III .CẤU HÌNH TIÊU BIỂU CỦA HỆ THỐNG ĐIỆN NĂNG LƯỢNG MẶT TRỜ
2.1 Loại Inverter cho hệ thống năng lượng mặt trời hòa lưới
2.1.1: Thông số kỹ thuật
Hình 2.8 : Sơ đồ inventer hòa lưới công suất thấp
Model: 300Wpv
Dải điện áp đầu vào: DC 24V - 48V Điện áp MPPT: 28V – 36V Dòng điện DC max: 20A
Điện áp đầu ra: AC 190V – 260
Hệ số công suất: 97.5% Hiệu suất ổn định: > 88%
Nhiệt độ làm việc: -25 ℃ - 65 ℃ Hiển thị LED: Màu đỏ và xanh Làm mát: Quạt làm mát Chế độ chờ: 1-2W
Kích thước: 21 x 16.5 x 5.3cm Trọng lượng: 1.3kg
Hình 2.9 : Bộ hòa lưới công suất lớn (Hybrid)
Công suất 3,0 kw
Hệ thống pin mặt trời phù hợp 3000wp Dạng sóng ngõ ra sin chuẩn
Điện áp vào 250vdc - 450 vdc
Dòng điện danh định ( ngõ ra ) 13A Điện áp ra 220v
Tần số ra 50 Hz Hiệu suất 98,4%
Chế độ hiển thị LED LIGHT APP Ngôn ngữ Đa ngôn ngữ
Chuẩn truyền thông RS232 , usb Độ ồn 25 dB Chế độ làm mát Quạt gió Nhiệt độ hoạt động -25°C ~ 60°C Độ ẩm 98,4% Cấp bảo vệ IP65 Trọng lượng 30 kg
Là dòng inverter hòa lưới có ắc quy dự trữ , có thể hoạt động như một inverter hòa lưới đơn thuần , nhưng lại có thể vận hành như một inverter độc lập khi không có điện lưới , nhờ nguồn điện từ giàn pv và ắc quy dự trữ , inverter này cũng cho phép người dùng có thể tắt bật tín năng hòa lưới nếu muốn , thiết bị cũng cho phép ghép nối song song nhiều inverter để tăng công suất.
Với 2 chế độ ưu tiên cấp nguồn thông minh , ba chế độ ưu tiên nguồn điện sạc cho ắc quy
Ưu điểm của hệ thống là hoạt động hoàn tự động từ việc sử dụng điện lưới khi có điện và tự động chuyển ngắt hòa lưới khi mất điện đảm bảo an toàn cho hệ thống trừ một số phụ tải ưu tiên
Inverter hòa lưới có dự trữ đi kèm với hệ thống là bình ắc quy dự trữ. Khi pin mặt trời hoạt động và tạo ra năng lượng sẽ được ưu tiên nạp đầy ắc quy dự trữ. Sau đó mới hòa vào điện lưới và cung cấp điện bình thường.
Khi mất điện tất cả các tải điện ưu tiên sẽ chuyển sang sử dụng nguồn điện từ ắc quy dự trữ. Lúc này hệ thống pin mặt trời sẽ cung cấp điện để sạc ắc quy tạo ra nguồn điện liên tục. Khi có điện trở lại pin mặt trời sẽ sạc đầy ắc quy và hòa vào điện lưới như bình thường.
Nguyên tắc hoạt động: Inverter chuyển đổi trong hai giai đoạn: Giai đoạn đầu tiên là chuyển đổi điện một chiều DC-DC, chuyển đổi điều này làm tăng điện áp DC thấp ở đầu khi vào biến tần điện áp DC này lên(khoảng 125-300V DC). Giai đoạn thứ hai là giai đoạn biến tần thực tế. Nó chuyển đổi DC điện áp cao sang điện áp xoay chiều (110-225V AC, tần số 60 hoặc 50Hz AC).
