Các nghiên cứu tương lai 72

Một phần của tài liệu Động lực học và điều khiển rôbot có cấu trúc dạng mạch hở (Trang 72 - 82)

Trong tương lai gần, chúng tôi dự kiến sẽ áp dụng thử nghiệm chương trình cho mô hình robot dáng người thực, một mô hình hệ nhiều vật có cấu trúc phức tạp. Dựa trên sự mô tả robot dáng người như là một hệ chịu dẫn động với 6DOFs thụ động được gắn vào base của nó, chúng tôi sẽ phát triển các biểu diễn tác vụ động học và động lực học của robot trong liên kết tiếp xúc với nền.

Chúng tôi hi vọng trong tương lai gần, có thể áp dụng những kết quả chương trình tính cho robot dáng người thực để kiểm nghiệm sự đúng đắn của các giải thuật tính toán động

học, động lực học, cũng như các giải thuật điều khiển đã được sử dụng cho mô hình ảo trên máy tính. Đồng thời, chúng tôi cũng đang hướng tới việc phát triển các tính toán song song để tăng cường tốc độ tính toán, cũng như phát triển các chương trình tính toán trên nền hệ điều hành thời gian thực…

Tài liu tham kho

1. A, J. (1991). Unified formulation of dynamics for serial rigid multibody systems. .

Journal of Guidance, Control and Dynamics , 531-542.

2. Anderson, F. and M. Pandy (2001). Static and dynamic optimization solutions for gait

are practically equivalent. Journal of Biomechanics 34, 153–161.

3. Angeles, J. (2003). Fundamentals Of Robotic Mechanical Systems Theory Methods

And Algorithms 2Nd Edition. Springer .

4. Arai, H. and O. Khatib (1994, 81-84). Experiments with dynamic skills. In Proceedings of The Japan-USA Symposium on Flexible Automation, Kobe, Japan.

5. Arai, H. and S. Tachi (1991, April). Dynamic control of a manipulator with passive

joints in an operational coordinate space. In Proceedings of the IEEE International

Conference on Robotics and Automation, Sacramento, USA.

6. Arbib, M. (1981). Perceptual Structures and Distributed Motor Control. In: Brooks VB (ed) Handbook of physiology (Section 2: The nervous system, Vol. IL Motor control, Part I). American Physiological Society, pp. 1449-1480.

7. Arimoto, S. (2008). Control Theory of Multi-fingered Hands. Springer.

8. Bachar, Y. (2004). Developing Controllers for Biped Humanoid Locomotion. Master of Science: University of Edinburgh.

9. Bae DS, H. E. (1987). A recursive formulation for constrained mechanical system dynamics: Part II. Closed loop systems. Int. J. of Mechanics of Structures and

Machines , 481-506.

10. Bae DS, H. E. (1987). A recursive formulation for constrained mechanical system dynamics:Part I. Open systems. Int. J. of Mechanics of Structures and Machines , 359-382.

11. Baerlocher, P. and R. Boulic (1998, October). Task-priority formulation for the

kinematic control of highly redundant articulated structures. In Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems, Victoria, Canada.

12. Baginski, B. (1998). Motion Planning for Manipulators with Many Degrees of

Freedom - The BB Method. Munich: Doctoral Thesis.

13. Brock, O. and O. Khatib (2002). Elastic strips: A framework for motion generation in

human environments. International Journal of Robotics Research 21(12), 1031–1052.

14. Brock, O., O. Khatib, and S. Viji (2002). Task-consistent obstacle avoidance and

motion behavior for mobile manipulation. In Proceedings of the IEEE International

Conference on Robotics and Automation, Washingtion, USA, pp. 388–393.

15. Bruno Siciliano, O. K. (2008). Springer Handbook of Robotics. Springer.

16. Buckley, C. (1986). The application of continuum methods to path planning. Ph. D. thesis, Stanford University, Stanford, USA.

