... doanh. Mô hình PEST trong nghiên cứu môi trường vĩ mô, ứng dụng trong nghiên cứu marketing Trong khi mô hình 5 áp lực lượng của M-Porter đi sâu vào việc phân tích các yếu tố trong môi trường ... môi trường ngành kinh doanh thì P.E.S.T lại nghiên cứu các tác động của các yếu tố trong môi trường vĩ mô. Các yếu tố đó là - Political (Thể chế- Luật pháp) - Economics (Kinh tế) - Sociocultrural ... thị trường nội địa nơi doanh nghiệp đang kinh doanh mà còn các khách hàng đến từ khắp nơi. Mô hình P.E.S.T hiện nay đã được mở rộng thành các ma trận P.E.S.L.T ( Bao gồm yếu tố Legal - pháp...
Ngày tải lên: 20/10/2012, 10:56
Mô hình PEST trong nghiên cứu môi trường vĩ mô - Phần 1 ppt
... tố trong môi trường vĩ mô 1. Mô hình PEST: ã Mụ hỡnh PEST c ng dng trong nghiờn cu môi trường vĩ mô. Trong khi mô hình 5 áp lực của M-Porter đi sâu vào việc phân tích các yếu tố trong môi ... Mô hình PEST được ứng dụng trong nghiên cứu môi trường vĩ mô. Trong khi mô hình 5 áp lực của M-Porter đi sâu vào việc phân tích các yếu tố trong môi trường ngành kinh doanh thì mô hình PEST ... hoạt động kinh doanh phù hợp. 2. Các yếu tố trong môi trường vĩ mô được mô hình PEST nghiên cứu: a. Các yếu tố Thể chế - Luật pháp trong mô hình PEST ã õy l yu t cú tm nh hng ti tất cả các...
Ngày tải lên: 24/03/2014, 21:21
Mô hình PEST trong nghiên cứu môi trường vĩ mô - Phần 2 pdf
... mô hình PEST nghiên cứu, hiện nay khi nghiên cứu thị trường, các doanh nghiệp phải đưa yếu tố toàn cầu hóa trở thành một yếu tố vĩ mô tác động đến ngành. e. Yếu tố hội nhập trong mô hình PEST ... ) và ngày càng hoàn thiện thành một chuẩn mực không thể thiếu 1. Mô hình PEST: c. Các yếu tố văn hóa xã hội trong mụ hỡnh PEST ã Mi quc gia, vựng lónh thổ đều có những giá trị văn hóa và các ... vụ, các câu lạc bộ, các hàng hóa cho ngườ i độc thân. d. Yếu tố công nghệ trong mô hỡnh PEST ã C th gii vn ang trong cuc cách mạng của công nghệ, hàng loạt các công nghệ mới được ra đời và...
Ngày tải lên: 24/03/2014, 21:21
BÁO CÁO MÔN KINH TẾ LƯỢNG ỨNG DỤNG MÔ HÌNH ARIMA TRONG DỰ BÁO GIÁ DẦU THÔ THẾ GIỚI
... BÁO CÁO MÔN KINH TẾ LƯỢNG ỨNG DỤNG MÔ HÌNH ARIMA TRONG DỰ BÁO GIÁ DẦU THÔ THẾ GIỚI Sinh viên thực hiện: Đặng Thị Thu Hiền Mã sinh viên: CQ500927 Giới thiệu về mô hình Arima Trong nghiên ... của mô hình là nhiễu trắng, mô hình phù hợp Hoặc ta có thể kiểm tra bằng cách: Vào View → Residual tests → Serial correlation- LM test → OK Ta được bảng sau : p>0.05 nên phần dư của mô hình ... giới: Nhìn vào bảng kết quả trên ta có mô hình ARIMA(p,1,q) Với: P=(1) Q=(1,2,5,6,7) -Ước lượng: Sau khi ước lượng và kiểm tra nhiều mô hình tôi thấy mô hình ARIMA(0,1,7) là phù hợp nhất Bảng...
Ngày tải lên: 25/03/2014, 09:32
Bài giảng sử dụng mô hình arima trong dự báo chuỗi thời gian - cao hào thi
