Lên biểu đồ vμ cung cấp tổng l‡

Một phần của tài liệu Các quá trình vật lý và hóa học của hồ chương 7 (Trang 41)

Hình 7.21. Nồng độ nitrat trong các mẫu suối tại Đông Bear Brook ( í

đ‡ợc cải thiện với 16,8 kg N/ha.năm bắt đầu ngμy thứ 730 th t ở Tây Bear Brook (đ‡ờng nét liền) bắt đầu tăng đều đặn từ khi đ‡ ợng nitơ nitrat xấp xỉ 15% l‡ợng amôni sunfat thêm vμo

Việc cải tạo ở Tây Bear Brook xác nhận tầm quan trọng của kế hoạch dμi hạn,

ng hiệ

những giả thiết. nh‡ rừng đang bị suy giảm nitơ rất dễ rμng, hơn cả những dự đoán, mặc dù nó chỉ chiếm một l‡ đ‡ợc nhữ thử ng m có phạm v

D‡ờng

i rộng lớn nhằm để kiểm tra lại các mô h ợng nhỏ trong tổng l‡ợng

cung cấp. Nó chỉ ra những điều cần thiết cho ứu lμ: cần phải hiểu biết

nhiều v

ảnh h‡ởng đến l 6.8

kg/ha/năm không quá y định trung bình cho vùng có thể xắp xếp lμ khoảng 20 - 30 kg/ha/năm. Bởi vì mức sμn của nitơ vμ axít ở Tây Bear Broo lμm cho cuộc cải tạo lμ một cuộc thử nghiệm thμnh công. thử nghiệm còn đang tiếp tục vμ vì vậy những ảnh h‡ởng

tiêu c n

7.8 Kết luận

Trầm tích khí quyển có thể ảnh h‡ởng đến các đặc tính sinh hoá của hồ. Các phản ứng sinh địa hoá trong những vùng rừng có l

chuyển của các cặp electron cùng với sự vận chuyển prôton gây ra những thay đổi trong trầm tích tạo nên sự cân bằng về axit - bazơ của hệ sinh thái trên mặt đất vμ d‡ới n‡ớc. Nhập l‡ợng tới hạn đ‡ợc phát triển để bả

trồng vμ rừng khỏi những ảnh h‡ởng của những trầm tích axít vμ trầm tích

đ c n

gây ô nhiễm từ n ồm

sự điều khiển l‡ ạt tới

một sự hiểu biết về bảo vệ vμ quản lý hệ sinh t

Lời cảm ơn. Những quan niệm trên đây đã có tác dụng do sự cộng tác thú vị với

James J. Morgan vμ Laura Sigg. Với sự cộng tác trong công tr iề l‡u

Steven Norton, Steven Kahl, Charles Driscol tc μ James Szydlik. Một phần quỹ để nghiên cứu đến từ Phòng thí nghiệm nghiên cứu môi tr‡ờng EPA của Mỹ vμ từ hợp đồng với Đại học Quốc gia New York, Syracuse. Không có sự xác nhận do các cơ quan cấp cho sẽ đ‡ợc đ‡a đến kết luận.

Tμi liệu tham khảo

1. Alcamo J, Shaw R, Hordijk L (1990) The RAINS model of acidification: science and strategies in Europe. Kluwer, Dordrecht

2. Andreae MO, Byrd JT (1984) Determination of tin and methyltin species

(1989) Dominating influence of NH) on the

nghiên c hơn nữa ề các bể hữu c

‡ợng nitơ bão phải lμ ơ cố định, cái m hoμ trong hệ s lớn vμ l‡ợng qu μ đã đ‡ợc tích luỹ trong r inh thái. Tỉ lệ ứng dụng ừng vμ lμ 1

k lμ trong giới hạn quy định,

ực dμi hạ với rừng sẽ đ‡ợc theo dõi kỹ l‡ỡng. (adsbygoogle = window.adsbygoogle || []).push({});

‡u vực bao gồm sự vận

o vệ ao hồ, đất đích ang đ‡ợ ghiên cứu bởi

ơi khác vμo. S u vực lμ rất c chính phủ để qu ự nghiên cứu về ần thiết để kiểm ản lý sự thải ra của nhữn quy mô tập trung n‡ớc ba tra lại các mô hình vμ đ hái.