17. Chang, K. and O. Khatib (2000, April). Operational space dynamics: Effcient

algorithms for modeling and control of branching mechanisms. In Proceedings of the

IEEE International Conference on Robotics and Automation.

18. Cole, A., J. Hauser, and S. Sastry (1989). Kinematics and control of multifingered

hands with rolling contact. IEEE Transaction on Automation and Control 34 (4),

19. Delp, S. and J. Loan (2000). A computational framework for simulating and analyzing

human and animal movement. IEEE Computational Science and Engineering 2(5),

46–55.

20. Dimity M. Gorinevsky, A. M. (1997). Force control of robotic systems. CRC Press.

21. Edsinger, A. L. (2007). Robot Manipulation in Human Environments. Doctor of Philosophy in Electrical Engineering and Computer Science.

22. Featherstone, R. (1987). Robot Dynamics Algorithms. Norwell, USA: Kluwer Academic Publishers.

23. Featherstone, R., S. Thiebaut, and O. Khatib (1999, May). A general contact model

for dynamically-decouled force/motion control. In Proceedings of the IEEE

International Conference on Robotics and Automation, Detroit, USA.

24. Fichter, E. and E. McDowell (1980). A nover design for a robot arm. In Advancements of Computer Technology, pp. 250–256. ASME.

25. Frank L.Lewis, Darren M.Dawson, Chaouki T.Abdallah,( 2004). Robot Manipulator

Control Theory and Practice, Second Edition – Marcel Dekker

26. Fujimoto, Y. and A. Kawamura (1996). Proposal of biped walking control based on

robust hybrid position/foce control. In Proceedings of the IEEE International

Conference on Robotics and Automation, Volume 4, pp. 2724–2730.

27. Hanafusa, H., T. Yoshikawa, and Y. Nakamura (1981). Analysis and control of

articulated robot with redundancy. In Proceedings of IFAC Symposium on Robot

Control, Volume 4, pp. 1927–1932.

28. Harada, K., H. Hirukawa, F. Kanehiro, K. Fujiwara, K. Kaneko, S. Kajita, and M. Nakamura (2004, September). Dynamical balance of a humanoid robot grasping an

environment. In Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems, Sendai, Japan, pp. 1167–1173.

29. Harada, K., S. Kajita, K. Kaneko, and H. Hirukawa (2004, November). An analytical

method on real-time gait planning for a humanoid robot. In Proceeding of the

IEEE/RSJ International Conference on Humanoid Robots, Los Angeles, USA, pp.

30. Hauser, K. (2008). MOTION PLANNING FOR LEGGED AND HUMANOID

ROBOTS. DISSERTATION: STANFORD UNIVERSITY.

31. Himanshu Chaudhary, S. K. (2009). Dynamics and Balancing of Multibody Systems.

Springer.

32. Hirai,K., M. Hirose, Y. Haikawa, and T. Takenaka (1998). The development of Honda

humanoid robot. In Proceedings of the IEEE International Conference on Robotics

and Automation, Volume 2, Leuven, Belgium, pp. 1321–1326.

33. Hofmann, A. G. (2006). Robust Execution of Bipedal Walking Tasks From

Biomechanical Principles. Doctoral Thesis: Massachusetts Institute of Technology.

34. Hogan, N. (1987, March-April). Stable execution of contact tasks using impedance

control. In Proceedings of the IEEE International Conference on Robotics and

Automation, Raleigh, USA, pp. 1047–1054.

35. Hollerbach. (1980). A recursive lagragian formulation of manipulator dynamics and

a comparative study of dynamics formulation complexity. IEEE trans. Systematic man

Cybernetics , 730-736.

36. Kajita, S., F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa (2003a, September). Biped walking pattern generation by using preview

control of zero-moment point. In Proceedings of the IEEE International Conference

37. Kajita, S., F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa (2003b, October). Resolved momentum control: Humanoid motion

planning based on the linear and angular momentum. In Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, USA, pp. 1644–1650.

