Chùng minh Bê · 1

Một phần của tài liệu Xây dựng singer và bài toán hit (Trang 39 - 45)

Trong ph¦n n y ta tr¼nh b y mët chùng minh cho Bê · 1.4. Bê · ÷ñc chùng minh b¬ng quy n¤p. Tr÷íng hñp khði ¦u l  k¸t qu£ d÷îi ¥y, mët mð rëng cõa Bê · 5.1 trong [9].

Bê · 2.1. Gi£ sû R l  mët R3F(k)-ìn thùc vîi σ(R) = 0, v  u 6= 1 l  mët ph¦n tû tòy þ trong P3. Khi â

Ru2 ∈ Sq1(P3⊗F(k)) + Sq2(P3⊗F(k)).

Chùng minh. Ta chia th nh hai tr÷íng hñp. 1 i1(R) ≡0 (mod 2). Ta vi¸t R d÷îi d¤ng R =Qi00Qi11Qi22 X sym W12j1 · · ·Wk2jk. Suy ra Ru2 =Qi00Qi11Qi22u2 X sym W12j1 · · ·Wk2jk.

V¼ Sq (Q0Q1Q2u2) = 0 n¶n theo [8, Bê · 2.5] ta câ Qi00Qi11Qi22u2 = Sq1(A) vîi A ∈P3. Nh÷ vªy Ru2 = Sq1(A) X sym W12j1 · · ·Wk2jk= Sq1A X sym W12j1 · · ·Wk2jk. 2 i1(R) ≡ 1 (mod 2). °t S = R/Q1Q2i2, vîi i2 = i2(R). V¼ σ(R) = 0 n¶n i2(R) l  ch®n. Do â ta câ Ru2 =SQi22u2Q1 =SQi22u2Sq2(Q2) = Sq2(SQi22+1u2) + Sq2(SQi22u2)Q2 = Sq2(SQi22+1u2) + Sq2(Su2)Qi22+1. Ta câ Sq2(Su2) = Sq2(S)u2+S(Sq1u)2.

Chó þ r¬ng i1(S) =i1(Sq2S)≡ 0 (mod 2). N¶n theo 1 ta câ

Sq2(Su2) = Sq1v vîi v ∈ P3⊗F(k).

Nh÷ vªy

Sq2(Su2)Qi22+1 = Sq1(v)Qi22+1 = Sq1(vQi22+1).

Bê · ÷ñc chùng minh.

B¥y gií, ta tr¼nh b y chùng minh cho Bê · 1.4. Chùng minh ÷ñc chia l m ba b÷îc.

1 N¸u Bê · 1.4 (a) v  Bê · 1.4 (b) óng vîi måi n ≤ N th¼ Bê · 1.4 (c) công vªy.

Gi£ sû u= Sq1v1+ Sq2v2 vîi v1, v2 ∈ P3. Ta câ

Ru2n =R(Sq1v1+ Sq2v2)2n =R(Sq1v1)2n +R(Sq2v2)2n

=Sq2n(Rv21n) + Sq2n(R)v21n+Sq2n+1(Rv22n) + Sq2n(R)(Sq1v2)2n + Sq2n+1(R)v22n

Chó þ r¬ng

Sq2n(R)(Sq1v2)2n = Sq2nR(Sq1v2)2n+R(Sq1Sq1v2)2n = Sq2nR(Sq1v2)2n.

Do â,

Ru2n + Sq2n(R)v21n + Sq2n+1(R)v22n ∈A(P3⊗F(k)).

°t R := R/Q22n−1. Hiºn nhi¶n R l  mët R3F(k)-ìn thùc khæng chia h¸t cho Q2 vîi h(R) = h(R)−(2n −1)≡ 0 (mod 2n) v  i1(R) =i1(R) ≤2n−1.

p döng [Bê · 2.3, Ch÷ìng II] ta thu ÷ñc

Sq2n(R) = Sq2n(RQ22n−1) =XS1+XT1,

Sq2n+1(R) = Sq2n+1(RQ22n−1) =XS2+XT2,

trong â méi h¤ng tû S1 hay S2 l  mët R3F(k)-ìn thùc thäa m¢n σ(S1) < n

v  σ(S2)< n, cán méi h¤ng tû T1 hay T2 l  mët R3F(k)-ìn thùc vîi i2(T1) ≡

i2(T2)≡2n −1 (mod 2n) v  h(T1) 2n−1 = h2(nT2−1) = 0. Do â Ru2n +XSv12n +XS2v22n +XT1v12n +XT2v22n ∈A(P3⊗F(k)).

