Tổng quan các CSGM

Một phần của tài liệu Dự tính một số đặc trưng gió mùa mùa hè của mô hình precis (Trang 27)

Có ba loại CSGM cơ bản là chỉ số hoàn lưu, chỉ số mưa và chỉ số đối lưu [4]. - Chỉ số hoàn lưu là chỉ số được xây dựng dựa trên trường gió

- Chỉ số mưa là chỉ số được xây dựng dựa trên lượng mưa trung bình nhiều năm

- Chỉ số đối lưu là chỉ số được xây dựng dựa trên bức xạ sóng dài đi ra Hầu hết các nghiên cứu đều sử dụng ba loại chỉ số này. Tuy nhiên, một số nghiên cứu sử dụng kết hợp giữa trường gió và trường mưa [20, 40]; một số nghiên cứu khác lại sử dụng trường gió kết hợp với bức xạ sóng dài để làm chỉ tiêu [24]…

Bảng 1.1 tóm tắt các CSGM thường được sử dụng trong nghiên cứu về GMMH Châu Á:

24

Bảng 1.1. Bảng tổng hợp các CSGM đã được sử dụng trong các nghiên cứu hệ thống gió mùa Châu Á [4, 23]

Tên chỉ số Dạng chỉ số Miền áp dụng Xác định Tác giả

AIMR Mưa Ấn Độ Lượng mưa toàn Ấn Độ Parthasarathy (1992)

WYI Hoàn lưu vĩ hướng Nhiệt đới Châu Á U850-U200 (0-20oN, 40-110oE) Weber và Yang (1992) DU2 (SEAMI) Hoàn lưu

vĩ hướng Đông Nam Á

U850(5-15oN, 90-130oE)- U850(22.5-32.5oN,110- 140oE) Wang và Fan (1999) RM1 Hoàn lưu

kinh hướng Nam Á

(V850 – V200) (10o – 30oN, 70 – 110oE) Lau và ccs. (2000) RM2 (EAMI) Hoàn lưu vĩ hướng Đông Á U200(40-50oN,110-150oE)- U200(25-35oN, 110-150oE) Lau và ccs. (2000)

IMI Hoàn lưu

vĩ hướng Nam Á

U850(5-15oN, 40-80oE)- U850(20-30oN, 60-90oE)

Wang và ccs. (2001)

WNPMI Hoàn lưu

vĩ hướng Tây Bắc TBD U850(5-15oN, 100-130oE)- U850(20-30oN, 110-140oE) Wang và ccs. (2001)

AUSMI Hoàn lưu

vĩ hướng Australia U850(0-10 o

S,120-150oE) McBride và ccs. (1995)

SCSSM Hoàn lưu

vĩ hướng Biển Đông U850(5-15 o

N,105-120oE) Wang và ccs. (2004)

EASMI Hoàn lưu

vĩ hướng Mùa hè Đông Á U850(10-20oN,100-150oE)- U850(25-35oN, 100-150oE) Zhang và Tao (1998)

SSI Hoàn lưu

kinh hướng Ấn Độ Dương V850(15-30oN,85-100oE) +

Wang và Fan (1999)

25 V850(0-15oS,40-55oE) MHI (HSACE LL) Hoàn lưu kinh hướng Nam Á (Harley cell) V850-V200 (10-30oN, 70-110oE) Goswami và ccs. (1999)

CI1 Đối lưu Bengal OLR(10-25oN, 70-100oE) Wang và Fan (1999)

CI2 Đối lưu Philippin OLR(10-20oN,115-140oE) Wang và Fan (1999)

U850, V850, U200, V200 là thành phần gió vĩ hướng và kinh hướng của vectơ gió; OLR là phát xạ sóng dài đo từ ngoài khí quyển

Ưu điểm, nhược điểm của một số CSGM

Wang và Fan (1999) [35] cho rằng: Mặc dù chỉ số AIMR là chỉ số tốt thể hiện cường độ mạnh/yếu của lượng mưa gió mùa trên khu vực Ấn Độ, nhưng nó chưa thật sự đại diện cho hoàn lưu gió mùa quy mô lớn trên khu vực Nam Á.