Hình 2.10: Inverter - Nguyên tắc hoạt động
Nguyên lý làm việc của bộ kích Những đặc tính cơ bản của kích điện:
Khác với loại “kích điện” mà người ta đã dùng để đánh bắt cá hàng loạt trước đây (mà cũng chính từ các loại đó mà có lẽ mới có tên là kích điện), loại kích điện dùng trong dân dụng có các đặc tính kỹ thuật cơ bản sau:
Sử dụng ắc quy (12, 24 hay 48V DC…) Điện áp đầu ra có đặc tính giống như điện áp của lưới điện quốc gia: 220V, xoay chiều, tần số 50 Hz.
Các đặc tính này xuất phát từ yêu cầu thông thường về nguồn điện của các thiết bị sử dụng điện trong dân dụng hàng ngày. Tuy không phải tất cả các thiết bị dùng điện đều có yêu cầu trên, nhưng để tương thích với phần lớn các thiết bị điện nên chúng bắt buộc phải có các thông số như vậy.
Hình 2.11: Sơ đồ nguyên lý làm việc
Dưới đây liệt kê một số nguyên lý cơ bản của kích điện dân dụng:
Biến đổi một bước:từ điện một chiều sang điện xoay chiều 220V thông qua các transitor công suất và một biến áp sắt từ ở tần số 50 Hz (bước biến đổi DC-AC). Biến đổi hai bước: từ điện một chiều ắc quy ở mức thấp (12, 24V DC) sang điện một chiều ở mức điện áp cao (khoảng 300V DC) thông qua mạch dao động tần số cao và biến áp xung (bước biến đổi DC-DC), rồi từ điện một chiều (lúc này có điện thế cao) dao động thành điện xoay chiều 220V AC (tức bước biến đổi DC- AC).
Tuỳ loại nguyên lý mà kích điện được tạm phân ra thành hai loại: Loại biến đổi một bước và loại biến đổi hai bước – thường gọi là kích “điện tử”.
Loại biến đổi một bước
Hình bên giải thích phần nguyên lý của kích điện . Nếu muốn tăng điện thế thì cần phải có cuộn biến áp, mà biến áp lại chỉ hoạt động được với dòng điện xoay chiều. Vậy để biến đổi thành dòng điện xoay chiều thì có thể dùng một công tắc như hình bên phải (phía trên) và một biến áp: Khi chuyển đổi nhanh và liên tục công tắc sang các vị trí lên và xuống, ta sẽ có dòng điện lần lượt chạy vào nửa cuộn dây sơ cấp biến áp, tại cuộn thứ cấp (ghi chữ output) sẽ có điện áp xoay chiều có tần số tương ứng với tần suất chuyển mạch. Tất nhiên chẳng ai lại dùng tay để vận hành kích điện một cách liên tục như vậy nên người ta đã sử dụng các linh kiện điện tử để thay cho việc chuyển mạch này. Bạn xem hình phía dưới sẽ thấy dạng mạch cho các kích điện thông dụng đang được bán trên thị trường hiện nay.
