Bước sóng hướng xuống 1490, 1550nm, hướng lên 1310nm
Hình 4.17: Phổ tín hiệu tại bước sóng 1550nm
Các hình 4.16, 4.17 cho ta thấy đồ thị biểu diễn phổ tại 3 bước sóng trong mạng GPON tương ứng là 1490nm, 1550nm cho hướng xuống và 1310nm cho hướng lên.
Hình 4.18: Phổ tín hiệu tại bước sóng 1310nm Phương thức ghép kênh
Mạng GPON sử dụng phương pháp ghép kênh là TDM. Các tín hiệu khác nhau có tần số khác nhau nên để truyền đi trong sợi quang ở bước sóng 1490nm thì các kênh phải được phân chia trong những khoảng thời gian khác nhau. Một khung được phân chia ra làm 8 khe thời gian từ 0 đến 7. Mạng phân biệt giữa các ONT khác nhau đang truy nhập mạng để yêu cầu dịch vụ thông qua các khe thời gian được ấn định tạm thời cho các ONT. Ở đây, ta dùng cấp phát một khe thời gian.ONT thứ 1 được cấp phát ở khe 0, ONT thứ 2 được cấp phát ở khe thứ 1, ONT thứ 3 cấp phát ở khe thứ 2. Độ rộng mỗi khe thời gian là 50ns.
Còn phương pháp truy cập ở đây là phương pháp đa truy cập phân chia theo thời gian (TDMA). Sự khác biệt rõ nhất giữa TDM và TDMA đó là TDM hoạt động ở lớp 1 còn TDMA hoạt động ở lớp 2 trong mô hình OSI. Ngoài ra, với TDM thì mỗi ONT chỉ được cấp phát riêng một khe thời gian ấn định, và khi truyền nó sẽ truyền trong khe thời gian đó, dù trong khe thời gian dành cho nó là rảnh thì cũng không có ONT nào được chiếm khe đó, còn với TDMA hiểu đơn giản là mỗi các
khe thời gian được cấp phát động, cứ có khe nào rỗi thì ONT đó được phép chiếm khe thời gian đó để truyền dữ liệu.
Hình 4.19: Phương thức ghép kênh TDM trong GPON Phương thức điều chế NRZ
• Chức năng cơ bản của mã đường dây:
Các tín hiệu lối ra của mạch xử lý tín hiệu băng gốc thường là các tín hiệu mà giá trị của tín hiệu không thay đổi trong suốt thời gian tồn tại của tín hiệu. Tức là trong suốt thời gian của bit “1” thì giá trị logic của tín hiệu là 1 và trong suốt thời gian của bit “0” thì giá trị logic của tín hiệu là bit 0 (người ta gọi là tín hiệu NRZ). Nhưng khi truyền tín hiệu trên một khoảng cách lớn sẽ gây méo và suy hao lớn tức là chất lượng tín hiệu thu hay tỉ lệ lỗi bit sẽ cao. Ngoài ra, khi xử lý tín hiệu, nhằm phối hợp mạch điện, tạo ra phân cách lý tưởng về điện và giảm xuyên nhiễu người ta thường dùng các loại biến áp (cách ly). Các biến áp cho thành phần một chiều đi qua và loại bỏ thành phần xoay chiều. Các tín hiệu nhị phân đơn cực (chỉ có hai mức điện áp là 0 và 1) lại chứa trong phổ của nó thành phần một chiều và các thành phần tần số thấp có năng lượng rất cao, do đó khi truyền qua biến áp sẽ gây méo lớn.
Mặt khác, một vấn đề quan trọng trong xử lý tín hiệu băng gốc đó là tách tín hiệu định thời từ tín hiệu được chuyển tới. Tín hiệu định thời thường được tách từ các chuyển đổi cực tính xung thành phần. Trong trường hợp sử dụng các tín hiệu NRZ thì việc tách các tín hiệu định thời là rất khó khăn vì giả sử tín hiệu định thời là bit “1” và bit tín hiệu dữ liệu cũng liên tiếp sau đó là “1” rõ ràng rất khó để xác định. Để khắc phục điều này, người ta mã hóa tín hiệu nhị phân đơn cực trước khi truyền trực tiếp trên đường dây. Cách thức mã hóa như vậy gọi là mã hóa đường dây.
Các chức năng chủ yếu của mã hóa đường dây là:
Chuyển phổ tín hiệu băng gốc (tập trung chủ yếu tại miền tần thấp và chứa thành phần một chiều rất lớn) lên miền tần số cao hơn để lọt vào băng thông đường dây để truyền không điều chế tín hiệu băng gốc đi được xa hơn.
Tăng mật độ chuyển đổi cực tính của tín hiệu nhằm hỗ trợ cho quá trình đồng bộ đồng hồ ở phía thu.
Có khả năng kiểm soát lỗi (thường chỉ có khả năng phát hiện lỗi chứ không có khả năng sửa).
• Các loại mã đường dây sử dụng trong hệ thống thông tin quang
Có nhiều cách phân loại mã đường dây, tuy nhiên chúng ta có thể phân loại ra thành các loại như Hình 4.20. Các loại mã đường dây chủ yếu gồm 2 loại là mã nhị phân (mã lưỡng cực) và mã tam phân (mã ba mức). Mã nhị phân chủ yếu là các loại mã WAL1 (còn được gọi là mã Manchester), WAL2 hay là các loại mã nBmB (biến tổ hợp n bit của chuỗi tín hiệu cần mã hóa thành m bit mã đường dây).
Hình 4.20: Phân loại mã đường dây