... src=" +du3 z8fGoyaVcdbUce6X7p8UBHrcXGZzoAAKh09HEAAFB6kpGZS2+e9dRXtX66Qw162o48IiKjp29Ezt/UNZ36AACAysR/8wEAoFQlIzOX3vyt2dMhIuGe1oPf+FTjoy30dAAAgMpEHwcAAKXNTDo89VWtn25Xg55wT2u4pzU2EL156no2MUt9AABA5SDjAACgHCxKOgIddYGOuthA9OapQZIOAABQIcg4AAAoH2bS4fA6mg5tN2OOQEddfGRq9Dc3kpE49QEAAOWNjAMAgHKTTcwO9n5y89T1pkPbAh11vma/r9mfmkzceP8qSQcAAChjzEkGAEB5MpOOC8dOxQYmREQNenc/u3/P8wd9LX5RKA8AAChD9HEAAFDOsonZwd6Pb54aajq0PdARUoPenU935VLZkY8GYlejYlAhAABQPujjAACg/JlJx0JPh111tB3p7H7pU4GOEAvNAgCAskEfBwAAlWJRT4dddbQd2SMio6eHIueHdU2nRAAAoKTxn24AAKgs8z0dH5k9HSIS7tl+8BufaXx0Gz0dAACgpPFVBgCASpRNZAZ7L5195b3R00Pmb8yko25vmBlJAQBAiSLjAACgcumaPnbm+rlXTy70dLQe3mnO00HSAQAASg4ZBwAAlU7L5AZ7Ly2MXjHn6SDpAAAAJYeMAwAAiMzN07Eo6eicTzqIOgAAQAkg4wAAAHcsmXTse+kpf0c9SQcAAChyZBwAAGCxe5IOZ9uRvSQdAACgyJFxAACApZlrr1w49lFsYFxIOgAAQNEj4wAAACvJJjJDvf0Xj51cIukAAAAoJmQcAADg/haSjtRkQuaTjj3PH/LUV1McAABQJMg4AADAamUTmctvnvr4+G/MpEMNVu1+9nGSDgAAUCTIOAAAwNokI7fnk44ZmUs6ekg6AADAliPjAAAADyIZuX3pzVOXj/+apAMAABQJMg4AAPDg5pOO0wVJx+N7nn/SHfBSHAAAsMnIOAAAwMO6N+nofOFTbUe6HF4XxQEAAJvGRgkAAMC6MJMOT72v/fe77aoz0NEY6GicuHjj5qkruqZTHwAAsNHo4wAAAOspGbl9/uh7g70XcqlZEQl1tR78xu82PrpDFIXiAACADUUfBwAAWG+GERsYj12NBNrrm5/cZVed4Z72us7mkY8+jl0dF8OgQgAAYCPQxwEAADaGYcQGxs8ffW/09ICI2FVn25Hu7pc+66mvoTYAAGAj0McBAAA2kmGMnbkWOX+9vntbuKfDrjp3P/tEanJm6Jfn07EE5QEAAOuIPg4AALDhdE0fO3P17Cu/mLh4XeYWXjncdqSbhVcAAMA6oo8DAABsEl3LD5+8HDk/1HRol7nqSqCjceLi9ZunruhanvoAAICHRB8HAADYVNlEZrD3/IVj78YGxkQk1LXt4Dd+r/HRdhZeAQAAD4mMAwAAbAEz6bh8/J9SkzMiEu7p6H7pc4GORpIOAADwwMg4AADAlklGpi+9edJMOlh4BQAAPCQyDgAAsMXMpOPK26dzqVlz4ZU9zx92B7xUBgAArAkZBwAAKArx4Vvnj7472Hs+l5pVg1WdL3ym7ch+h9dNZQAAwCqxrgoAACgahhEbGItdHQ+01zc/uTvQEQ50hCcuDt089QkLrwAAgPsi4wAAAEXGMGIDY8A7jzkAACAASURBVNNDkfrutnDPzlDX9lDX9hsf9EX7h8WgOgAAYFmMVQEAAMVI1/JjZwbOvvKziYtDItJ6eG/3S58PdISpDAAAWA4ZBwAAKF66lh8+eenCsXdiA6N21dl25OCe5z7j9ldRGQAAcC8yDgAAUOyyifRg77nLxz9MTcbVoK/zhd9p+/wBpiMFAACLkHEAAIDSkIxMX3rr/cHes7lUJtDRtO9rRxoP7rTYrFQGAACYyDgAAEDpMIzY1dHzx3pHT38iIuGeXV3/4nOB9rAoCrUBAABkHAAAoNQYxtjZK+de+3ls4KZddbUdObjnud/x1PspDAAAFY6MAwAAlCQtkx385W8vfLvXnKRj97Of3vnMk0zSAQBAJSPjAAAAJSybSF96670rb/9TLpXxNdfte/H3Wp7qYpIOAAAqExkHAAAoefHhifNHf3HjgwsiEuracfAbz9Tt3c4kHQAAVBoyDgAAUBYMI9o3dPaVExMXr4lI6+F93S/9nq8lRGEAAKgcZBwAAKB86Fp++OTFC8d+ER+J2lXXzqef2PP8Z92BKioDAEAlIOMAAADlJptIXznx0eXj75vTkXa+8Lm2I4/aXA4qAwBAeSPjAAAA5SkZmbr01q8Ge8/kUplAR9P+l7/Y+OguJukAAKCM2SgBAAAoW4YRG7g5PTRe390e7nkk3PNIXee2kY/6YgPD1AYAgPJDHwcAAChzupYfO/PJuVd/Ghu4aVddbUce2/P855mkAwCA8kPGAQAAKoKWyQ72nul/453U5G01WN35wpG2I49ZbFYqAwBA2SDjAAAAFSQdm7n01q8Ge0+LSKCj+eA3/qhubxuTdAAAUB7IOAAAQIUxjNjAyNlXfhQbGBGR1sPd3S99wVMfoDAAAJQ6Mg4AAFCJdC0/2Pub/jd6U5O37apr97Of2fnMYYdXpTIAAJQuMg4AAFC50rGZS2+9e+OD8yLiaw7te/GLjY/uZpIOAABKFBkHAACobIYR7Rs89+rb5oKy4Z49XV/9QqCjmcIAAFByyDgAAADMVVdOXz7+bi6VsauutiOP73n+dxm6AgBAaSHjAAAAmJOMxM4f/cmND86JiBqs3vfiF9uOPM7QFQAASgUZBwAAQAHDiPZdO/fqj82hK4GOloPf+GeBjhbWlwUAoPiRcQAAACymZbKDvb82h66ISNuRQ90vPeOpD1IZAACKGRkHAADA0pKR2Pmjb9/44LciYlddu5/9XNuRQ0zSAQBA0bJRAgAAgGUZRrTv6tTV4ZanDgQ6Wsz/jZ7uHzt7ScSgPAAAFBX6OAAAAO5Dy2QHe09defsDc+hKuKez+6U/DLS3UBkAAIoKGQcAAMCqxIfHzx89MXq6X0TsqqvtyBN7nv99hq4AAFA8yDgAAABWzTDGzly6cOzt+EhERNRgzb6vPdPy1AFWXQEAoBiQcQAAAKxNNpG6cuK9Kz953xy6Eura2f3SH/laGqgMAABbi4wDAADgQcSHx88f/dHExSsiYlddO5/+TNuRJ2wuJ5UBAGCrkHEAAAA8KMMY/vDchWM/Tk1Oi0igo3X/y18KdLQydAUAgC3B2rElQzc4WAAAlIQnRJ6gCgCw5RTLYYpQaejjAAAAAAAA5YCMAwAAAAAAlAMyDgAAAAAAUA6Y4qEkWRRtubsMMRRRCn9ceiu571xohdsYsj77WdM2+iY+1qKXuQGPpejLbGLcf166JbcxjHue+UM+Z30tr8tYj/roqzjZ77sfQ+S+9bnvfoy11FDu9/Lv2o+y1Mtc9D5dsrbLb1O49brUUDeMdhFRlKsrHuUV92Oe4as7n5WVrk6rv/6s6bWvcBGbe86KohiGcc+ZU7iflc/8e+ujL3n+KCueP/cc92XOH0UMY+H5KPd7PsvVKr/q64ahLLMTY+n3znLnj76W03X5Q7/0K9bXeOnQV/3Rs/z5o8yf9kufOeLwqu1fPKwGa8wfb3zwm2j/1UUXcPOUWO2hX6L+i2q1mkO/ZH0Wvcz5be79/DKMRR89hvHnIqIo/2Pth34tHz1K4UMvWau7zp8l32uG6Mr9PpIKjoUhS7/X1nb+rPCuX3gsY6XPl5XvWrkmy9VwuUP/wJeO5c4fY6kP5eXOw6XPH2XF8+ee987CUVvlV5elz5+5Z77EV7KVv28U7kdf43twmevPvc/EWOEr65o+eub2s7iGBY849+EoYhj6Gr/+LX/+LPW1rfAZFrwvVjj0K50/hvEe/2Cs6H8sUwIAAICNkE2kLr3588Hej8wfWw8/tue5L7gD1VQGAIANQsYBAACwgWIDN86+8mZs4LqIqMGazhf+oOWpgxablcoAALDuyDgAAAA2lq7lB3s/unz8H3OptIiEunZ1ffUPfS2NVAYAgPVFxgEAALAZkpFb54/+cPT0BRGxq+6dT//Ozmc+Z3M5qQwAAOuFjAMAAGCzGMbYmf4Lx36YmpwWEV9zQ/fLz9Xt3Xn/+XoBAMAqkHEAAABsqmwidenNnw72fmj+2HK4Z89zf+BiLlIAAB4aGQcAAMAWiA3cOPvK92IDQyKiBv2dLzzT/NSjzEUKAMDDIOMAAADYGrqWH+r9sP+NE/NzkT6y96t/zFykAAA8MDIOAACArZSJ3T5/9PvDH5wWEbvq7nj6c9uPHKahAwCAB0DGAQAAsNUMI9p35eKxH6Qmp0Qk0LF971ef9bWEKQwAAGtCxgEAAFAUsonk5bd+WtDQ8XkaOgAAWBMyDgAAgKIx19Dx/YWGjgPf+Kq/YzuFAQBgNcg4AAAAiks2kbz85onB3g/MH9uOHO545ojN5aQyAACsjIwDAACgGE0NDJ1/9Y34yJiI+Job97/8ZRo6AABYGRkHAABAkdIyswMnegsaOj7d8czv0tABAMByyDgAAACK2qKGju6Xv1y3d5coCpUBAGARMg4AAIBip2Vmr5z4x4G3e3OptIi0HD60+7lnHF4PlQEAoBAZBwAAQGmID4/2fef7sYFBEVGD/n0vPle39xEaOgAAWEDGAQAAUDJ0LT/U+8FCQ0fr4UN7nvsjGjoAADCRcQAAAJSYexo6Xmh8tJuGDgAAyDgAAABKj67lB3vfv3z8J2ZDR7jnYPdLX3YHaqgMAKCSkXEAAACUqmQkev7oGxMXL4mIXXV3vvDPWp46REMHAKBikXEAAACUMsMYPnmq/43jZkNHqGsPDR0AgIpFxgEAAFDy0rHp80e/N3GxX+YaOp5teeoJGjoAAJWGjAMAAKAszDd0pCZjIhLq6tzz3JccXi+FAQBUDjIOAACA8pGOTV9660fmDB1qMLDvxS/X7d1DWQAAFYKMAwAAoLzMNXR8P5dKiUjr4Sd3PvNFm8tJYQAAZY+MAwAAoAylY1Pnj37XnKHD1xze//KLvpYmygIAKG9kHAAAAGXKMIZP/tNCQ8fOp7+w4wuHLTYbhQEAlCsyDgAAgHJmNnTEBq6JiH/7rn0vPafWVlEWAEBZIuMAAAAod4Yx2Pvulbd/nkulbE7vnudeaDuyX1hYFgBQdsg4AAAAKkJ8eOTid96MDVwVkUDHo/u+9rQ76KAsAIByQsYBAABQKXRNW2jocHgbOp9/qfXTYcWiUxkAQHkg4wAAAKgsZkNHfGRUROo6v7j3y5/11OdEDCoDACh1ZBwAAAAVR9e0Kyd+Otj7rog4qzt2P/vnzU84rfYclQEAlDQyDgAAgAoVG7h27tVjZkNH/f5/ueuPn6xumWboCgCgdJFxAAAAVC4tM3vlxE8He98REbX2QNvv/tvwoxlXzQyVAQCUIjIOAACAShcbuHbu1aPxkZtWR1XDo/9+2+8cCrSPMnQFAFByyDgAAAAgWiZz5e2f3vjgpIh4Gw43P/mnDQdue0Ix5iIFAJQQMg4AAACIiIhhRPsuXTj2empy0u5pbDj4Xxr37wntueGsSlEbAEBJIOMAAADAHdlE4tJb3zcbOqq3fym0709qd84E2sYs1jzFAQAUOTIOAAAA3M0won2X+t94K5dOOqs76vb9x6rGUP3e62rwNkNXAADFjIwDAAAAS0jHps4f/Xbs6oDVUVW799/5tv2RLxwLdQ7b1QzFAQAUJzIOAAAALMMwBnt/eeUnPxERb8Ph0L5/7/BU1e4cq2mNMnQFAFCEyDgAAACwkvjw8LnXXpsZHbZ7GusP/hd3cL/bn6zvGnHVJBi6AgAoKmQcAAAAuA8tk/nkxE9HT58WEX/HV4O7/41isfu33ardNUpxAADFg4wDAAAAq2AYY2fP9r/xhjkRaWj/39jc9XZ3zrxTsehUCACw5cg4AAAAsFrpWOzit1+fuvaJ1VEV6v5Lb9MR8/cN+2+6/SnqAwDYWmQcAAAAWANd06794peDvb8QEV/z7y/83t82Vbs7YnVolAgAsFXIOAAAALBmsYGBc69+MzMdNX90B7pFxO7W6jrHfU3TDF0BAGwJMg4AAAA8CC2T6fveP5i3/e1fqW57wTAUEVHrErV7xh1VaUoEANhkZBwAAAB4UMbc2rFaJqEG9zcc/M82d72iKDaHEeyIBdpvMXQFALCZyDgAAADwsC4cez0xfsNqr6rf9x88oSfML5lOXza0N+JtmBExKBEAYBOQcQAAAOBh6Zr28Q9ODL3zMxGp3vbHwV0vW2yqeVdVYyLUNeH0ZagSAGCjkXEAAABgfUx+cvXCsde0TMJZ3dFw8P9xVu8yf2+164H2qZptU4o1T5UAABuHjAMAAADrJptInHvtW5OfnBWR4K6Xfa1/uPCF0x3IhPZF3LUJhq4AADYIGQcAAADWlWEMvfPR1Z/9MJ+d8dZ/qv7A31gdNQt3VjXHa7sm7J4sdQIArDsyDgAAAKy/6aGRi9/5bjI6ZLVX1e//T+5A98JdVrse2DVZvf22YqGhAwCwnsg4AAAAsCG0zOzlf3j75q97RcTf/pWaHV8u/PLpDszWH4i6/BmGrgAA1gsZBwAAADbQ+NlLn/zoe9psQg3ubzzwnwvHrYhITdtMcHfM5tIoFADg4ZFxAAAAYGPNjE70vf6dZHTI6qgKH/ibwnErImJX87WdU9Xb4wxdAQA8JDIOAAAAbDgtM3v5+yfGz50UkWD7VwJ3j1sREXdgtnbvpMufoVYAgAdGxgEAAIBNYRg3/+nswE+Pi4ga3N+w/z8tGrditRvm0BWrI0+1AAAPgIwDAAAAm+f29ZFzr/5vLZOw2qsauv/a5d9n3M3m1mr3TlY1zTB0BQCwVmQcAAAA2FRaZvbca69ODV6WuXErX1EUq3I3T32mtnPSWZWlXACA1SPjAAAAwKYzjGs///ngOz8RETXY3bD/rxeNWxERq90ItMeD7XGGrgAAVomMAwAAAFsj9smV/je+NT9u5a/cgX33buP05er33q5qSIswdAUAcB9kHAAAANgy6VjswrHXEuPXRSSw48v+theW/ILqa8w07Is7PBoVAwCsgIwDAAAAW0nXtI9/8IPRMx/K8uNWRMRqN+oeSfi3pyw2naIBAJZExgEAAICtN3b69OXj39NmVxq3IiJqINfQHVfrZhm6AgC4FxkHAAAAikIyMt73+reTE0NijlvZ8cJyX1arW9Oh7rjNzVykAIC7kHEAAACgWGiZzOXjP7p1+YyIqMHu+gN/teS4FTGHrnTOVG9PKRYaOgAAc8g4AAAAUEwM4/qvPhj42XERsTqqQvv/0rXMuBURcQdyDQdnXIEcQ1cAAELGAQAAgCJ0e+jGhWN/r2USIuJvf7667TkRZbmN/W3p2j0phq4AAMg4AAAAUIyyicS51/7v9PVLIuIO7qvb/1dWR/VyG9tVva4z6WvJMHQFACoZGQcAAACKlWFc/ekvRj7qFRGr3VvX/ZcOX4chxgKRgh8MQ62brd074/LnqBwAVCYyDgAAABS1yPmL/W98S5tNiEhg10tVjZ9VFIuiKIqiiIhyN5tD/DsytZ0pq0OndABQacg4AAAAUOzSU7G+14+Zy8pWNX0+uPPrisW+wvZ21Qh1p30ts8xFCgAVhYwDAAAAJUDLpC8f/8Gty78REadvR6jrP6wwPYfJU6+F9qedPuYiBYBKQcYBAACAEmEY13/13tWf/YOIWO3e+n1/6V5+WVmT1W4Edmb9HRmGrgBAJSDjAAAAQCmZHrpx4dgrc9Nz7Hje1/IHKywra3L69NC+WW+jxtAVAChvZBwAAAAoMdnEzIWj30yMXxcRb+iJ4M6vW2zqff/KF86HurN2Dw0dAFC2yDgAAABQenRN+/gH3x87+4GIOH076jr/wuYO3fevrHap3Z2radMsNho6AKAMkXEAAACgVI3++tTl498REavdG+r8C3egazV/pQb1+gOaGtIZugIAZYaMAwAAACUsGRk79+rfZW5PiIi/7fmatufuOz2HqXqbXrs3b3MTcwBA+SDjAAAAQGnTMum+7x6dGrokImpgX92eP1/N9BwiYlelritfs0NXLCQdAFAOyDgAAABQ+gzj2s9+MvzhP4qIXa2v3fPv7J6WVf6pOyiNPeIKGAxdAYBSR8YBAACAMjFx4fzl49/RZhNWu7f2kX+t1vYYhmEYhogY88zbBb+Y+42/3ajda1gdxBwAUMLIOAAAAFA+kpGxvtdfS0SGRKS69Rl/2/OKYhERZZ55u+AXC78Rh0dpOKD4Wg2GrgBAiSLjAAAAQFnRMulPfvBWtP83IuIOdIW6/+Mqp+cweRsk1C3uIIUEgNJDxgEAAICyYxjD778z9MsfiYjV7m048Nd2T/Pq/9rqEH+71O0Vq4NSAkApIeMAAABAeYpd+fjisf+lZRIiUrv7T7yNn1nTn9tVaTigVDUpVBIASgUZBwAAAMpWNhG/eOz/JMaGRKQq/NnAzhdF1pZZVDdbGg9aXNUkHQBQAsg4AAAAUM50TfvkR2+NnflARJy+HbV7/lRZy/QcImJ1KLWPWGsfsTB0BQCKHBkHAAAAyp1hjJ3+6Mrbb4iIXa2v3fNnNlfdWvfhqrY07Ld6Qnx/BoDixTUaAAAAFSE