(1 0(1) 2ln ln l n)

Một phần của tài liệu Tập bài giảng an toàn và bảo mật thông tin phần 2 nguyễn văn tảo (Trang 49)

0(e + p p )

p là thừa số nguyên tố nhỏ nhất của n

Trong trường hợp nếu hai ước của n chênh lệch nhau nhiều thì thuật toán đường cong Elliptic tỏ ra hơn hẳn thuật toán sàng bậc hai. Tuy nhiên nếu hai ước của n xấp xỉ nhau thì thuật toán sàng bậc hai nói chung trội hơn thuật toán đường cong Elliptic.

Sàng bậc hai là một thuật toán thành công nhất khi phân tích các modulo RSA với n = p.q và p, q là các số nguyên tố có cùng kích thước. Năm 1983, thuật toán sàng bậc 2 đã phân tích thành công số có 69 chữ số, số này là một thừa số của 2251 – 1 (do Davis, Holdredye và Simmons thực hiện). Đến năm 1989 đã có thể phân tích được các số có tới 106 chữ số theo thuật toán này ( do Lenstra và Manasse thực hiện), nhờ phân bố các phép tính cho hàng trăm trạm làm việc tách biệt ( người ta gọi phương pháp này là “Phân tích thừa số bằng thư tín điện tử”).

Các số RSA – d với d là chữ số thập phân của số RSA (d = 100 ÷ 500) được công bố trên Internet như là sự thách đố cho các thuật toán phân tích số. Vào 4/1994 Atkins, Lenstra và Leyland đã phân tích được một số 129 chữ số, nhờ sử dụng sàng bậc hai. Việc phân tích số RSA – 129 trong vòng một năm tính toán với máy tính có tốc độ 5 tỷ lệnh trên 1 giây, với công sức của hơn 600 nhà nghiên cứu trên thế giới.

Thuật toán sàng trường số là một thuật toán mới nhất trong ba thuật toán. Thuật toán sàng trường số cũng phân tích số nguyên n bằng việc xây dựng đồng dư thức x2≡y2 mod n. Nhưng việc thực hiện bằng cách tính toán

trên các vành đại số… Sàng trường số vẫn còn trong thời kỳ nghiên cứu. Tuy nhiên theo dự đoán thì phải chứng tỏ nhanh hơn với các số có trên 125 chữ số thập phân. Thời gian tính của thuật toán sàng trường số là

2

3 3

(1.92 0(1)) ln (ln ln )

0(en n )

Việc trình bày các thuật toán phân tích trên để hiểu rõ một phần nào các biện pháp tấn công vào RSA để có thể xây dựng một hệ mật an toàn hơn. Từ các thuật toán trên yêu cầu đối với p và q nên thoả mãn:

- Các số nguyên p và q phải xấp xỉ nhau về độ dài nhưng không được xấp xỉ nhau về độ lớn.

- Các số p±1 và q±1 phải có ít nhất một thừa số nguyên tố lớn

- Phải có khoảng luỹ thừa 2 đủ lớn

- Giá trị F = gcd(p±1, q±1) không được lớn hơn 3 n

- Các số p và q phải là các số có ít nhất 100 chữ số thập phân

Nhận xét đầu để ngăn chặn khả năng tấn công bởi thuật toán sơ đẳng nhất, đó là thuật toán sàng, đồng thời như các phân tích trên thì đã đưa bài toán phân tích về trường hợp khó giải nhất, của ngay thuật toán được đánh giá là có triển vọng nhất đó là thuật toán dựa vào phương pháp trường số.

Nhận xét thứ hai dựa vào khả năng của thuật toán Pollard và thuật toán Williams mà khả năng đó phụ thuộc chủ yếu vào việc các số p±1 và q

±1 phân tích được hoàn toàn qua các số nguyên tố trong tập B. Trong tập

Một phần của tài liệu Tập bài giảng an toàn và bảo mật thông tin phần 2 nguyễn văn tảo (Trang 49)