ình nghiên cứu g chất

o g

về đ u khiển vực ng‡ời mμ cung cấp thông tin vμ dữ liệu phù hợp ba l, John Aber, Myron Mi

o gồm: hell v

by hydride generation and detection with graphite-furnace atomic absorption or flame emission spectrometry. Anal Chim Acta 156:147-157 3. Baker LA, Herlihy AT, Kaufman PR, Eilers JM (1991) Acidic lakes and

streams in the United States: the role of acid deposition. Science 252:1151-1154

4. Behra P, Sigg L, Stumm W

oxidation of aqueous S02: the coupling of NH) and S02 in atmospheric deposition. Atmos Environ 23:2691-2707

5. Blum AE, Lasaga AC (1987) Monte Carlo simulations of surface reaction rate laws. In: Stumm W (ed) Aquatic surface chemistry. Wiley- Interscience, New York, pp 255-292

6. Brodin YW, Kuylenstierna JCI (1992) Acidification and critical loads in Nordic countries: a background. Ambio 21:332-339

7. Broecker WS (1971) A kinetic model for the chemical composition of sea water. Quart Res 1: 188

8. Carignan R (1985) Quantitative importance of alkalinity flux from the sediments of acid lakes. Nature 317:158-160

9. Christopherson N, Wright F (1981) Sulfate budget and a model for sulfate concentrations in streamwater at Birkenes, Norway. Water Resour Res 17:377-389

10. Christophersen N, Seip HM, Wright RF (1982) A model for streamwater chemistry at Birkenes, Norway. Water Resour Res 18:977-996

11. Cook RB, Kelly CA, Schindler DW, Turner MA (1986) Mechanisms of hydrogen ion neutralization in an experimentally acidified lake. Limnol Oceanogr 31(1):134-148

12. Cosby BJ, Hornberger GM, Galloway IN, Wright RF (1985) Modeling the effects of acid deposition: assessment of a lumped parameter model of soil water and streamwater chemistry. Water Resour Res 21:51-63

13. Council on Environmental Quality (1990) Environmental quality - twentieth annual report, US Government Printing Office, Washington, DC, 494 pp

14. Davison W (1986) Sewage sludge as an acidity filter for groundwater-fed lakes. Nature 22:820-822

15. Driscoll CT, Likens GE (1982) Hydrogen ion budget of an aggrading forested ecosystem. Tellus 34:283-292

16. Driscoll CT, Iverfeldt A, Otton JK (1994) Trace metals speciation and cycling. In: Cerny J, Moldan B (eds) Biogeochemistry of small catchments, SCOPE series, John Wiley and Sons, New York (in press) 17. Eriksson E, Karitun E, Lundmark JE (1992) Acidification of forest soils

in Sweden. Ambio 21:150-156

18. Eshleman KN, Hemond HF (1988) Alkalinity and major ion budgets for a Massachusetts reservoir and watershed. Limnol Oceanogr 33(2): 174- 185

19. Friedland AJ, Craig BW, Miller EK, Herrick GT, Siccama TG, Johnson AH (1992) Decreasing lead levels in the forest floor of the northeastern USA. Ambio 21:400-403

20. Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, Dauphin P, Hammond D, Hartman B, Maynard V (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta 43: 1075-1090