Theo giû thi¸t, Bê · 1.4 (a) óng vîi c¡c bë ba (S1, v1, n) v  (S2, v2, n); nh÷ th¸ S1v12n v  S2v22n ·u thuëc A(P3⊗F(k)).

T÷ìng tü, Bê · 1.4 (b) óng cho c¡c bë ba (T1, v1, n) v  (T2, v2, n) cho n¶n

T1v12n v  T2v22n ·u thuëc A(P3⊗F(k)). Nâi tâm l¤i,

Ru2n ∈ A(P3⊗F(k)).

B÷îc 1 ÷ñc chùng minh.

2 N¸u Bê · 1.4 (a) óng vîi måi n ≤N th¼ Bê · 1.4 (b) công vªy. p döng [Bê · 2.2, Ch÷ìng II] ta câ

R = Sq2n+1 RQ2i2(R)−2n−1+XS,

trong âR :=R/Qi22(R) v  méi S trong têng l  mët R3F(k)-ìn thùc thäa m¢n

σ(S)< n. Do â

Ru2n = Sq2n+1 RQ2i2(R)−2n−1u2n +XSu2n.

V¼ σ(S) < n n¶n ¡p döng Bê · 1.4 (a) cho bë ba (S, u, n) ta câ Su2n ∈

°t R1 :=RQi22(R)−2 . Theo cæng thùc Cartan ta câ Sq2n+1(R1)u2n = Sq2n+1(R1u2n) + Sq2n(R1)(Sq1u)2n +R1(Sq2u)2n = Sq2n+1(R1u2n) + Sq2nR1(Sq1u)2n+R1(Sq1Sq1u)2n +R1(Sq2u)2n = Sq2n+1(R1u2n) + Sq2nR1(Sq1u)2n+R1(Sq2u)2n. V¼ vªy Sq2n+1(R1u2n) +R1(Sq2u)2n ∈A(P3⊗F(k)). Ta câ σ(R1) =σ(Qi2(R)−2n −1

2 ) = n−1< n. Do â ¡p döng Bê · 1.4 (a) ta câ

R1(Sq2u)2n ∈A(P3⊗F(k)).

Tâm l¤i

Ru2n = Sq2n+1(R1)u2n +XSu2n ∈A(P3⊗F(k)).

B÷îc 2 ÷ñc chùng minh xong. 3 Bê · 1.4(a) óng vîi måi n.

Kh¯ng ành n y ÷ñc chùng minh b¬ng quy n¤p theo n.

Vîi n = 1, tø gi£ thi¸t σ(R)<1 ta câ σ(R) = 0. p döng Bê · 2.1 ta câ

Ru2 ∈ Sq1(P3⊗F(k)) + Sq2(P3⊗F(k)).

Do â, Bê · 1.4 (a) óng vîi n = 1.

B¥y gií x²t n > 1, gi£ sû Bê · 1.4 (a) óng vîi t§t c£ c¡c gi¡ trà nhä hìn

n. Theo B÷îc 1 v  B÷îc 2, Bê · 1.4 (b) v  Bê · 1.4 (c) công óng vîi t§t c£ c¡c gi¡ trà b² hìn n. Ta x²t ba tr÷íng hñp sau.

• Tr÷íng hñp 1. σ(R) = 0. Theo Bê · 2.1, ta câ

Ru2n =R(u2n−1)2 ∈ A(P3⊗F(k)).

• Tr÷íng hñp 2. Tçn t¤i mët sè nguy¶n m vîi 0≤m < σ(R) v  h(R) 2m

= 0. K¸t hñp vîi sü ki»n m < σ(R)< n v  i2(R) ≡ 2σ(R) −1 (mod 2σ(R)+1), ta câ m+ 1< n v  i2(R) ≡2m+1−1 (mod 2m+1).

V¼ m+ 1 < n v  theo gi£ thi¸t quy n¤p, ¡p döng Bê · 1.4 (b) cho bë ba

(R, u2n−m−1, m+ 1) ta câ

• Tr÷íng hñp 3. σ(R)> 0 v  h(R) 2m

= 1 vîi måi m thäa m¢n 0≤ m < σ(R). Khi â h(R)≡2σ(R)−1 (mod 2σ(R)).

Kþ hi»u p:=σ(R). Ta vi¸t R duy nh§t d÷îi d¤ng

R =RS2p,

trong âR l  mëtR3F(k)-ìn thùc vîi i0(R), i1(R) ≤2p−1, i2(R) = 2p−1, cán S l  mët ìn thùc theo c¡c bi¸n Q0, Q1, Q2 thäa m¢n σ(S) = 0.

p döng Bê · 2.1 cho S v  v :=u2n−p−1 6= 1, ta thu ÷ñc

Sv2 ∈A(P3⊗F(k)).