38. Kanehiro, F. and H. Hirukawa (2001, September). Online self-collision checking for

humanoids. In Proceedings of the 19th Annual Conference of the Robotics Society of

Japan, Tokyo, Japan.

39. Kaynov, D. (2008). Open motion control architecture for humanoid robots. Ph. D Theis: Universidad Carlos III de Madrid.

40. Khang, N. V. (2005). Động lực học hệ nhiều vật. NXB. Khoa học kỹ thuật.

41. Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research 5(1), 90–8.

42. Khatib, O. (1987). A unified approach for motion and force control of robot

manipulators: The operational space formulation. International Journal of Robotics

Research 3(1), 43–53.

43. Khatib, O. and J. Maitre (1978, September). Dynamic control of manipulators

operating in a complex environment. In Proceedings of RoManSy’78, 3rd CISM-

IFToMM Symposium, Udine, Italy, pp. 267–282.

44. Khatib, O., L. Sentis, J. Park, and J. Warren (2004, March). Whole body dynamic

behavior and control of human-like robots. International Journal of Humanoid

Robotics 1(1), 29–43.

45. Kress-Gazit, H. (2008). TRANSFORMING HIGH LEVEL TASKS TO LOW LEVEL

CONTROLLERS. University of Pennsylvania: Doctoral Thesis.

46. Kröger, T. (2010). On-Line Trajectory Generation in Robotic Systems_Basic

Concepts for Instantaneous Reactions to Unforeseen (Sensor) Events. Springer.

47. Kuffner, J., K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue (2003, October).

Motion planning for humanoid robots. In Proceedings of the International Symposium

of Robotics Research, Siena, Italy.

48. Kwon, S., W. Chung, Y. Youm, and M. Kim (1991, October). Self-collision

avoidance for n-link redundant manipulators. In Proceedings of the IEEE

International Conference on System, Man and Cybernetics, Charlottesville, USA, pp. 937–942.

49. Lionel Birglen, T. L. (2008). Underactuated Robotic Hands. Springer.

50. Luh JYS, W. M. (1980). On-Line computational scheme for mechanical manipulators.

ASME Journal of Dynamic Systems, Measurement and Control , 69-76.

51. M.OKADA, T. T. (2003). Humanoid Robot Mechanisms for Responsive Mobility.

Proceeding of the 2nd International Symposium on Adaptive Motion of Animals and Machines .

52. Maciejewski, A. and C. Klein (1985). Obstacle avoidance for kinematically

redundant manipulators in dynamically varying environments. International Journal

of Robotics Research 4(3), 109–117.

53. MartijnWisse. (2004). Essentials of dynamic walking: Analysis and design of two- legged robots.

54. Moravec, H. (1980). Obstacle Avoidance and Navigation in the Real World by a

55. Nakamura, Y. (1991). Advanced Robotics Redundancy and Optimization. Addison- Wesley

56. Nakamura, Y., H. Hanafusa, and T. Yoshikawa (1987). Task-priority based control of

robot manipulators. International Journal of Robotics Research 6(2), 3–15.

57. NAKAOKA, S. (2005). LEARNING FROM OBSERVATION PARADIGM:LEG TASK MODELS FOR REPRODUCING HUMAN DANCE MOTIONS ON BIPED

HUMANOID ROBOTS. University of Tokyo: Doctral Thesis.

58. Petrovskaya, A., J. Park, and O. Khatib (2007, April). Probabilistic estimation of

whole body contacts for multi-contact robot control. In Proceedings of the IEEE

International Conference on Robotics and Automation, Rome, Italy.

59. Pons, J. L. Wearable Robots:Biomechatronic Exoskeletons. CSIC, Madrid, Spain: John Wiley & Sons.

60. Quinlan, S. (1994). Real-time Modification of Collision-free Paths. Ph. D. thesis, Stanford University, Stanford, USA.