Kích điện tử (loại biến đổi hai bước)
Đối với loại kích “điện tử”, mạch điện cấp thứ nhất: (DC-DC) cũng có nguyên lý giống như kích điện từ, nhưng thay vì hoạt động ở tần số 50 Hz thì kích loại này sử dụng tần số cao hơn nhiều lần để có thể sử dụng loại biến áp xung có hiệu suất cao và kích thước nhỏ gọn. Sau biến áp xung, dòng điện xoay chiều tần số cao được nắn thành điện một chiều để phục vụ mục đích biến đổi thành điện xoay chiều với tần số 50Hz phù hợp với nhu cầu sử dụng. Tuỳ theo công suất của kích điện mà kích điện tử có thể dùng một hay nhiều các biến áp xung.Cấp thứ 2: (DC- AC) của kích điện tử là biến đổi điện một chiều thành điện xoay chiều với tần số phù hợp với lưới điện quốc gia (50Hz). Phần mạch biến đổi thành xoay chiều ở cấp tiếp theo này không cần sử dụng biến áp nữa bởi chúng không cần tăng thêm điện thế, mà chỉ cần dùng các linh kiện đện tử thay đổi chiều đi qua tải của dòng điện đầu ra. Vậy làm thế nào để biến đổi điện một chiều thành xoay chiều được? Lấy một ví dụ đơn giản và thô thiển như thế này: Bạn có một ắc quy, muốn cấp dòng xoay chiều qua một cái bóng đèn thì có thể nối hai cực ắc quy đó vào bóng đèn, rồi ngắt dây ra đổi ngược lại cực ắc quy, rồi lại đổi xuôi, đổi ngược cứ thế trong thời
gian cực nhanh, bạn sẽ tạo ra một dòng điện xoay chiều đi qua bóng đèn.
Trên thực tế thì nguyên lý mạch điện tử biến đổi điện một chiều thành xoay chiều lúc này qua cầu H như sau (xem hình dưới): Ban đầu dòng điện đi từ (+) đến transistor phía trên-bên trái, đi qua tải theo chiều từ trái sang phải rồi đi qua transistor phía dưới bên phải để đi vào cực âm. Sau đó dòng điện đi từ cực dương đến transistor phía trên bên phải, đi qua tải (Load) theo chiều từ phải qua trái rồi đi qua transistor phía dưới bên trái để đi vào cực âm. Dòng điện đi như vậy theo các chiều khác nhau sẽ cho ra dòng xoay chiều trên tải. Việc dẫn các dòng theo các chiều như vậy được thực hiện nhờ sự điều khiển các transistor.
Dạng sóng đầu ra:
Phần lớn các kích “điện tử” luôn có kích thước và trọng lượng nhỏ hơn so với loại kích còn lại nếu cùng công suất do không sử dụng biến áp sắt từ có kích thước lớn, một phần còn lại các kích điện tử có thể có trọng lượng lớn bởi chúng sử dụng
biến áp sắt từ thông thường dành cho việc nạp ắc quy.
Hình 2.12: Các dạng sóng sin chuẩn
Trên hình, có ba dạng sóng hình cơ bản thường thấy trong kích điện: Đường màu xanh là sóng hình sin (hay thường gọi là “sin chuẩn”); Đường màu màu vàng là dạng sóng xung vuông; Đường màu đỏ là mô phỏng theo sóng sin. Về biên độ sóng, mức điện áp của sóng sin ở lưới điện 220V dân dụng tại đỉnh trên là 310V còn dạng mô phỏng sin (modified sine wave) và loại xung vuông (square wave) thì có mức điện áp thấp hơn.
Chính vì các mức điện áp đỉnh này nên việc đo điện áp đầu ra của các kích điện bằng đồng hồ hiển thị số loại bình thường sẽ không chính xác bởi chúng thường đo theo mức điện áp đỉnh rồi chia căn 2, muốn đo chuẩn thì nên dùng một số loại đồng hồ kim hoặc đồng hồ số có chức năng đo RMS. Lưu ý thêm về điều này là nếu bạn dùng kích dạng mô phỏng hoặc dạng xung vuông với một ổn áp kiểu như LiOA thì sẽ cho ra mức điện áp cao với mức năng lượng lớn và chắc chắn sẽ gây cháy các thiết bị sử dụng điện trong nhà bạn.
