Thích nghi hoạt động học

Một phần của tài liệu hệ thống học thích nghi dựa trên kiến thức (Trang 34 - 35)

3. Mô hình hệ thống học thích nghi ACGS [10]

3.3. Thích nghi hoạt động học

Thích nghi là một tiến trình để chọn các công việc hoạt động cho mỗi người học dựa trên mô hình người học. Người học với trình độ kiến thức khác nhau cần làm công việc khác để kết thúc mục tiêu học. Điều này được kết hợp bằng một số công việc mà bao gồm công việc trừu tượng và công việc hoạt động.

Tuỳ theo kỹ thuật điều hướng thích nghi, một hoặc nhiều kỹ thuật được chọn ví dụ như ẩn, chú thích, hoặc trợ giúp trực tiếp để hiển thị khoá học được chọn cho người học hiện tại. Do đó, giả sử T là một công việc, L là một người học, SL là tập trạng thái miêu tả kiến thức và trình độ hiểu biết của L. Tiến trình thích nghi là như sau:

 Nếu SL không có một trạng thái cho công việc T, trạng thái tương ứng được thêm vào SL với giá trị: SL.T(not-finish) = 1 (công việc T chưa được làm).

 Trong trường hợp SL có một giá trị xác suất cho trạng thái của công việc T, người học cần hoàn thành hay có thể bỏ qua công việc hoạt động T được quyết định bởi giá trị xác suất mà đo kiến thức người học về các công việc T1, T2,…, Tk là các công việc tiên quyết của T. Giá trị này được tính bằng ba công thức, tương ứng cho trạng thái “finish”: p(finish(T) | finish(T1), finish(T2),…, finish(Tk)), và tương ứng cho trạng thái “not-finish”: p(not- finish(T) | not-finish(T1), not-finish(T2),…, finish(Tk)), và “in-progress”: 1 – p(finish(T)) – p(not-finish(T)). Nếu các giá trị xác suất cho trạng thái kết thúc lớn hơn ngưỡng nào đó, người học có thể bỏ qua công việc T.

Cuối cùng, các hoạt động của người học tương ứng sẽ được cập nhật trong mô tả của người đó, cái mà là nền tảng cho tiến trình thích nghi trong hoạt động học tiếp theo.

Một phần của tài liệu hệ thống học thích nghi dựa trên kiến thức (Trang 34 - 35)

Tải bản đầy đủ (PDF)

(49 trang)