Với sự đề xuất chỉ số SCSSMI cho khu vực Biển Đông, Liang và ccs. (1999) [24] đã chỉ ra được chỉ số này không chỉ mô tả được sự thiết lập đột ngột của GMTN ở khu vực Biển Đông mà còn mô tả được sự bắt đầu của mùa mưa ở vùng bắc và trung Biển Đông. Chỉ số gió vĩ hướng ở mực 850 hPa đại diện rất tốt cho thành phần chi phối của GMMH Đông Á.

Goswami và Wang (2000) [16] chỉ ra được Chỉ số WYI là một chỉ số hữu ích đại diện cho sự biến động của trung tâm tác động phần phía tây của gió mùa Nam Á và sự biến động đối lưu của vùng gió mùa Nam Á, bao gồm cả các trung tâm đối lưu nằm trong vịnh Bengal và vùng lân cận Philippin; và nó có ý nghĩa trong việc đánh giá mức độ mạnh/yếu của GMMH Nam Á quy mô lớn. Tuy nhiên, nhược điểm của WYI là nó chỉ phản ánh được hoàn lưu quy mô lớn mà không có khả năng phản ánh được các đặc điểm quy mô khu vực. Ngoài ra Lau và ccs. (2000) [22] cũng chỉ ra rằng, chỉ số WYI chỉ có hệ số tương quan rất nhỏ với chỉ số AIMR.

26

Wang và ccs. (2001) [36] đã đề xuất chỉ số gió mùa Ấn Độ (IMI) và chỉ số GMMH Tây Bắc Thái Bình Dương (WNPMI) dựa trên thành phần gió vĩ hướng ở mực 850 hPa để nghiên cứu sự biến động của của GMMH ở hai khu vực này. Kết quả nghiên cứu cho thấy: WNPMI cũng phản ánh được sự biến động của GMMH Đông Á. Chỉ số IMI không chỉ là chỉ số đại diện tốt cho chuẩn sai lượng mưa trên khu vực rộng bao gồm: Vịnh Bengal, Ấn Độ và phía đông biển Ả Rập mà nó còn có quan hệ chặt chẽ với lượng mưa mùa hè toàn Ấn Độ.

Wang và ccs. (2008) [37] đã chỉ ra rằng: Chỉ số DU2 là chỉ số có quan hệ tốt nhất với thành phần GMMH Đông Á và là một chỉ số tiềm năng trong việc đánh giá sự biến động của hệ thống gió mùa này. Ngoài ra, các tác giả còn chỉ ra rằng: Chỉ số DU2 không chỉ là chỉ số tốt đại diện cho các thành phần chính của sự biến động lượng mưa vùng nhiệt đới, ngoại nhiệt đới và cận nhiệt đới mà còn là chỉ rất tốt đại diện cho sự biến động gió mùa mực thấp.

Như vậy, việc sử dụng chỉ số mưa, hay chỉ số hoàn lưu hay đối lưu … thì mỗi chỉ số đều có ưu điểm riêng. Một số chỉ số còn chứa đựng các nhược điểm. Xuất phát từ các mục đích nghiên cứu cụ thể mà các nhà nghiên cứu lựa chọn các chỉ số cũng như đề xuất các chỉ số phù hợp cho bài toán của mình.

Từ phần tổng quan trên, luận văn có một số nhận xét sau đây:

GMMH có ảnh hưởng đáng kể đến điều kiện thời tiết và khí hậu Việt Nam, đặc biệt là khu vực Nam Bộ và Tây Nguyên. Có rất nhiều công trình nghiên cứu trên thế giới thực hiện nghiên cứu về dự tính các đặc trưng GMMH, đặc biệt là dự tính ngày bắt đầu GMMH trong tương lai dựa trên các phương pháp khoa học khác nhau, tuy nhiên các nghiên cứu trong nước chủ yếu tập trung vào đánh giá diễn biến của GMMH, ít quan tâm đến dự tính khả năng biến đổi do tác động của biến đổi khí hậu. Do vậy, luận văn đã đề xuất tên đề tài: “Nghiên cứu dự tính một số đặc trưng

gió mùa mùa hè của mô hình PRECIS” với các đặc trưng GMMH luận văn lựa chọn

để nghiên cứu dự tính mà các công trình trên thế giới thường xem xét là: Hoàn lưu gió mực 850 hPa, lượng mưa trong thời kỳ hoạt động của GMMH, và ngày bắt đầu

27

GMMH. Ở hai đặc trưng đầu, luận văn xem xét cho cả Việt Nam, trong đó chú trọng cho Tây Nguyên và Nam Bộ. Đối với ngày bắt đầu GMMH: Trong khuôn khổ nghiên cứu, luận văn chỉ thử nghiệm dự tính cho Nam Bộ vì khu vực này cùng với Tây Nguyên là nơi GMMH bắt đầu sớm nhất trên lãnh thổ Việt Nam. Đến nay, đã có nhiều công trình trong nước nghiên cứu về ngày bắt đầu GMMH trên khu vực này nhưng hầu như các nghiên cứu chỉ dừng lại ở việc đánh giá dựa trên chuỗi số liệu quá khứ.

