai đoạn biến tính (Denaturation): Nhiệt độ biến tính thường khoảng 94 - 95oC để đảm bảo sau khoảng 30 chu kỳ PCR, Taq vẫn giữ được hoạt tính. Thời gian biến tính tuỳ thuộc vào hàm lượng G - C và chiều dài của phân tử DNA. Chúng tôi chọn nhiệt độ biến tính là 94oC trong 1 phút. Trước khi bước vào chu kỳ thứ nhất, nhiệt độ được đặt 95oC trong 3 phút để đảm bảo

phân tử DNA được biến tính hoàn toàn.

- Giai đoạn gắn mồi (Annealing): Vì Tm nhỏ nhất của cặp mồi trên là 55ºC nên nhiệt độ gắn mồi có thể từ 50 - 52ºC. Chúng tôi đã thử chạy phản ứng ở một số giá trị khác nhau trong khoảng nhiệt độ này và chọn được nhiệt độ gắn mồi tối ưu trong thí nghiệm là 50ºC.

- Giai đoạn kéo dài chuỗi (Extension): Nhiệt độ tăng đến 72ºC để cho enzym Taq polymerase hoạt động tốt nhất. Tốc độ tổng hợp của phản ứng

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn khoảng 1000 nuleotide/phút. Trình tự vùng D-loop quan tâm có kích thước 1227 bp nên thời gian giai đoạn kéo dài chuỗi được lựa chọn là 1 phút 20 giây.

Sau khi kết thúc 30 chu kỳ, chúng tôi đặt nhiệt độ lên 72ºC trong 10 phút để đảm bảo sự tổng hợp được kết thúc hoàn toàn. Sản phẩm PCR được giữ ở nhiệt độ 4ºC.

Thành phầnvà nồng độ các chất tham gia

Tham gia vào phản ứng này là 7 thành phần thiết yếu, đó là: Taq DNA polymerase, dung dịch đệm, mồi, MgCl2, các dNTP, DNA khuôn và nước. Trong đó có 3 thành phần thường thay đổi trong từng phản ứng là: mồi, MgCl2 và DNA khuôn.

- Dung dịch đệm: PCR được thực hiện trong một môi trường đệm phù hợp với hoạt động của enzym có giá trị pH là 7,2. Trong thí nghiệm này, sau khi khảo sát, chúng tôi sử dụng loại đệm có chứa NH4+

của hãng Fermentas, nó phù hợp với hoạt động của enzym Taq polymerase và khoảng biến thiên rộng về nồng độ của MgCl2. Hơn nữa, loại đệm này cho chất lượng sản phẩm tốt hơn so với loại đệm không có chứa NH4+

.

- Mồi: là một yếu tố rất quan trọng trong PCR bởi việc điều chỉnh nhiệt độ gắn mồi và nồng độ của mồi có ảnh hưởng lớn đến lượng sản phẩm thu được. Nồng độ mồi xuôi và ngược sử dụng trong thí nghiệm này là 10 pmol/ l.

- MgCl2: Vai trò của ion Mg2+

là tạo phức với dNTP và gắn chúng với enzym, kích hoạt và tăng cường sự kết hợp giữa mồi và khuôn. Nồng độ Mg2+

quá thấp sẽ làm giảm hoạt tính của enzym. Tuy nhiên, nếu nồng độ này quá cao sẽ ức chế hoạt động của enzym. Sau khi khảo sát, chúng tôi thấy nồng độ Mg2+ là 10mM cho kết quả PCR tốt nhất. (adsbygoogle = window.adsbygoogle || []).push({});

- 4 loại dNTP: Nồng độ của mỗi loại dNTP đều phải bằng nhau và phụ thuộc nhiều vào kích thước của đoạn DNA đích, nồng độ của mồi và MgCl2. Nồng độ của các dNTP lớn hơn 4 mM sẽ ức chế phản ứng PCR do ion Mg2+

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn bị cô lập, dễ dẫn đến sự nhân lên của các đoạn không cần thiết. Qua thử nghiệm, chúng tôi thấy, nồng độ của các dNTP 1mM là phù hợp.

