VI 1.(0,5 diem) Tinh cac tich v6 hif(Jng AIJ.AD ;A C.B D.
2.(1,0 diem) Ti mm de )cat true Ox tai it nhat mgt diem c6
2. Giai phiTdng trinh Vx - 1 + 1 + Vx - 1 - 1 x + 3
3. Tim m dc phiTdng trinh mx - 1 x + 3 CO nghiem duy nhat.
CSu IV. (2,0 diem). Cho tam giac ABC c6 Ă - 1 ; 2), B(2; 0) va C(-3; 1).
1. Xac djnh tam difcJng Iron ngoai tiép tam giac ABC.
2. Tim diem M nam trong doan BC sao cho dien tich tam giac A B M bkng j
dien tich lam giac ABC.
C&\x. (2,0 diem)
1. Cho a, b > 0 . ChiJngminh a ^ b ^ a + b (a + b)(â +b^) (a + b)(â +b^)
2. Rut gon: A = 1 + cosx
sinx 1 - ( 1 - c o s x r sin^x
CSu VỊ (1,0 diem) Cho tam giac ABC. Goi I la trung diem AC, H la diem doi xiJng trong tam G cua tam giac ABC qua B. xiJng trong tam G cua tam giac ABC qua B.
1. Chrfng minh HA - 5HB + HC = 0.
2. Dat AG = a, GH = b. Hay phiin tich vectd ACtheo hai vectd a va b.
DAP AN THAM KHAO
Cdu
I
(1,0 diem) diem)
Dap an Diem
1. (0,5 diem) Tim tap xac djnh •••
Ham so y = + V 4 - x xac dinhkhi <! x - 2 x - 2 ^ . 0 x - 2 4 - x > 0 x- 2 <=> 4 - x > 0 x - l > 0 x - 2 > 0 x - I <0 x - 2 < 0 x < 4 2 < x < 4 x < l
Vay tap xac dinh ciia ham so la D = (-a); i | u ( 2 ; 4].
HA
0,25
0,25
Cty TNHH MTV DWH Khang Vi^t
2. (0,5 diem) Tim m de ham s6'...
Ham so y = - ^ ^ ^ x + 2013 dong bien khi > 0
m + 2 m + 2 m-2>0 ^ , , <=> < hoac < <=> m + 2 > 0 m + 2 < 0 j m - 2 < 0 m > 2 m < -2 II (2,0 diem)
1. (1,0 diem) L a p bang bien thien va ve do thj (P) cua ham s6'.
Khi m = l : y = - x +2x + 3 (doc gia tif giai).
2. (1,0 diem) Tim m de )cat true Ox tai it nhat mgt diem c6...