28

Hình 2.1. Miền tính cho khu vực Đông Nam Á

Chương 2

PHƯƠNG PHÁP VÀ SỐ LIỆU NGHIÊN CỨU 2.1. Mô hình PRECIS

PRECIS là mô hình khí hậu động lực khu vực. Mô hình được xây dựng bởi Trung tâm Nghiên cứu Khí hậu Toàn cầu Hadley và được chạy trên máy tính cá nhân nhằm phục vụ việc xây dựng các kịch bản biến đổi khí hậu cho khu vực nhỏ. Tiền thân của mô hình PRECIS là mô hình HadRM3P [19].

Trong khuôn khổ hợp tác giữa Viện khoa học Khí tượng Thủy văn và Biến đổi khí hậu với Trung tâm nghiên cứu khí tượng Hadley, 5 phương án mô phỏng khí hậu thời kỳ dài 1950 – 2099 của mô hình PRECIS cho khu vực Đông Nam Á chạy với 5 điều kiện biên và ban đầu khác nhau từ 5 thành phần khí quyển của mô hình khí hậu toàn cầu HadCM3 (HadCM3Q0, HadCM3Q3, HadCM3Q10, HadCM3Q11, HadCM3Q13) đã được lựa chọn và thực hiện [25, 28].

Trong đó, HadCM3Q0: Là thành phần gốc của mô hình HadCM3, cũng là mô hình hoàn lưu chung kết hợp đại dương khí quyển thế hệ thứ ba của trung tâm Hadley được chạy với kịch bản phát thải trung bình A1B; các thành phần khác dựa trên mô hình gốc HadCM3Q0 và là kết quả tính toán theo các sơ đồ vật lý khác nhau [38].

HadCM3Q3: Là phương án tăng nhiệt độ ít (trong các thành phần tổ hợp);

29

HadCM3Q10: Là phương án khô nhất cho khu vực Đông Nam Á trong tương lai;

HadCM3Q11: Là phương án ẩm ướt nhất cho cả khu vực trong tương lai; HadCM3Q13: Là phương án tăng nhiệt độ lớn nhất trong tương lai.

Tuy nhiên, trong khuôn khổ của luận văn, luận văn kế thừa kết quả chuỗi số liệu mô phỏng khí hậu thời kỳ dài đã có giữa viện Khoa học Khí tượng Thủy văn và Biến đổi Khí hậu theo phương án mô hình chạy với điều kiện biên và ban đầu là thành phần HadCM3Q0 để tính toán và phân tích cho khu vực Việt Nam.

Miền tính của mô hình PRECIS được thiết kế cho khu vực Đông Nam Á khoảng 91,5oE – 135oE, 13oS – 30oN (Hình 2.1).

Độ phân giải ngang của mô hình trong nghiên cứu này là 0,22o x 0,22o. Số liệu của mô hình sử dụng trong nghiên cứu là số liệu ngày.

Định dạng file số liệu đầu ra của mô hình có dạng *.PP. Tất cả các file số liệu này đã được chuyển về định dạng file NetCDF.

2.2. Phương pháp

2.2.1. Lựa chọn thời kỳ và mùa GMMH nghiên cứu a. Lựa chọn thời kỳ nghiên cứu a. Lựa chọn thời kỳ nghiên cứu

Dựa trên bản báo cáo đánh giá lần thứ 5 của IPCC [18], luận văn lựa chọn các giai đoạn thời kỳ chuẩn, giữa thế kỷ, và cuối thế kỷ tương ứng là: 1986 – 2005, 2046 – 2065, 2080 – 2099 và cho cả thời kỳ là 2020 – 2099.