- Thành phần cuối cùng của PCR là DNA khuôn được tinh sạch và ít bị đứt gãy có chứa trình tự đích cần nhân lên. Thông thường, hàm lượng DNA khuôn trong mỗi hỗn hợp phản ứng là 10-100ng/phản ứng. Sản phẩm PCR được điện di kiểm tra trên gel agarose 0,8% và bảo quản ở 4ºC.

Hình 3.6. Ảnh chụp kết quả điện di sản phẩm PCR

M: Marker; 1: Mẫu gà Ri; 2. Mẫu gà Mông; 3. Mẫu gà Sao

Theo ảnh chụp kết quả điện di, cả 3 mẫu đều xuất hiện băng DNA nằm ở vị trí giữa vạch 1,5 kb và 1 kb trên thang kích thước chuẩn (marker); kích thước phân tử của sản phẩm PCR vào khoảng 1,3 kb, phù hợp với tính toán theo lý thuyết. Các băng sáng đậm, rõ nét, tập trung chứng tỏ sản phẩm PCR đặc hiệu, chúng tôi đã nhân được vùng D-loop. Sản phẩm PCR đặc hiệu, chương trình đã lựa chọn và nồng độ các chất tham gia phản ứng là phù hợp. Các sản phẩm PCR được trực tiếp sử dụng trong các thí nghiệm tiếp theo.

3.2.3 Tách dòng và xác định trình tự vùng D-Loop của DNA ty thể

3.2.3.1. Tách dòng vùng D-Loop

Để tạo điều kiện cho việc xác định trình tự vùng D-loop, chúng tôi tiến hành tách dòng phân tử đoạn này với kích thước 1,3 kb đã nhân được bằng

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn cặp mồi L16725- H1255. Chúng tôi đã sử dụng vector pJET1/Blunt để tách dòng vùng D-loop. Vector pJET1/Blunt có kích thước khoảng 3,1kb (3128 nucleotide), đây là vector tách dòng thế hệ mới của hãng Fermentas, mới được sử dụng tại các phòng thí nghiệm. Nó có chứa điểm khởi đầu sao chép nên có khả năng sao chép độc lập với các gen của tế bào chủ E.coli. Trên vector có gen kháng chất kháng sinh (bla), nên chỉ có những tế bào nào mang vector này mới có thể sống dược trong môi trường có Amp. Đồng thời, trên vector này còn có chứa gen gây chết Eco47IR, mã hóa cho enzyme nuclease phân hủy DNA nhân khi tồn tại trong tế bào vật chủ. Vì vậy, vector được gắn thêm gen ngoại lai sẽ làm lệch khung đọc của gen Eco47IR khiến enzyme được tổng hợp không còn hoạt tính như trước nữa dẫn đến sự không phân hủy được DNA nhân của tế bào chủ. Nhờ có Eco47IR mà quá trình lựa chọn khuẩn lạc có mang plasmid tái tổ hợp sẽ hiệu quả hơn. Vùng PlacUV5 điều khiển sự biểu hiện của gen Eco47IR một cách đầy đủ mà không cần đến chất cảm ứng IPTG.

Thêm vào đó, vùng MCS (Muntiple Cloning Site) của vector có điểm nhận biết của nhiều enzyme cắt hạn chế như Kpn2I, XhoI, XbaI… nhằm phục vụ cho việc cắt kiểm tra sau khi tách dòng. Ngoài ra, vector mang trình tự 2 mồi PJET1 xuôi và ngược nằm về hai phía của điểm gắn sản phẩm PCR cho phép nhân đoạn PCR được gắn vào sau tách dòng với số lượng lớn, phục vụ cho việc giải trình tự gen.