M°t kh¡c,

h(R) =h(R)−2ph(S) ≡2p−1 (mod 2p), i2(R) = 2p−1≥i1(R).

Sû döng gi£ thi¸t quy n¤p còng vîi p = σ(R) < n, ta ¡p döng Bê · 1.4 (c) cho bë ba (R, Sv2, p) ta thu ÷ñc

Ru2n = R(Sv2)2p ∈ A(P3⊗F(k)).

[1] Edward B. Curtis, The Dyer-Lashof algebra and the Λ-algebra, Illinois J. Math. 19 (1975), 231246.

[2] L. E. Dickson, A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math, Soc. 12 (1911), 75-98.

[3] Paul G. Goerss, Unstable projectives and stable Ext: with applications, Proc. London Math. Soc. (3) 53 (1986), no. 3, 539561.

[4] Nguy¹n H. V. H÷ng, The action of the Steenrod squares on the modular invariants of linear groups, Proc. Amer. Math. Soc. 113 (1991), no. 4, 1097 1104.

[5] Nguy¹n H. V. H÷ng, Spherical classes and the algebraic transfer, Trans. Amer. Math. Soc. 349 (1997), no. 10, 38933910.

[6] Nguy¹n H. V. H÷ng, The weak conjecture on spherical classes, Math. Z. 231 (1999), no. 4, 727743.

[7] Nguy¹n H. V. H÷ng, On triviality of Dickson invariants in the homology of the Steenrod algebra, Math. Proc. Cambridge Philos. Soc. 134 (2003), no. 1, 103113.

[8] Nguy¹n H. V. H÷ng and Tr¦n N. Nam, The hit problem for the Dickson algebra, Trans. Amer. Math. Soc. 353 (2001), no. 12, 50295040.

[9] Nguy¹n H. V. H÷ng and Tr¦n N. Nam, The hit problem for the modular invariants of linear groups, J. Algebra 246 (2001), no. 1, 367384.

[10] Nguy¹n H. V. H÷ng and Franklin P. Peterson, Spherical classes and the Dickson algebra, Math. Proc. Cambridge Philos. Soc. 124 (1998), no. 2, 253 264.

[11] Nguy¹n H. V. H÷ng and Geoffrey Powell, The A−decomposability of the Singer construction, J. Algebra 517 (2019), 186-206.

[12] Nguy¹n H. V. H÷ng, Vã T. N. Quýnh, and Ngæ A. Tu§n, On the vanishing of the Lannes-Zarati homomorphism, C. R. Math. Acad. Sci. Paris 352 (2014), no. 3, 251254.

[13] Nguy¹n H. V. H÷ng and Ngæ A. Tu§n, The generalized al- gebraic conjecture on spherical classes, 50 pages, preprint 1564 ftp://file.viasm.org/Web/TienAnPham-15/; submitted, 2015.

[14] Jean Lannes, Sur len-dual dun-±me spectre de Brown-Gitler, Math. Z. 199 (1988), no. 1, 2942.

[15] Jean Lannes and Sad Zarati, Sur les foncteurs d²riv²s de la d²stabilisation, Math. Z. 194 (1987), no. 1, 2559.

[16] Geoffrey M. L. Powell, On unstable modules over the Dickson algebras, the Singer functors Rs and the functors Fixs, Algebr. Geom. Topol. 12 (2012), no. 4, 24512491.

[17] Lionel Schwartz, Unstable modules over the Steenrod algebra and Sullivan's fixed point set conjecture, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1994.

[18] William M. Singer, The transfer in homological algebra, Math. Z. 202 (1989), no. 4, 493523.

[19] Norman E. Steenrod, Cohomology operations, Lectures by N. E. Steenrod written and revised by David B. A. Epstein. Annals of Mathematics Studies, No. 50, Princeton University Press, Princeton, N.J., 1962.

[20] Robert J. Wellington, The unstable Adams spectral sequence for free iterated loop spaces, Mem. Amer. Math. Soc. 36 (1982), no. 258, viii+225.

[21] Clarence Wilkerson, A primer on the Dickson invariants, Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982), Contemp. Math., vol. 19, Amer. Math. Soc., Providence, RI, 1983, pp. 421434.

Một phần của tài liệu Xây dựng singer và bài toán hit (Trang 39 - 45)

Tải bản đầy đủ (PDF)

(45 trang)