21. Furrer G, Westall I, Sollins P (1989,1990) The study of soil chemistry through quasi-steady state models; I. Mathematical definition of the

problem. Geochim Cosmochim Acta 53:595-601 (1989); II. Soil solution acidity

22. Galloway IN, Likens GE, Keene WC. Miller JM (1982) The composition of precipitation in remote areas of the world. Geophys Res C87:8771-8786 23. Gherini SA, Mok L, Hudson RJM, Davis GF, Chen CWo Goldstein RA (adsbygoogle = window.adsbygoogle || []).push({});

(1985) The ILWAS model:formulation and application. Water Air Soil Pollut 26(4):425-460

24. Giovanoli R, Schnoor JL, Sigg L, Stumm W, Zobrist J (1988) Chemical weathering of crystalline rocks in the catchment area of acidic Ticino lakes, Switzerland. Clay and Clay Minerals 36/6:521-529

25. Goldman JC, Brewer PG (1980) Effects of nitrogen source and growth rate on phytoplankton mediated changes in alkalinity. Limnol Oceanogr 25:352-357

26. Henriksen A (1979) Regional survey of lakewater chemistry of large lakes in south Norway, winter 1979. TN 50n9, SNSF-Proj.,

27. Oslo Henriksen A, Kamari J, Posch M, Wi lander A (1992) Critical loads of acidity: Nordic surface waters.Ambio 21:356-363

28. Herlihy AT, Kaufmann PR, Church MR, Wigington PJ Jr., Webb JR, Sale MJ (1993) The effects of acidic deposition on streams in the

g RJ, de Smet PAM (eds) W. Stumm and J. Schnoor(1991) Mapping critical loads for Europe. CCE technical report no. I, National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands

30. Hoffmann MR, Boyce SD (1984) Kinetics and mechanism of the formation of hydroxymethanesulfonic acid at low pH. J Physical Chem 88:4740

31. Holdren GR Jr., Strickland TC, Shaffer PW, Ryan PF, Ringold PL, Turner RS (1993) Sensitivity of critical load estimates for surface waters to model selection and regionalization schemes. J Environ Qual 22:279 - 289

32. Jacob DJ, Munger JW, Waldman JM, Hoffmann MR (1986) The H2SO.- HNO)-NH) system at high humidities and in fogs. J Geophys Res 91:1073-1096

33. Johnson CA, Sigg L (1985) Acidity of rain and fog: conceptual definitions and practical measurements of acidity. Chimia 39:59-61

34. Kamari J, Amann M, Brodin YW, Chadwick MJ, Henriksen A, Hettlingh JP, Kuylenstierna J, Posch M, Sverdrup H (1992) The use of critical loads for the assessment of future alternatives to acidification.Ambio 21:377-387

35. Kamari J, Forsius M, Posch M (1993) Critical loads of sulfur and nitrogen for lakes II: regional extent and variability in Finland. Water Air Soil Pollut 66:77-96

Appalachian Mountain and Piedmont region of the mid-Atlantic United States. Water Resour Res 29:2687-2703

29. Hettelingh JP, Downin

36. Kavamura K, Kaplan IR (1984) Capillary gas chromatography determination of volatile organic acids in rain and fog samples. Anal Chern 56:1616-1620

89) C02 storage and alkalinity trends in lakes.

, Overton WJ, Meier

sses in the environment,

Agency, Rep EPA-660/3-78-053, Corvallis, Oregon 51. Reuss JO (1980) Simulation of soil nutrient losses resulting from rainfall

acidity. Ecol Modell1:15-38

52. Reuss JO, Christophersen N, Seip HM (1986) A critique of models for freshwater and soil acidification. Water Air Soil Pollut 30:909-930

37. Keene WC, Galloway IN (1984) Atmos Environ 18:2491 Krug EC, Frink CR (1983) Acid ran and acid soil: a new perspective. Science 221:520-525 38. Lerman A, Stumm W (19

Water Res 23:139-146

39. Likens GE, Bormann FH, Pierce RS, Eaton JS, Johnson NM (1977) Biogeochemistry of a forested ecosystem. Springer, Berlin Heidelberg New York, 146 pp