Như đã biết việc sử dụng Taq polymerase trong PCR sẽ tạo ra khoảng 70% - 90% sản phẩm PCR có thêm một nucleotide A ở đầu 3‟. Mặt khác, pJET1/Blunt lại là vector tách dòng đầu bằng nên chỉ các sản phẩm PCR dầu bằng hoặc đã được bằng hóa mới thực hiện được phản ứng ghép nối với vector này. Do đó, trước khi thực hiện phản ứng ghép nối,chúng tôi làm bằng hóa đầu 3‟ của sản phẩm PCR. Thành phần của phản ứng làm bằng hóa đầu 3‟

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn như sau: 5µl đệm phản ứng 2X; 3µl sản phẩm PCR; 0,5µl H2O; 0,5µl enzyme làm bằng hóa DNA. Sau thời gian phản ứng, DNA blunting được biến tính ở nhiệt độ 70oC trong 5‟. Tiếp theo, chúng tôi tiến hành phản ứng ghép nối sản phẩm PCR đã được làm bằng hóa vào 0,5µl vector pJET1 (50ng/µl) bằng 0,5µl enzyme T4 DNA ligase (5u/µl).

Lấy 3µl sản phẩm ghép nối này để biến nạp vào tế bào khả biến E.coli

dòng DH5α. Các tế bào khả biến được nuôi cấy trên môi trường LB đặc có bổ sung Amp (50µg/ml) ở 37oC qua đêm. Kết quả chúng tôi thu được rất nhiều khuẩn lạc là các dòng tế bào vi khuẩn có mang plasmid. Để xác định xem các plasmid này có thực sự đã mang đoạn gen đã nhân được bằng kỹ thuật PCR, chúng tôi tách chiết DNA plasmid từ một số khuẩn lạc để kiểm tra.

Tách chiết plasmid

Các tế bào sau khi nuôi cấy được thu nhận bằng ly tâm ở 6000 v/p, 6 phút, 4ºC. DNA tồn tại trong tế bào vi khuẩn E. coli gồm hai dạng: DNA nhiễm sắc thể có dạng mạch thẳng và DNA plasmid dạng mạch vòng. Để thu nhận và tinh sạch DNA plasmid, chúng tôi tiến hành xử lý tế bào thu được sau khi nuôi cấy bằng các dung dịch I, II, III. Dung dịch I (sol I) có tác dụng rửa sạch tế bào và hòa tan tế bào. SDS trong sol II có tác dụng phá màng và cùng với EDTA trong sol I sẽ gắn chặt với Mg2+ làm ức chế hoạt động của các nuclease, nhờ đó DNA được bảo vệ. DNA nhiễm sắc thể có kích thước lớn, liên kết chặt chẽ với protein tạo ra phức hệ nucleoprotein nên cấu trúc của chúng rất cồng kềnh, ngược lại với DNA plasmid có cấu trúc gọn nhẹ. Chính vì thế, khi DNA plasmid đã được giải phóng ra môi trường thì DNA nhiễm sắc thể hầu như vẫn chưa kịp thoát ra ngoài. CH3COOK và CH3COOH trong sol III có tác dụng làm giảm pH của dung dịch về gần với điểm đẳng điện của DNA và gây biến tính protein; cùng với sự có mặt của EtOH 100% ở nhiệt độ

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn thấp, DNA plasmid bị kết tủa và dễ dàng được tách ra nhờ ly tâm. Sản phẩm được điện di trên gel agarose 0,8%. Kết quả được trình bày ở hình 3.7.

Hỗn hợp DNA plasmid thu được sau khi tách chiết thường tồn tại 3 dạng cấu trúc: Dạng siêu xoắn, dạng vòng mở và dạng mạch thẳng. Dạng thứ nhất có cấu trúc không gian gọn nhẹ nhất, được hình thành do liên kết hidro hoặc liên kết tĩnh điện giữa các phần của phân tử plasmid với nhau. Dạng vòng mở

Một phần của tài liệu So sánh đặc điểm hóa sinh trứng và trình tự vùng điều khiển d-loop của ba giống gà ri gà mông và gà sao nuôi tại thái nguyên (Trang 41)