61. R, F. (1987). Robot dynamics algorithms, . Kluwer Academic Publishers.

62. R. Kelly, V. S. (2005). Control of robot manipulators in joint space. Springer.

63. Rodriguez G, J. A.-D. (1991). A spatial operator algebra for manipulator modeling and control. Int. Journal of Robotics Research , 371-381.

64. Roth, B., J. Rastegar, and V. Sheinmann (1973). On the design of computer controlled

manipulators. In First CISM IFToMM Symposium, pp. 93–113.

65. Russakov, J., O. Khatib, and S. Rock (1995, May). Extended operational space

formulation for serial-toparallel chain (branching) manipulators. In Proceedings of

the IEEE International Conference on Robotics and Automation, Nagoya, Japan, pp. 1056–1061.

66. Saavedra, M. R. (2008). Stable locomotion of humanoid robots based on mass

concentrated model. Ph. D. Thesis: Universidad Carlos III de Madrid.

67. Sadao Kawamura, M. S. (2006). Advances in Robot Control - From Everyday Physics

to Human-Like Movements. Springer.

68. Sandin, P. E. (2003). Robot Mechanisms And Mechanical Devices Illustrated.

McGraw-Hill.

69. Sentis, L. (2007). SYNTHESIS AND CONTROL OF WHOLE-BODY BEHAVIORS IN

HUMANOID SYSTEMS. Doctoral Thesis: stanford university.

70. Sentis, L. and O. Khatib (2005b, December). Synthesis of whole-body behaviors

through hierarchical control of behavioral primitives. International Journal of

Humanoid Robotics 2(4), 505–518.

71. Shabana, A. A. (2005). Dynamics of Multibody Systems_3_ed. Cambridge University Press.

72. Siciliano, B. and J. Slotine (1991, June). A general framework for managing multiple

tasks in highly redundant robotic systems. In Proceedings of the IEEE International

Conference on Advanced Robotics, Pisa, Italy, pp. 1211–1216.

73. Stepanenko Y, V. M. (1976). Dynamics of articulated open-chain active mechanisms.

Mathematical Biosciences 28 , 137-170.

74. Sugihara, T. (2004). Mobility Enhancement Control of Humanoid Robot based on

Reaction Force Manipulation viaWhole Body Motion. Ph. D. thesis, University of

75. Umetami, Y. and K. Yoshida (1989, June). Resolved motion rate control of space

manipulators with generalized Jacobian matrix. IEEE Transactions on Robotics and

Automation 5(3).

76. Valavanis, B. S. (1998). Control Problems in Robotics and Automation. Springer.

77. Vukobratovic, M. and B. Borovac (2004). Zero-moment point thirty five years of its

life. International Journal of Humanoid Robotics 1(1), 157–173.

78. W Khalil, E. D. (2002). Modeling, identification and control of robots. Hermes Penton.

79. Yokoyama, K., H. Handa, T. Isozumi, Y. Fukase, K. Kaneko, F. Kanehiro, Y. Kawai, F. Tomita, and H. Hirukawa (2003, September). Cooperative works by a human and a

humanoid robot. In Proceedings of the IEEE International Conference on Robotics

and Automation, Taipei, Taiwan, pp. 2985–2991.

80. Zonfrilli, F. (2004). Theoretical and Experimental Issues in Biped Walking Control

PH LC Ph lc 1:

Mã nguồn chương trình Maple:

> restart: > with(linalg): with(LinearAlgebra): > E2T:=proc(x::Vector) local y,cx,cy,cz,sx,sy,sz,rx,ry,rz; cx:=cos(x(1)): sx:=sin(x(1)): cy:=cos(x(2)): sy:=sin(x(2)): cz:=cos(x(3)): sz:=sin(x(3)): rx:=Matrix(3,3,[1,0,0,0,cx,-sx,0,sx,cx]): ry:=Matrix(3,3,[cy,0,sy,0,1,0,-sy,0,cy]): rz:=Matrix(3,3,[cz,-sz,0,sz,cz,0,0,0,1]): y:=Multiply(rx,Multiply(ry,rz)): return y: end proc: > wave:=proc(a::Vector) local wa: wa:=Matrix(3,3,[0,-a(3),a(2),a(3),0,-a(1),-a(2),a(1),0]): return wa: end proc:

> # input data for robot configuration m:=<<0,0,0>>: rJ[1][1]:=Vector([0,0,0]): rJ[1][2]:=Vector([0,0,0]): CSJ[1][1]:=E2T(Vector([0,0,0])): CSJ[1][2]:=E2T(Vector([0,Pi/2,0])): Jtype[1]:=Vector([1]):

IC[1]:=Matrix(3,3,[0.4e-2, 0, 0, 0, 0.3e-2, 0, 0, 0, 0.1e-2]): m(1):=2: rJ[2][1]:=Vector([0,-a1,0]): rJ[2][2]:=Vector([0,0,0]): CSJ[2][1]:=E2T(Vector([0,0,0])): CSJ[2][2]:=E2T(Vector([0,0,0])): Jtype[2]:=Vector([1,1]): IC[2]:=ZeroMatrix(3): #Matrix(3,3,[0, 0, 0, 0, 0, 0, 0, 0, I1z]): m(2):=m1: rJ[3][1]:=Vector([0,-a2,0]): rJ[3][2]:=Vector([0,0,0]): CSJ[3][1]:=E2T(Vector([0,0,0])): CSJ[3][2]:=E2T(Vector([0,0,0])): Jtype[3]:=Vector([1,1]):

IC[3]:=ZeroMatrix(3): #Matrix(3,3,[0, 0, 0, 0, 0, 0, 0, 0, I2z]): m(3):=m2: FEXT:=Vector([Px,0,Py,0,0,0]): #q:=Vector([seq(theta[i],i=1..n1)]): #dq:=Vector([seq(dtheta[i],i=1..n1)]): #ddq:=Vector([seq(ddtheta[i],i=1..n1)]): > # Newton - Euler Recusive

RNE := proc (rJ, CSJ, Jtype, IC, m, FEXT, q, dq, ddq)

local n1, w, dw, z0, dv, A, T, i, z1, TR, dTR, CSP, f, n, dT, F, N, mC, tau, z2;

n1 := RowDimension(m)-1;

alias(seq(C[i] = cos(q[i]), i = 1 .. n1), seq(S[i] = sin(q[i]), i = 1 .. n1), C[12] = cos(q[1]+q[2]), C[123] = cos(q[1]+q[2]+q[3]), C[23] = cos(q[2]+q[3]), S[23] = sin(q[2]+q[3])); w[1] := ZeroVector(3); dw[1] := ZeroVector(3); z0 := Vector([0, 0, 1]); dv[1] := Vector([0, 0, g]); A[1] := IdentityMatrix(3); T[1] := IdentityMatrix(3); for i from 1 to n1 do if Jtype[i](1) = 0 then

T[i+1] := Multiply(CSJ[i][2], Transpose(CSJ[i+1][1])); A[i+1] := Multiply(A[i], T[i+1]);

z1 := Multiply(CSJ[i+1][1], z0);

w[i+1] := Multiply(Transpose(T[i+1]), w[i]); dw[i+1] := Multiply(Transpose(T[i+1]), dw[i]); dv[i+1] := Multiply(Transpose(T[i+1]), dv[i])+Multiply(Multiply(wave(w[i+1]), wave(w[i+1]))+wave(dw[i+1]), Multiply(Transpose(T[i+1]), rJ[i][2])+z1*q[i]-rJ[i+1][1])+2*Multiply(wave(w[i+1]), z1)*dq[i]+z1*ddq[i] else