40. Liljestrand HM (1985) Average rainwater pH. Concepts of atmospheric acidity and buffering in open systems. Atmos Environ 19:487-499

41. Lindberg SE, Lovett GM,. Richter DD, Johnson DW (1986) Atmospheric deposition and canopy interactions of major ions in a forest. Science 231:141-145

42. Linthurst RA, Landers DH, Eilers JM, Brakke DF

EP, Crowe RE (1986) Characteristics of lakes in the eastern United States, vol 1. US EPA-600-4-86-007a, Environmental Protection Agency, Washington, DC

43. Morel FMM, Hudson RJM (1985) The geobiological cycle of trace elements in aquatic systems: Redfield revisited. In: Stumm W (ed) Chemical processes in lakes, John Wiley, New York, pp 251-281 (adsbygoogle = window.adsbygoogle || []).push({});

44. Morgan JJ (1982) In: Goldberg ED (ed) Atmospheric chemistry. Springer, Berlin Heidelberg New York, pp 17-39

45. Morgan JJ, Stumm W (1989) Chemical proce

relevance of chemical speciation. In: Merian E (ed) Metals and their compounds in the environment, VCH Verlagsges, Weinheim, FRG

46. Murdoch PS, Stoddard JL (1992) The role of nitrate in the acidification of streams in the Catskill Mountains of New York. Water Resour Res 28:2707-2720

47. Nikolaidis NP, Rajaram H, Schnoor JE, Georgakakos KP (1988) A generalized soft water acidification model. Water Resour Res 24: 1983- 1996

48. Posch M, Forsius M, Kamari J (1993) Critical loads of sulfur and nitrogen for lakes I: model description and estimation of uncertainty. Water Air Soil Pollut 66:173-192

49. Psenner R (1988) Alkalinity generation in soft-water lake: watershed and in-lake processes. Limnol Oceanogr 33:1463-1475 Rees T (1992) PhD Diss, The University of Iowa, Iowa City, Iowa

50. Reuss JO (1978) Simulation of nutrient loss from soils due to rainfall acidity. Environ Prot

53. Rosen K, Gundersen P, Tegnhammar L, Johansson M, Frogner T (1992) Nitrogen enrichment of Nordic forest ecosystems - the concept of critical loads.

54. Ambio 21:364-369

55. Samson PJ, Small MJ (1984) In: Schnoor JL (ed) Modeling of total acid precipitation impacts. Butterworth, Boston, pp 1-24

56. Schindler DW (1985) The coupling of elemental cycles by organisms: evidence from whole lake chemical perturbations. In: Stumm W (ed) Chemical processes in lakes. Wiley-Interscience, New York, pp 225-250 57. Schindler DW (1987) Detecting ecosystem responses to anthropogenic

stress. Can J Fish Aquat Sci 44:6-25

58. Schindler DW, Mills KH, Malley DF, Findlay DL, Shearer JA, Davies IJ, Turner MA, Lindsey GA, Cruikshank DR (1985) Long-term ecosystem

tion in the upper Midwest. J Water Pollut Control Fed

and fate of metal ions in lakes. In: Stumm W (ed) Aquatic surface chemistry. Wiley- Interscience, New York, pp 319-349

67. Sigg L, Stumm W (1994) Aquatische Chemie. TeubnerVerlag, Stuttgart, 498 pp

68. Sigg L, Stumm W, Zobrist J, Ziircher F (1987) 1)Je chemistry of fog: factors regulating its composition.Chimia 41:159-165

69. Sillen LG (1961) The physical chemistry of sea water.In: Sears M (ed) Oceanography. AAAS, Washington, DC .

stress: the effects of years of experimental acidification on a small lake. Science 228:1395-1401

59. Schnoor JL, Stumm W (1985) Acidification of aquatic and terrestrial ecosystems. In: Stumm W (ed) Chemical processes in lakes. Wiley- Interscience, New York, pp 311-338