30

Hình 2.2. Phân bố mưa (mm/ngày) và gió (m/s) tương ứng theo số liệu APHRODITE và CFSR thời kỳ 1986 – 2005

31

b. Lựa chọn mùa GMMH nghiên cứu

Dựa trên nghiên cứu của Phạm Ngọc Toàn và Phan Tất Đắc (1993) [14], Nguyễn Trọng Hiệu và ccs. (2012) [2] trong việc phân chia các thời kỳ bắt đầu, phát triển, và suy thoái của GMMH, luận văn đã lựa chọn mùa GMMH để tính toán, phân tích trong luận văn là tháng V – IX. Để thấy rõ hơn mùa GMMH mà luận văn lựa chọn, luận văn đã biểu diễn phân bố mưa và gió theo số liệu APHRODITE và CFSR thời kỳ 1986 – 2005 trong khoảng thời gian từ tháng III – XI (Hình 2.2).

2.2.2. Phương pháp nghiên cứu

Trong nghiên cứu này, phương pháp thống kê khí hậu được sử dụng để tính toán một số đặc trưng thống kê. Bộ số liệu mưa APHRODITE, gió CFSR, và số liệu mưa quan trắc được sử dụng để đánh giá khả năng mô phỏng khí hậu của mô hình.

- Để đánh giá khả năng mô phỏng của mô hình PRECIS trong thời kỳ 1986 – 2005, số liệu mưa mô hình PRECIS được nội suy về độ phân giải 0,25o x 0,25o (APHRODITE) và số liệu thành phần gió vĩ hướng và kinh hướng mực 850 hPa (U850, V850) của mô hình được nội suy về độ phân giải 0,5o x 0,5o (CFSR).

+ Sai số lượng mưa mô phỏng của mô hình so với thực tế: Pr

ias (%) ecis APHRODITE.100

Rain APHRODITE Rain Rain B Rain   (1.1)

+ Sai số mô phỏng gió mực 850 hPa của mô hình PRECIS so với số liệu CFSR:

Giả sử:Vcfsr (ucfsr,vcfsr), Vprecis (uprecis,vprecis)

Khi đó, sai số mô phỏng hướng gió mực 850 hPa của mô hình so với số liệu CFSR là: VprecisVcfsr (uprecisucfsr,vprecisvcfsr)

Sai số về độ lớn vector gió mực 850 hPa mô phỏng của mô hình so với số liệu CFSR là:

2

2 2 2

precis cfsr precis precis cfsr cfsr

V V V u v u v

32

- Dự tính sự biến đổi của lượng mưa và gió mực 850 hPa trong thế kỷ 21 + Đối với lượng mưa, luận văn đã tính toán sự biến đổi của lượng mưa trong tháng chính hè (VII), trong mùa hoạt động chính của GMMH (V-IX), và sự biến đổi của lượng mưa theo thời gian của thế kỷ 21 so với thời kỳ 1986 – 2005:

( ) Pr ( ) Pr (1986 2005)

(1986 2005)

(%) ecis future ecis .100

Rain future precis Rain Rain Change Rain     (1.3)

+ Sự biến đổi gió mực 850 hPa vào giữa thế kỷ và cuối thế kỷ 21:

Giả sử các vector gió mực 850 hPa mô phỏng của mô hình trong thời kỳ 1986 – 2005 và trong thế kỷ 21 tương ứng là: V1 ( , )u v1 1 , V2 ( , )u v2 2

Khi đó biến đổi hướng gió trong tương lai so với thời kỳ quá khứ là:

2 1 ( 2 1, 2 1)

V  V uu vv (1.4)

Đối với tốc độ gió, luận văn đã xem xét sự biến đổi của thành phần U850 hPa, sự biến đổi tốc độ gió trong mùa hoạt động chính của GMMH (V-IX) và trong tháng VII; và xem xét sự biến đổi của tốc độ gió trong từng mốc thời gian của thế kỷ 21 so với thời kỳ chuẩn (1986-2005) theo công thức:

2 2 2 2

2 1 2 2 1 1

VVuvuv (1.5)

+ Riêng đối với việc xem xét sự biến đổi thời gian của lượng mưa và gió mực 850 hPa trong thời kỳ 2020 - 2099 so với thời kỳ 1986 – 2005: Kế thừa phương pháp nghiên cứu của Sun và Ding (2010) [31], luận văn đã làm trơn chuỗi số liệu 2020 – 2099 bằng cách lấy trung bình trượt 9 năm liên tiếp nhằm loại bỏ các dao động có quy mô dưới thập kỷ và để thấy rõ xu thế biến đổi của nó trong thời kỳ này. Chuỗi số liệu sau khi được làm trơn là chuỗi 2020 – 2091, mỗi mốc thời gian trong chuỗi này đại diện cho khoảng thời gian 9 năm (ví dụ: Giá trị năm 2091 là giá trị trung bình 9 năm từ năm 2091 đến 2099 và là giá trị tiêu biểu cho khoảng thời gian này).