TR := Matrix(3, 3, [cos(q[i]), -sin(q[i]), 0, sin(q[i]), cos(q[i]), 0, 0, 0, 1]);

dTR := Matrix(3, 3, [-sin(q[i]), -cos(q[i]), 0, cos(q[i]), -sin(q[i]), 0, 0, 0, 0])*dq[i];

T[i+1] := Multiply(Multiply(CSJ[i][2], TR), Transpose(CSJ[i+1][1]));

dT := Multiply(Multiply(CSJ[i][2], dTR), Transpose(CSJ[i+1][1]));

A[i+1] := Multiply(A[i], T[i+1]); z1 := Multiply(CSJ[i+1][1], z0);

w[i+1] := Multiply(Transpose(T[i+1]), w[i])+z1*dq[i]; dw[i+1] := Multiply(Transpose(dT),

dv[i+1] := Multiply(Transpose(T[i+1]),

dv[i]+Multiply(Multiply(wave(w[i]), wave(w[i]))+wave(dw[i]), rJ[i][2]))-Multiply(Multiply(wave(w[i+1]),

wave(w[i+1]))+wave(dw[i+1]), rJ[i+1][1]); end if; end do; #Backward recusive CSP := Multiply(A[n1+1], CSJ[n1+1][2]); f[n1+1] := Multiply(Transpose(CSP), SubVector(FEXT, 1 .. 3)); n[n1+1] := Multiply(Transpose(CSP), SubVector(FEXT, 4 .. 6)); F := Multiply(CSJ[n1+1][2], f[n1+1]); N := Multiply(CSJ[n1+1][2], n[n1+1]); f[n1] := m(n1+1)*dv[n1+1]+F; mC := Multiply(IC[n1+1], dw[n1+1])+Multiply(Multiply(wave(w[n1+1]), IC[n1+1]), w[n1+1]); n[n1] := mC+N-Multiply(wave(rJ[n1+1][1]), f[n1])+Multiply(wave(rJ[n1+1][2]), F); tau[n1] := Multiply(Multiply(Transpose(z0), Transpose(CSJ[n1][1])), Jtype[n1+1](1)*n[n1]+(1- Jtype[n1+1](1))*f[n1]); for i from n1-1 by -1 to 1 do F := Multiply(T[i+2], f[i+1]); N := Multiply(T[i+2], n[i+1]); mC := Multiply(IC[i+1],

dw[i+1])+Multiply(Multiply(wave(w[i+1]), IC[i+1]), w[i+1]); z2 := Multiply(CSJ[i+1][2], z0); f[i] := m(i+1)*dv[i+1]+F; n[i] := mC+N-Multiply(wave(rJ[i+1][1]), f[i])+Multiply(wave(rJ[i+1][2])+(1- Jtype[i+1](2))*wave(z2)*q[i], F); tau[i] := Multiply(Multiply(Transpose(z0), Transpose(CSJ[i+1][1])), Jtype[i+1](1)*n[i]+(1- Jtype[i+1](1))*f[i]) end do; return tau: end proc:

> tau := RNE(rJ, CSJ, Jtype, IC, m, FEXT, q, dq, ddq):

> tau := simplify(tau, {S[1]^2+C[1]^2 = 1, S[2]^2+C[2]^2 = 1, C[1]*C[2]-S[1]*S[2] = C[12], S[1]*C[2]+C[1]*S[2] = S[12]}): > tau[1] := collect(tau[1], {Px, Py, ddq[1], ddq[2], dq[1], dq[2]});

> tau[2] := collect(tau[2], {Px, Py, ddq[1], ddq[2], dq[1], dq[2]});

Ph lc 2:

Chương trình tính cho hệ robot dáng người, do chương trình tính lớn, nên chúng tôi để trong CD chương trình đi kèm với luận văn này

Một phần của tài liệu Động lực học và điều khiển rôbot có cấu trúc dạng mạch hở (Trang 72 - 82)

Tải bản đầy đủ (PDF)

(82 trang)