Theo cách thức hoạt động của các loại kích điện mà chúng có dạng sóng đầu ra khác nhau. Ta thử xem với các loại nguyên lý nào sẽ cho ra dạng sóng gì trong các loại dưới đây:
Đối với các loại kích điện từ (kích cơ): Có các dạng nguyên lý hoạt động: Loại thứ nhất:
có nguyên lý giống như hình đã minh họa cho nguyên lý kích điện trình bày phía đầu bài này - nhưng có một mạch tạo ra mẫu sóng sin rồi sau đó khuyếch đại chúng lên bằng các transistor công suất và biến áp. Về nguyên lý thì cách này có thể thực hiện được, nhưng trong thực tế thì người ta không hoặc hiếm khi áp dụng bởi chúng làm tổn hao nhiều công suất cho cái hình sin đẹp đẽ ấy – dẫn đến hiệu suất của bộ kích điện là rất thấp. Lý do hiệu suất thấp bởi nguyên lý này hoạt động giống như một bộ amply công suất lớn mà đặc tính của các transistor thông thường có tổn hao thấp nếu như chỉ ở hai trạng thái: “đóng” (không cho dòng đi qua) và “mở” (cho dòng đi qua hoàn toàn theo khả năng của transistor đó), còn ở trạng thái mở một phần (biến thiên để cho được ra dạng hình sin hoặc dạng khuyếch đại âm thanh) thì transistor sẽ toả ra nhiều nhiệt và hiệu suất sử dụng điện là thấp. Bạn có chấp nhận sử dụng một kích điện với hiệu suất rất thấp (cỡ dưới 50%) chỉ để ra được dạng sóng sin cực chuẩn hay không?
Tuy nhiên, nguyên lý hoạt động này lại thường áp dụng cho các loại kích tạo ra dạng sóng vuông hoặc mô phỏng sóng sin (hai loại còn lại trong hình trên). Do sự hoạt động của transistor để tạo ra sóng vuông hoặc mô phỏng sin là đóng hoặc mở hoàn toàn nên với nguyên lý này cho các loại kích 'không sin' là phù hợp.
Đặc điểm nhận biết dạng kích hoạt động theo nguyên lý này là ở cuộn sơ cấp (cuộn có dây kích thước rất lớn để có thể cho dòng đến vài chục Ampe chạy qua) có 3 đầu dây ra: Một đầu là điểm giữa được nối với cực dương hoặc âm của ắc quy, đầu còn lại nối với các transistor - giống như hình trình bày nguyên lý ở phía đầu bài này.
Loại thứ hai:
tạo ra dạng sóng sin bằng cách sử dụng cầu H để cho ra dạng sóng xoay chiều ở mức điện áp thấp (mức điện áp ắc quy) rồi sử dụng biến áp sắt từ để biến đổi chúng thành mức điện áp 220V AC sử dụng thông thường. Nguyên lý này thường thấy ở nhiều loại kích thông dụng trên thị trường như các thương hiệu: MAXQ, Apollo, Netcca, Hồ Điện....
Đặc điểm nhận biết dạng kích hoạt động theo nguyên lý này là các đầu vào sơ cấp của biến áp sắt từ chỉ có hai đầu dây (thay vì 3 như loại sóng vuông hoặc mô phỏng).
việc tạo ra dạng sóng hình sin được thực hiện nhờ vào việc điều tiết tại 4 transistor đầu ra (cầu H - như đã trình bày ở phần trên). So với loại kích điện từ đã nói ở trên thì do điều tiết dạng sóng ở phần điện đầu ra nên dòng điện cần điều chỉnh nhỏ hơn (ví dụ 1000VA thì dòng chỉ khoảng 5A), do vậy nhiệt hao phí thấp hơn so với điều chỉnh ở phần điện áp thấp (12,24...V) với dòng vài chục Ampe - chính vì vậy mà kết hợp với việc sử dụng các biến áp xung có hiệu suất cao ở tầng trước nên các kích điện loại này có hiệu suất cao, có thể đạt trên 80% đến trên 85% hoặc cao hơn nữa tuỳ thuộc vào công suất và loại tải. Một số thương hiệu cho loại kích này là: Thành Công, Hi-Lite và một số loại UPS online của các hãng sản xuất khác.