33

Sau đó, luận văn tính toán sự biến đổi tại mỗi mốc thời gian của lượng mưa và gió mực 850 hPa trong thế kỷ 21 đối với chuỗi sau khi được làm trơn so với thời kỳ 1986 – 2005 theo phương pháp đã nêu ở trên. Đối với lượng mưa, luận văn chỉ xem xét chuỗi biến đổi theo thời gian trong thế kỷ 21 so với thời kỳ 1986 – 2005 trên các khu vực Tây Nguyên và Nam Bộ. Để tính toán diễn biến thời gian sự biến đổi của lượng mưa trong thời kỳ 2020 – 2099 so với thời kỳ quá khứ trên hai khu vực này, luận văn đã trích số liệu tại các điểm lưới của mô hình tương ứng với các vị trí trạm quan trắc khí tượng đại diện trên hai khu vực.

- Đối với ngày bắt đầu GMMH trên khu vực Nam Bộ

Một số nghiên cứu đã chỉ ra rằng: Khó để phân biệt ngày kết thúc GMMH và ngày bắt đầu gió mùa mùa đông [43] nên trong nghiên cứa này luận văn chỉ thử nghiệm tính toán dự tính ngày bắt đầu GMMM trên khu vực Nam Bộ. Dựa trên các phương pháp nghiên cứu của Zhang và ccs. (2002), Phạm Xuân Thành (2010), và đặc biệt là nghiên cứu của tác giả Nguyễn Kim Chi và ccs (2014) [42, 11, 20], luận văn đã sử dụng lượng mưa ngày tại 6 trạm quan trắc và gió vĩ hướng ngày mực 850 hPa (CFSR) trung bình khu vực Nam Bộ (9 – 12,5oN, 104 – 110oE) để xác định ngày bắt đầu GMMH theo quan trắc trên khu vực này. Bên cạnh đó, luận văn cũng tham khảo thêm nghiên cứu của Qian và Lee (2000) [27], Nguyễn Thị Hiền Thuận (2006) [13]. Ngày bắt đầu GMMH là ngày thỏa mãn 3 chỉ tiêu:

(1) Trung bình trượt 5 ngày của lượng mưa ngày trung bình khu vực Nam Bộ > 5 mm/ngày

(2) Trung bình trượt 5 ngày của gió vĩ hướng ngày mực 850 hPa trung bình khu vực Nam Bộ chuyển từ gió đông sang gió tây

34

Hình 2.3. Trung bình trượt 5 ngày của lượng mưa quan trắc (mm/ngày) và U850 hPa (m/s) của CFSR trung bình khu vực Nam Bộ

Độ lệch chuẩn của ngày bắt đầu GMMH trong từng thời kỳ được tính theo công thức:xDx , 1 2 ( ) n x i t i D x x n

   , trong đó: x- là độ lệch chuẩn của ngày bắt đầu gió mùa; Dx- Là phương sai; n: Là tổng số năm, xi: Là ngày bắt đầu gió mùa của năm i, x: Là giá trị trung bình của ngày bắt đầu gió mùa trong cả thời kỳ chứa n năm. Đại lượng độ lệch chuẩn này cho biết mức độ dao động của ngày bắt đầu gió mùa xung quanh trạng thái trung bình.

Sau khi sử dụng chỉ tiêu trên để xác định ngày bắt đầu GMMH thực tế trên khu vực Nam Bộ trong thời kỳ 1986 – 2005, luận văn đã tính toán ngày bắt đầu GMMH mô phỏng của mô hình PRECIS theo 3 CSGM khác nhau: Chỉ số dựa trên

Một phần của tài liệu Dự tính một số đặc trưng gió mùa mùa hè của mô hình precis (Trang 27)

Tải bản đầy đủ (PDF)

(77 trang)