60. Schnoor JL, Palmer WD Jr., Glass GE (1984) In: Schnoor JL (ed) Modeling of total acid precipitation impacts. Butterworth Publishers, Boston

61. Schnoor JL, Nikolaidis NP, Glass GE (1986a) Lake resources at risk to acid deposi

58(2):139-148

62. Schnoor JL, Lee SJ, Nikolaidis NP, Nair DR (1986b) Lake resources at risk to acidic deposition in eastern United. Water Air Soil pollut 31:1091- 1107

63. Schnoor JL, Lee SJ, Georgakakos KP (1989) Longterm response of lakes to acidic deposition. Proc Environ Eng Specialty Conf, EE Div/ASCE, Austin, Texas, pp 584-591

64. Seinfeld JH (1986) Atmospheric chemistry and physics of air pollution. Wiley, New York Settle DM, Patterson CC (1980) Lead in albacore: guide to lead pollution in Americans. Science 207: 1167-1176

65. Sigg L (1985) Metal transfer mechanisms in lakes, the role of settling particles. In: Stumm W (ed) Chemical processes in lakes. Wiley- Interscience, New York, pp 283-310

66. Sigg L (1987) Surface chemical aspects of the distribu- tion

70. Smith CMS, Cresser MS, Mitchell RDJ (1993) Sensitivity to acid deposition of dystrophic peat in Great Britain. Ambio 22:22-27 (adsbygoogle = window.adsbygoogle || []).push({});

71. Sposito G (1986) Sorption of trace metals by humic materials in soils and natural waters. CRC Crit Rev Environ Control 16:193-229

72. Stumm W, Morgan JJ (1995) Aquatic chemistry, 3rd edn. John Wiley & Sons, New York

73. Stumm W,Schnoor JL (1983) Acid rain - a result of disruptions in

s Centralbl 100:228

79. Van Breemen N, Driscoll CT, Mulder T (1983) Acid deposition and internal proton sources in acidification of soils and waters. Nature 307:599

80. Waldman JM, Munger JW, Jacob DJ, Flagan RC, Jorgan JJ, Hoffmann MR (1982) Chemical composition of acid fog. Science 218:677-680

81. Warfvinge P, Holmberg M, Posch M, Wright RF (1992) The use of dynamic models to set target loads. Ambio 21:369-376

82. Westall J (1980) Chemical equilibrium including adsorption on charged surfaces. In: Kavanaugh MC, Leckie JO (eds) Particulates in Water. Advances in chemistry series 189. Am Chern Soc

83. Whitfield M, Turner DR (1987) The role of particles in regulating the composition of natural waters. In: Stumm W (ed) Aquatic surface chemistry, WileyInterscience, New York, pp 457-493 .

84. Zobrist J, Wersin P, Jacques C, Sigg L, Stumm W (1993) Dry deposition measurements using water as a receptor: a chemical approach. Water Air Soil Poilu! 71:111-130

hydrogeochemical processes. Naturwissenschaften 70:216

74. Stumm W, Furrer G, Kunz B (1983) The role of surface coordination in precipitation and dissolution of mineral phases. Croat Chern Acta 56:585611

75. Stumm W, Sigg L, Schnoor JL (1987) Aquatic chemistry of acid deposition. Env Sci and Technol 21 :8-13

76. Sverdrup H, Warfvinge P, Frogner T, Haoya AO, Johansson M, Andersen B (1992) Critical loads for forest soils in the Nordic countries. Ambio 21:348-355

77. Tessier A, Carignan R, Dubreul B, Rapin F (1989) Partitioning of zinc between the water column and the sediments in lakes. Geochim Cosmochim Acta 53:1511-1522

78. Ulrich B (1981) Eine okosystemare Hypothese iiber die Ursachen des Tannen-sterbens (Abies alba Mill.). Forstwis

Một phần của tài liệu Các quá trình vật lý và hóa học của hồ chương 7 (Trang 41)