III. ĐỊNH LÝ GIỚI HẠN TRUNG TÂM 1 Định lý giới hạn trung tâm
1 2 Theo định lý giới hạn trung tâm:
1. Định lý giới hạn trung tâm
Ví dụ
Gieo một con xúc sắc 30 lần, tính xác suất để tổng số chấm xuất hiện lớn hơn 120.
Giải
Gọi 𝑋𝑖 là số chấm xuất hiện ở lần gieo thứ i. Ta có
𝑋1, 𝑋2, … độc lập và 𝐸𝑋𝑖 = 3,5, 𝐷𝑋𝑖 = 35
12. Theo định lý giới hạn trung tâm: giới hạn trung tâm:
𝑆𝑛 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛 − 3,5𝑛 35𝑛 35𝑛 12 𝐹 𝑍~𝑁 0; 1 , 𝑘𝑖 𝑛 → +∞
III. ĐỊNH LÝ GIỚI HẠN TRUNG TÂM1. Định lý giới hạn trung tâm 1. Định lý giới hạn trung tâm
Khi n >> 0 thì 𝑋1+𝑋2+⋯+𝑋𝑛−3,5𝑛
35𝑛12 12
có quy quy luật xấp xỉ quy quy luật chuẩn tắc. Nên 𝑆 = 𝑋1+𝑋2+⋯+𝑋30−105
87,5 có quy quy
luật xấp xỉ quy quy luật chuẩn tắc đặt 𝑋1 + 𝑋2 + ⋯ + 𝑋30 = 𝑇 thì 𝑃 𝑇 > 120 = 1 − 𝑃 𝑇 ≤ 120 = 1 − 𝑃 𝑇 − 105 87,5 ≤ 120 − 105 87,5 = 1 − 𝑃(𝑆 ≤ 120 − 105 87,5 )
III. ĐỊNH LÝ GIỚI HẠN TRUNG TÂM1. Định lý giới hạn trung tâm 1. Định lý giới hạn trung tâm
𝑃 𝑇 > 120 ≈ 1 − Φ 120 − 105
87,5 = 1 − Φ 1,6 = 0,054
III. ĐỊNH LÝ GIỚI HẠN TRUNG TÂM1. Định lý giới hạn trung tâm 1. Định lý giới hạn trung tâm
Ví dụ
Trong một khu phố có 180 hộ gia đình ít người (số thành viên không quá 4 người) và 50 hộ gia đình đông người (số thành viên hơn 4 người). Lượng nước sinh hoạt của các hộ gia đình ít người dùng trong một ngày là biến ngẫu nhiên với trung bình là 0,6 𝑚3 và độ lệch chuẩn là
0,04 𝑚3 còn lượng nước sinh hoạt của các hộ gia đình đông người dùng trong một ngày là biến ngẫu nhiên với trung bình là 1,9 𝑚3 và độ lệch chuẩn là 0,14 𝑚3. Tính xác suất để trong một ngày khu phố đó sử dụng hơn
III. ĐỊNH LÝ GIỚI HẠN TRUNG TÂM1. Định lý giới hạn trung tâm 1. Định lý giới hạn trung tâm
Giải.
Gọi 𝑋𝑖 là lượng nước mà gia đình ít người thứ i dùng trong ngày. 𝑋1, 𝑋2, … , 𝑋180 độc lập và có cùng kỳ vọng là 0,6 và độ lệch chuẩn là 0,04. Đặt 𝑈 = 𝑋1 + 𝑋2 + ⋯ + 𝑋180, 𝐸𝑈 = 180.0,6 = 108, 𝐷𝑈 = 0,288
Do đó U có quy luật xấp xỉ N(108;0,288)
Gọi 𝑌𝑖 là lượng nước mà gia đình đông người thứ i dùng trong ngày. 𝑌1, 𝑌2, … , 𝑌50 độc lập và có cùng kỳ vọng là 1,9 và độ lệch chuẩn là 0,14. Đặt 𝑉 = 𝑌1 + 𝑌2 + ⋯ +
III. ĐỊNH LÝ GIỚI HẠN TRUNG TÂM1. Định lý giới hạn trung tâm 1. Định lý giới hạn trung tâm
Do đó V có quy luật xấp xỉ N(95;0,98)
Lượng nước khu phố dùng trong ngày là U + V cũng có quy luật xấp xỉ N(203;1,268)
Vậy
𝑃 𝑈 + 𝑉 > 205 = 1 − 𝑃 𝑈 + 𝑉 ≤ 205 ≈ 1 − Φ 205 − 203