Trong cả hai loại trên chất lượng sóng sin hoàn toàn phụ thuộc vào việc điều khiển các transistor, nếu như các bước điều khiển được băm càng nhỏ (xem hình bên) thì sóng càng có chất lượng tốt. Không những thế, việc điều chỉnh điện áp và dạng sóng tuỳ theo mức tải (công suất), loại tải (thuần/kháng/dung/kết hợp) cũng rất phức tạp, chính do vậy mà chỉ với các nguyên lý cơ bản trên nhưng các hãng sản xuất khác nhau lại có cách làm khác nhau (hoặc ngay một hãng cũng có cách thiết kế khác nhau để phù hợp với nhu cầu sử dụng của từng đối tượng) và cũng có chất
lượng điện đầu ra khác nhau.
Ảnh hưởng của dạng sóng không sin tới thiết bị tiêu thụ điện:
Bởi dạng sóng điện đầu ra của các kích điện không hoàn toàn với dạng sóng của lưới điện dân dụng (tức hình sin) nên chúng có thể gây ảnh hưởng đến một số thiết bị sử dụng điện, một số thiết bị khác lại hoàn toàn không ảnh hưởng bởi dạng này.
Dạng sóng xung vuông thường gây khó khăn cho sự hoạt động các thiết bị điện có tính chất cảm kháng – chủ yếu là các động cơ điện (ở trong quạt điện, điều hoà, tủ lạnh, máy bơm nước…). Nếu như với sóng sin chuẩn, các động cơ điện hoạt động một cách “mượt mà” thì với dạng sóng xung (như hình) các động cơ thường làm hiệu suất kém hơn, phát tiếng kêu và có thể gây nóng hơn bình thường. Nguyên nhân có lẽ do sự chuyển đổi mức điện áp của sóng vuông khiến từ trường giữa các cuộn dây thay cũng thay đổi đột ngột, dẫn đến các roto (phần quay của động cơ) làm việc cũng có mô men thay đổi đột ngột: tăng đột ngột (khi trạng thái từ 0V đến mức cực đại) hoặc hãm đột ngột (về mức 0V). và dẫn đến hiệu suất làm việc kém
và các cuộn dây thường bị nóng.
Tuỳ thuộc vào chất lượng và các đặc điểm riêng các động cơ điện mà có thể có ảnh hưởng sau:
Nếu động cơ có chất lượng không cao (định vị cuộn dây không chắc chắn, lõi sắt không chặt…), do sự biến thiên đột ngột giữa các mức điện áp nên cuộn dây và lõi thép không chặt sẽ bị rung, gây ồn.
Nếu roto có quán tính không lớn (đa số các quạt bàn, quạt cây đều nằm trong trường hợp này) thì chính bản thân các roto quay không đều (thời điểm điện áp xung cao thì roto có mô men lớn – nhưng nó chưa kịp quay theo phù hợp thì mô men đó bị ngắt bởi đến thời điểm điện áp xuống thấp, do quán tính thấp nên tốc độ quay lại giảm đi, rồi lại đến mức điện áp cao…cứ như vậy liên tục nên roto quay một cách giật cục không đều như đối với dòng điện có dạng sin chuẩn (tuy nhiên điều này không nhìn được bằng mắt thường bởi sự quay giật cục đó xảy ra rất nhiều lần trong một giây).
Đối với loại động cơ có trọng lượng roto lớn thì hiện tượng quay giật cục xuất hiện rõ nét trong thời điểm khởi động và sẽ giảm dần đến mức tối thiểu khi đã đạt tốc độ quay. Thực tế khi sử dụng hai chiếc quạt trần khác nhau (một cái 5 cánh của Panasonic, một cái 3 cánh của Phong Lan) ở nhà tôi đã cho thấy điều này. Tôi cảm nhận rằng do qán tính lớn nên tốc độ quay của roto lúc này đã không tăng lên/giảm đi đột ngột tương ứng với sự thay đổi của điện áp. Như vậy trong đa số trường hợp