Sử dụng mạng Bayes trong hoạt động thích nghi

Một phần của tài liệu hệ thống học thích nghi dựa trên kiến thức (Trang 31 - 49)

3. Mô hình hệ thống học thích nghi ACGS [10]

3.2.2. Sử dụng mạng Bayes trong hoạt động thích nghi

Sử dụng mạng Bayes để quản lý nhân tố không chắc chắn trong mô hình phủ là một tiếp cận tốt. Chúng ta cũng miêu tả một thực thi của mô hình này với một khoá học chủ đề: “Cách thiết kế cơ sở dữ liệu quan hệ?”.

Chúng ta thấy, các khái niệm học có quan hệ với nhau. Ví dụ trong khoá học SQL, để hiểu về khái niệm Query chúng ta cần hiểu khái niệm Table, và để hiểu khái niệm Table chúng ta lại cần hiểu về khái niệm Entity. Mỗi khái niệm là một phần cơ bản của khoá học, tương ứng với một liên kết. Các khái niệm có quan hệ cha-con. Để biết về khái niệm cha cần phải biết về khái niệm con. Chúng ta dùng mạng Bayes để tính xác suất mà

người học nắm được với từng khái niệm, để từ đó đưa ra khung chương trình học phù hợp.

Để phát triển mô hình người học mạng Bayes, chúng ta cần chỉ định một tập các biến để đo kiến thức của người học với ba trạng thái: chưa đạt (not acquired), đang học (in progress), đạt (acquired). P(not-acquired(C)) mô tả giá trị xác suất của trạng thái not- acquired cho khái niệm C, p(in-progress(C)) mô tả giá trị xác suất của trạng thái in- progresss cho khái niệm C, và p(acquired(C)) mô tả giá trị xác suất của trạng thái acquired cho khái niệm C. Ta có: p(not-acquired(C)) + p(in-progress(C)) + p(acquired(C)) = 1. Ví dụ, với người học, đo kiến thức về khái niệm “Thực thể” có thể có các giá trị như: p(not-acquired(C)) = 0.8, p(in-progress(C)) = 0.1, p(acquired(C)) = 0.1. Mô hình người học bao gồm một tập của các biến cho mỗi khái niệm. Với n khái niệm, mô hình người học cần 3*n biến để mô tả ba trạng thái của kiến thức người học. Mô hình ACGS chỉ mô hình mối quan hệ tiên quyết giữa các khái niệm cái mà quan trọng cho cả mục tiêu lập kế hoạch hướng dẫn và cho việc thu thập thông tin về trạng thái hiện tại của kiến thức người học. Nó có vẻ rõ ràng rằng nếu A là tiên quyết của B, nắm được A phải gây ra ảnh hưởng cho việc nắm được B, do đó:

 Nếu A chưa nắm được, có vẻ như B cũng chưa nắm được.

 Nếu B đã nắm được, có vẻ như A cũng đã nắm được.

Trong trường hợp nếu A đã nắm được, p(acquired(B) | acquired(A)) là giá trị xác suất để đánh giá kiến thức người học về khái niệm B dựa trên khái niệm A. Ví dụ, p(acquired(B) | acquired(A)) = 0.75 có nghĩa là một người học nếu đã nắm được A thì rất có thể cũng nắm được B. Ví dụ, với mô hình khái niệm miền được cho trong hình sau, nếu p(acquired (First normal form)) = 0.2, và p(acquired (Transitive functional dependences)) = 0.1, thì p(acquired (Second normal form) | acquired (First normal form), acquired(Transitive functional dependences)) = 0.15. Trong hình sử dụng công cụ Netica để đánh giá các giá trị xác suất.

Hình 3. Công cụ Netica cho việc tính toán các giá trị xác suất của mạng Bayes.

Nói chung, nếu C1, C2,…, Cn là các khái niệm tiên quyết của khái niệm C, giá trị để đánh giá một người học đã nắm được khái niệm C hay chưa được tính bằng:

p(acquired(C) | acquired(C1), acquired(C2),…, acquired(Cn))

Để thu thập thông tin tương ứng với trạng thái kiến thức người học, chúng ta sử dụng một tập các công việc hoạt động liên quan đến các node khái niệm. Mỗi công việc hoạt động cũng có ba trạng thái: not-finish, in-progress, và finish. Kết quả khi người học làm xong một công việc hoạt động là nhân tố để đánh giá người học đã hoàn thành công việc hay chưa. Ví dụ, trong công việc “xác định các danh từ”, nếu một người học chỉ xác định được 6/10 danh từ trong tài liệu chỉ định, người học đang in-progress của công việc này. Một công việc thường bao gồm một số công việc hoạt động cái mà hoàn thành hay chưa dựa trên giá trị xác suất của chúng. Ví dụ, để đánh giá một người học hoàn thành công việc “xác định các thực thể” dựa trên trạng thái hoàn thành của hai công việc hoạt động: “xác định các danh từ” và “kiểm tra danh từ chung”.

Tương tự các biến cho việc đánh giá kiến thức người học, nếu T1, T2,…, Tn là các công việc hoạt động cho công việc trừu tượng T, giá trị để đánh giá công việc T đã hoàn thành hay chưa được tính bằng:

Một phần của tài liệu hệ thống học thích nghi dựa trên kiến thức (Trang 31 - 49)

Tải bản đầy đủ (PDF)

(49 trang)