+PNj/xt9rmYTV7q3r/DO7p+kBduLfbm084HB4GboCAMWIjAMAAACVIhO71f/d/zszOiQitbte9jYcfoCdWB1KqNMeaLdabFQUAIoLGQcAAAAqiJZJX/nxG1NX+0WkqvF3arZ9aa2zkJrUoLXxUYc7yNdpACgiXJQBAABQYQxj8B9/PHr6fRFxB/YG2v+FYrE/2J4CHfbQPrvNzdAVACgKZBwAAACoRONnPvz4+FERcfraavf8ucXmfrD92FVLw35noMOh8M0aALYaV2IAAABUqGRk9OKx/2HOQlq7+09tathYkYgsd5c7aA0/7nYHrVQVALYQGQcAAAAqVzYR7//uK4nxIavdW7vrZbd/r7I8EVFWFNzpDO1zWR0MXQGArUHGAQAAgIqmZdKf/PC7U9f6RaRm+5c89YcfZm8Oj6XhoKt6G0NXAGALcOkFAABAxTOMwV/8cOzMeyJS1fgZf/tXH2yxlQVVjfaGAwxdAYDNRsYBAAAAiIiMnT55+fhrIuKs2h585F8rVvfD7M3qUII7XcE9LquToSsAsEnIOAAAAIA5ycjNi8f+VptN2N2h2t3/xuqofsgduqptDQc9VU12agsAm4CMAwAAALgjm4hfPPo/k9Ehq91b1/kXdrXp4ffpa3E2PKo6q22UFwA2FBkHAAAAcBddy338/dcnPzktIoGdX/fUP/Xw+7Q6LLW71do9HouNoSsAsFHIOAAAAIB7GMb1d38xevpnIuJt+ExV05GHnIXU5Kq2hXt83gYHBQaAjUDGAQAAACxt7MxvPvnRqyKi1j1W0/7CusQcIuJvUxsfrXJUseoKAKwzMg4AAABgWTOjIxeO/dd8NuGs2l7X9RcPudjKAqvD0tDlC+xUGboCAOuIjAMAAABYSTaROv+tv0tPDVnt3uDuP7F7mtZrz55aR9PjNWqtkyIDwLog4wAAAADuQ9dy/W98Z2rwtNXuDex80aaGjeWJiHE/C9uISO1Ob0N3tV1l6AoAPCwyDgAAAGAVDOPaz38evfSeiAR3veRteEpZhogo97OwjXnD6bWHDwRqd1YpfD0HgIfARRQAAABYrRvvvXf1Z98UEW/jp9drsZUFnjpX06NBhq4AwAMj4wAAAADWYHpo+MqJb+azCU/dY/4dL6xvzGF1WOp2+Rr3+61OvqgDwJpx6QQAAADWJj4y0v/G/8pnE86qbcFdL6/XYisLHB5b02PB6u0ehq4AwJpw1QQAAADWLJtInf/W/5eeGrK764K7/pXF7lv3h6gKuxsfC7r8DqoNAKtExgEAAAA8CF3L9b9xLDU5ZLV76vb8mV0Nr/tDWB3Wus6aur01DF0BgNXgWgkAAAA8KMO49ObRW5+8JyKBjq+5anZvxIO4apzhnjpfi4d6A8DKyDgAAACAh3L9nV+NfPR9Ealu/UNP6MkNepSabVVNh+pcflZdAYBlkXEAAAAADyty/sLcmrINh/07vry+i60ssDqsob3B4CM1Fhtf4wFgCVwcAQAAgHUwPXSj77v/LZ9LOqu21bQ9L4ptgx7IU6c2P9ngbWToCgAsRsYBAAAArI/M9O2+1/8um5hwVm2r3f2n676mbKFAe03ToUZHFauuAMAdZBwAAADAusmlUhe+/T/TU0NWuye4619txGIrC6wOa8P+UPCRgGJRqDwACBkHAAAAsM4Mo/+N16YGf221ewIdX7O5G417iMiiG/dssfxdd/PUeVqealbrVAoPAGQcAAAAwHozjGs//8lE/7siEtz5orf+U8rdRGTRjcVk+bvu2ZUoUru7tuFgg121U3sAlYyMAwAAANgQw++/e+1nfy8i3obDVeHPb9BiKwscXke4J1y7u46hKwAqFhkHAAAAsFGmh25cOfH3+VxCrX20Zsc/3+iYQ0Q8IW/ToWa1jlVXAFQiMg4AAABgA82M3Oj/3t/mswln1bbAzhc3dLEVk9Vhq9sTany0yeq0UX8AFYWMAwAAANhYuUTqwrf+W3pqyOauC+z6+ibEHCLi8Dqan2jxtweoP4DKQcYBAAAAbDhdy11649XU5JDV7gnsfGlzYg4R8TVVNz/Z4vKz6gqAikDGAQAAAGwKw7j81qvTg6ctdk9g19dtauPmPKzVYQt1NYa6Ghm6AqDskXEAAAAAm8Uwrv38x5Hz71rtHn/7VzYt5hARV43afKi9ujXIQQBQxsg4AAAAgE1186N3IuffFZFNjjlEpGZbbfOTHU6fm6MAoCyRcQAAAACb7eZH7wx/eEJE/O1fdlbv2syHtjlsDftba3eHLXYrBwJAmSHjAAAAALbAxIVTn/zwFRGpavmCu+7xTX50b8jX+qmdVWE/BwJAOSHjAAAAALZGYmz44+OviIin/gl3XY9RSAwRMVZBRMQQ88ZK28jibUQk2NHQ/OQuu+rkWAAoD2QcAAAAwJZJRoYvH/8/IuKpf1INHVIWiCIiyiqIiChi3lhpG1m8jXnb7rQ3P95Rt6dJsSgcDgCljowDAAAA2ErJyPCFY/81n0166p/wbX9WZAuyBm+oZttn9qqhaiHoAFDKyDgAAACALZZNTF/8zn/PzyYd3hbf9i/JFiUNdZ2tjY912D0MXQFQqsg4AAAAgK2nZVIXX//v2mxia2MOh9cdfnyXvyOsWPiXAoDSw5ULAAAAKApaJtX3+v87G59weFuqt39Jsbq26pn4muuantzjCdVwUACUFjIOAAAAoFhomdTF1/82dWvI4W0Jdry4hTGHzWmv27s9/PgjNpeD4wKgVJBxAAAAAMXE0C/9wzdTt4asdk+g/WtbGHOIiMPrbn6ys3pbA3ORAvj/2bvvODnKM8Hjz9tdHSfnqJFGMwozCggEiGCQECabDAbjvME+3955d2/3fOf1587nXeeweM3aBptg1jgt4IADFpiMBQYEmCwURjmgONKMJnXXe3/UdKlDdU33qGemw+/7hz6lt59637eeqp7R+6iquyBQ4wAAAADyjDbf/MXdg7Eyh8dXMbPTqelsaT9jcai2kjMDIM9R4wAAAADyjzbf+vldBzY85fWV1c//sC/UPLPTMQK+pqVdjUvn8egKgHxGjQMAAADIU1see/jAhqdEpGbudcZMlzlEJFRT2X7Gkoq2Rh5dAZCfqHEAAAAA+WvLYw+/8/rjIlLTeW0+lDlEpH5+x6wzTwpUlXN2AOQbahwAAABAXtv+x0e2rf25iNR0XhusWaQTiYhosTZ0GlY/STFJ8WlfSmy3XjICvtZTeht6uzw+gxMEIH/wIwkAAADId/tee2lssL/rgo9WtJzr8QaP7V+X8LISJUpElHJ+hsSqTlivpv45HpP41+PbWiS2bZU57H0rmusrmuv3r+87smuPaM4SgJnHfRwAAABAATjct3nTw3eJSFnj6eH65fkzsfoFnW2nLfWXhTlHAGYcNQ4AAACgMORtmSNQXta+4qTGRfOUh/UFgJnEzyAAAACgYORtmUNEKpob5p53RnlTA9+6AmCmUOMAAAAACkl8maOi7d2SZxWFxsUL205bZgQDnCkA048aBwAAAFBg7DJHsGpeVcd78q3M4S8v6zj7tLp5c3l0BcA043tVCpKpOXEAckzrLpIA4AR+hnycJMycdhHyDwAi3McBAAAAAACKA7cDFCSPiqR7SYtWEv8959o5auIbGuNjtOSmn6xizGkcK+kwp2AsZaYJ0aIm6scxRuuUmZ/gnM1sjkvnIj9mBhf7hP1okQnzM2E/OpscykSHn9CPcjrMpPepY27Tx8RH5ySHpnUHh1KbXM+yaz/WFZ7Z9azcfjpl/vMnq2N3+SE2PmellNY65cqJ78f9yk/Nj+l4/SjX6yflvKe5fpRobc9HTTSfdLmKZvxzQ6s0nWjn906668fM5nJNf+qdj9jM8keHmfGvnvTXj4pd9lpP9keHti6JTE+9Q/6TcpXJqXfMT9JhxmJSf39pnfSrx7qDQ6nbsj/12fzqUfFDO+Yq4fpxfK9pMdVEv5LizoUW5/dadtePo28bGgAAIABJREFUy7veHku7XiSuL2kR8ZeX9V7/t15f2ejgjiPbH3QMtn76KvHaP/FU7KdfQnfq+P+AHn9JHz98a8fYvt7k3wbKOhyP3X9cuzq4acuhLVvTnMe0PzqU6/WT8t6xz1qG/3Rxvn5E6TT/JHP/90Z8P2aW78E0P39SZ6Jd/sma1a+e8X6Scxg34vgvRxGtzSz/+Zf+V4/TP9viZxj3vnA59W7Xj9ZPsWAs6cUyKQAAAAAK1+jAwBv3fis6dsxf1l456xLlDebnPGu7Ouecc1a4vo5TBmDqUOMAAAAACtvowMAb9/6bVeao6bwub8scRiDQdsqy1lOWeXw+zhqAqUCNAwAAACh4dpnDY4TzucwhIuG62rmrzq1sb5v4CUcAyBI1DgAAAKAYxMocg1aZQzwBHWMFxD5b4XijjpP2pcT21H5SOXaVtNGwcP7sd50ZqKrkxAHIIWocAAAAQJEYHRh4/WffjI4Oeoxw7dzrPUbI/ohQiX0mqIqJ33Z7KbE9tZ9Ujl0lbYiILxhsO31545JeHl0BkCvUOAAAAIDiMXZs4LWf3myVOWo6r/MGavN8whUtzZ3nnVPe0syjKwBOHDUOAAAAoKhEhgfjyxxGqCn/59y8dPGsM1f4y8s5fQBOBDUOAAAAoNjYZQ4RqZ59ZUGUOQIVFR1nn9m0dLHyskgBMEn8+AAAAACKUGR48OW7vzh8eJuI1My5oiDKHCJS0dLS9e7zy5tbOIMAJoEaBwAAAFCktPn6vbfFlTkaC2XizUtPmnXm2UYwxDkEkBVqHAAAAEDxiitzVM95TwGVOQIVlZ0rV9Uv7FVeL6cRQIaocQAAAABFTZuv33vr0KGtUmhlDhGpnt05+5xV5S2tnEYAmaDGAQAAABQ7bb5x/23H9m8RkarZlxVWmcMIBJuXntx66goeXQEwIWocAAAAQAnQ5pu/GC9zFNzdHCISrqufvfL86q75ohQnE0A61DgAAACA0hBX5ii4uzkstd0LZq+6IFzfyMkE4IgaBwAAAFAyEssc3mCDjhERx22d2G69lBCQwrGrpI20wyWOlfqS1x9oXr6i5dSzPD4/5xNAEmocAAAAQClJLHP4wk1KKaWUiKiY+G2V2G69lBCQwrGrpI20wyWOlW6gcH1j5/mXVnXM5dEVAPGocQAAAAAlJq7MUdlxaSE+tGJp6D1p9qqLAtW1nFIAFmocAAAAQOmxyhwHtkiBlzmMQLBtxcrGpacpr5ezCoAaBwAAAFCStPnmz28d2LtZCrzMISIVrbO6LryqvGUWj64AJY4aBwAAAFCqtLn+gdsG9mwSkaqOS41gQ0EfTfOyFbPOOt9fXsWJBUoWNQ4AAACghGlz/a+/Z5U5qjsuKfQyR6CievY5FzYvW8GjK0BposYBAAAAlDZtrv/19wb39UlRlDlEpLJ1dueqSytaOzi3QKmhxgEAAACUPG2+9cvvWh9BWhxlDiMQaj75jI5zLjRCYU4vUDqocQAAAACwPoK0qMocIhKorO5cfXlD7yk8ugKUCGocAAAAAETE+kLZ7w73bxeRqlkXF0eZQ0SqO+fPXnVZuKGFMwwUPWocAAAAAGJM8/V7/734yhxGINR2+sq2FecZoTJOMlDEqHEAAAAAiGOar9/7reIrc4hIWUNz5+orauctFqU4z0BRosYBAAAAIJFpvvmLb48M7BSRqo6LvcF6rbXW2nrR2tDpxb9qbydtOMYkdWIPl+EQ7lMaH1dL3bylnauvKmto5TwDxYcaBwAAAIBk5ujYG/fdYpU5qjsu9oUaVezeB2tDpRf/qr2dtOEYk9SJPVyGQ7hPaXxcJUopXzDcvmJ1y8nneP0BzjVQTKhxAAAAAHBglTlGB3eLSFXHRcX00Iqlsq2z+8Ibqucs4NEVoGhQ4wAAAADgzBwde/s3tx0vc4Qaiu8Ymxav6Dr/en9FNacbKALUOAAAAACkNdJ/1C5zVHdcXHx3c4iIEQx1rryy5eRzlNfgjAMFjRoHAAAAADcj/Uc3PXSXGRkSkaqOi5S3OD/DorJt7oJLP1DZNpdHV4DCRY0DAAAAwASO7Tuw5ck7YmWOy4q1zCEiraesnP2uKwIVNZx0oBBR4wAAAAAwsUMb+7Y8+X0zMuQxQlUdlylP0ZY5gpW1nSuvbly0gkdXgIJDjQMAAABARg5t3Lz9mR+IiMcIVXZcXMRlDhGp7VzUvfr6irYuzjtQQKhxAAAAAMjU/rfe3vf6L0TEY4TKms8UKeaPrjCC4dZTVs9eeY0RKufUAwWBGgcAAACAjGnZtvZJq8zhCzeXt64s7jKHiAQr67re/b7GxWfxWaRA/qPGAQAAACAbWratffLQ5gelZMocIlIzd3HXu99f1jiL8w/kM2ocAAAAALKkZcsTjx7d9ScR8YWbw00rdBwRSd1O2nCMSepkfCgnE+7u2JvWWnS6DifuxxsIta+4pP2MS32hCi4BgBoHAAAAgCJhjkU2rrlv8J2XRSRQMSdUu1jFiEjqdtKGY0w8eyDlZMLdHXtTSolK12Gm/ZQ1tHdd8P66+ct5dAWgxgEAAACgiMocv//J0IFXRSRUtyRQ01s6x96w8PTuCz8cqm3mMgDyCjUOAAAAAJMUGR7d9IefjZc5akurzGEEw7PPuaZ1+QVef5ArAcgT1DgAAAAATN5I/8CmR+4dO7ZHREK1S7zBupI6/Mr2efMu+YvqzsU8ugLkA2ocAAAAAE7IyOH+LY//wCpzVLatNkqszCEizUvPnXfRhwOVdVwMwMyixgEAAADgRB3ZsXv72nvGyxzt53tLr8xhBMs6V9/UeuqFymtwPQAzhRoHAAAAgBw4tHn79rX3mJFhEalsW+31V5VgEirbFyy4/BOV7Qt4dAWYEdQ4AAAAAOTGoc3b9776n2ZkSETKW85VnkBp5qH11Is7z/uAL1zJJQFMM2ocAAAAAHJm1wsv7H3lXjMy7DGClbMuLNkyR7Cqofuiv2pauopHV4DpRI0DAAAAQO5o2bVu3d5X48sc/pJNRm3XKd0X/mVl+0KuC2B6UOMAAAAAkFNadq97sX/7kyLiMYLlLeeKlO6HUxjBsrbTLutc/SEeXQGmATUOAAAAADmmTXPLE78/tHmNiHgD1WXNZ4sorbXWWkTsP+NbkhzvysmEuzv2prUWna7DLPpJjYx1njBWvEBlfdeFf1W34Aw+ixSgxgEAAACgwJhjkS1PPnSo7yER8YWbyprPVkoppUTE/jO+JYndj3Iy4e6OvSmlRKXrMIt+UiNjnSeMlaqx9+x5F/+XsqZOLg+AGgcAAACAwipzjO187olj+18SEV+4MVDNx1KIESzrOOuajnddz6MrwFSgxgEAAABgqoz0H+l75L6hg2+ISLCmx1+1gJyISHnj7O6LPlYz92QeXQFyixoHAAAAgCk03H9k88M/GunfKCLBmh5fWTs5sTQvu2DeJZ8I1bWRCiBXqHEAAAAAmFrD/Ud2Pv9AZOgdEQk3nuYN1JITixEs71z1gbbTr/D6Q2QDOHHUOAAAAABMuUOb+7atvccqc5S3rqTMEa9q1qIFl/9dTddyHl0BThA1DgAAAADT4dCmvu1rf2RGhkWkom2V8vjJSbyWZRfOPf8vApUNpAKYNGocAAAAAKbJwc19+1673ypzlLedT5kjSbCqce67/6r1tKuU10c2gEmgxgEAAABgumi94/k/WWUOjxGsbHs3ZY5UVbMW9Vz1qapZi3l0BcgWNQ4AAAAA00jrHc8/e2jTQyLiMYLhhtNEWMk7aF9xddf5H/OFq0gFkDlqHAAAAACml9bb1j7ev/UPIuILNZY1nUWZw1GwqmnexZ9sPukiHl0BMkSNAwAAAMB0M8fGNj/6u0NbHxYRX6gxVL+cnKRT171i3sX/vWrWElIBTIgaBwAAAIAZYI6NbXn0waFDb4iIv6zdX7lAx7HDtJP49nQxqb1prUWn6zCLflIjY50njDVhV+5TjQ8zAmVtp13T8a4P+sLVXDkANQ4AAAAA+Vjm2Pzwj4cOvSkioZqeYPVCFWPHKCfx7elikuKtMFHpOsyin9TIWOcJY03YlftUU8MqmrrmX/r3DT2rRLGOA6hxAAAAAMgzw4f7Nz/8o9HBHSISrO4xgk3kxF3jotUL3vOP5c3zSQWQihoHAAAAgJk0fLi/77G7I0PviEhZ05neQC05cecLVsw550Nzzv2INxAmG0A8ahwAAAAAZtjArt3bnrnHKnOUN5/rDdSQkwmVN3X1XPHpmq4VPLoC2HgzAAAAAJh5hzZu2v7sT8zosIiEG05VHj85yUTzyZfNu+wfQnUdpAIQahwAAAAA8sTBDW/veeknZnTYYwTLW1dS5siQEazoXP3XbStu8AbKyAZKHDUOAAAAAPli90vr9r1+vxkZ9hjBcNMZ1tedIBPVs09aeOVnqjpO4tEVlDKufgAAAAB5Q+sdf3rm4MZHRMTrrww3nk5KstJ+xg1dF/xNoIqvp0GJosYBAAAAIJ9ovfWpB4/seFpEjFCDv2oeKclKsLql+6K/a1txo/L6yAZKDTUOAAAAAHlG600P33ds/xsiEqxeYIRbSUm2qmcv673281Udy0gFSgo1DgAAAAB5xxwbffvX3x8b3Csi4YZT+DbZyZl15k1dF/29L0z2UCqocQAAAADIR9Gx0fUP3BwdPSIiofrlonw6RkQct9OxOtRai5Y0AVn0kxoZ6zxhrAm7cp/qJI7OcYhAVcu893y6adkVPLoCahwAAAAAMGNGj/ZvfPAW69tkK9rOVcqjlFJKiYiKid9Ox+pNKSVK0gRk0U9qZKzzhLEm7Mp9qpM4Opch6ua/a95l/7u8ZSEXFahxAAAAAMDMGNy7Y9OD3xIRjzdY1nga3yY7ab5QZce5f9Wx8mM8uoIiRo0DAAAAQF47uqtv57M/FBFfqD5Yw50IJ6S8ef68yz9T33uBKBaDKEJc1gAAAADy3d5X1h7avFZEAhVz/OUdJOQENS65eP4Vny1v6SEVKDLUOAAAAAAUgL4//LB/+0siEqpd5PVXk5AT5AtVzl75sfYzP+gNlJENFA1qHAAAAAAKw6Y1d4wc2SUi5c1nKm+IhJy46tnLF179+dp55/DoCooD1zEAAACAAmFG37z/q9GxIbHKHB4/KcmJluXXzb/ic+H6TlKBQkeNAwAAAEDBMMdGXv/pZ6NjQx5vIFx/El+zkiu+UOXcC/6+7YwPKy+VIxQwahwAAAAACklk6Ojmh24VESNYX9Z4KgnJoerZyxdd/42q2ct5dAUFigsXAAAAQIE5uvOtLU/8QESMYH2gqouE5NasMz/SfdGnAlUtpAIFhxoHAAAAgMJzcP0zu1/8rYiEqucZwXoSklvB6rbuiz/dfiaPrqDAGKQAAAAAQCHate7XFW0Lypu6yxqXH939R3NsIP5VnRKvtRattMMropSIKK31eNjxTnRimDreVWL7+L6xmKQAJypNTPLusW3nDrXW6Ua0Z2VHpp9T6nAiIlUdy8MN8/a8/PP+rc9zvaEgcB8HAAAAgMKkzbcf+Mbw4d0iUtZ4qsfrV2nYa35RkiZAWQHu4ssHSe1KjXftGODYlftU3cNcdnHcN5N+HMP84aqOsz7affE/+cpqueJAjQMAAAAAprTM8fXI8FGPN1DWfBZfszJFgtVtC6/4fMsp1/PoCvIcNQ4AAAAABSwyPPD2b24WEY83EG44hTLH1KlfcN7CK/65vGUxqUDeosYBAAAAoLANH9y5/ldfFREjWOev7CQhU8cXqpqz6r/NWf13vrI6soE8RI0DAAAAQMEb3Ltp1wsPiEiwqtsINZOQKVXe3LPgyi82LL5MFCtK5BeuSAAAAADFYM+Lvzmy800RCdUt8fqrSMhUa1p6xfwrvxSu7yIVyB/UOAAAAAAUiY0P/tvY0BERCdadpDw+EjLVfKGquRd+qv2sv/QGyskG8gE1DgAAAADFQptv3PtZsT5/tH45nz86ParnnN573c1181fz6ApmHJcgAAAAgOIRGR5461dfFhGvryJcdzIJmTatp9208OqvBarbSAVmEDUOAAAAAEVlcO+mXet+LdbXrFTMJSHTxheqmn/Z52ad/THl9ZMNzAhqHAAAAACKze51DwzseVtEgpVdfP7oNKuec8aiG75bNWcFj65g+nHNAQAAAChC63/9jcjIgIiUNZyuvEESMs06zv549yWfDVTx6AqmFTUOAAAAAMVIm6//7P9Ym+WNK5THp7UWLdqJiBZxfikxLNZ3SrvW4107Bjh25TLEhGEuuzjum0k/7rNyiUnXEqxun3fZP7csfx+ProAaBwAAAACckMjwwFsPfFlEPN5AqGaJUh5RopxY38CiJmL3nNqu1HjXjgGOXbkMMWGYyy6O+2bSj/usXGJcWkRU3YILFlz51ao5Z3BBghoHAAAAAEze4J6Ne17+nYgYwbpA5TwSMiN8oaqOsz8+77Iv+MrqyQamFDUOAAAAAMVs53P3D+7bLCL+8g5fWTsJmSmhmo6eq/61dfkH+CxSTB2uLQAAAABF7q1ffik6ekxEQtUL+ZqVmVW/8MKeq79Z0XoSqcBUoMYBAAAAoNhp87Wf/ZO1GW5Yrjw+UjKDfKHqOef9Q+fqT/HoCnKOGgcAAACA4hcZOrrh9zdb2+HG060PGcUMKm9Z3HP1zY1LrubRFeQQFxMAAACAknBk22v71z8uIh5vIFi3lDJHPmhedu3Ca28JN8wnFcgJahwAAAAASsXWJ344fHi7iBiBWl/5bBKSD3yh6q6LPzvrXX/jDVSQDZwgahwAAAAASsjr9/2LGRkWkUBlpzdQS0LyRHXnWb3vvbVuwUU8uoITwdUDAAAAoJSY0dfv/b/WZqjuJI9RRkryR9vpH+2+7IuB6lmkApNDjQMAAABAaRk9emDrk9+3toN1Jwlfs5JPQjWz51/+1Vnv+qQyAmQD2aLGAQAAAKDk7H/r2cNb/yQiHm8gVLfMatQTsXdPbddaS1xMJl25DDFhmMsujvtm0o/7rFxiXFpEYslJjBHt3G6rnnPW4hvvrppzNo+ugBoHAAAAAExg00O3jQ6+IyJeX7m/sltE1ETsfVPblVISF5NJVy5DTBjmsovjvpn04z4rlxiXFuvLa1JjRDm3J5l9zie7L/2Sr6yByxXUOAAAAAAgPa3fuO//mdEREfGXtxuhRlKSh0I1s3uu+ffW0z7i4dEVZIAaBwAAAIASFR0Z2rTmG9Z2sKZXeVlF56mGnksXXn1Ldee7SAXcUeMAAAAAULqO7Niw+8WfWtvBulNISN7yhapnn/PJ+Zd/nUdX4IIaBwAAAICStmvdmoE9r4iIx+sPVPeQkHwWqpnTe+2tTUuv47NI4YjLAgAAAEBp03rjmlvHju0XESPUyAdz5L/mZTf2XndbRRv33SAZNQ4AAAAApS46MrTx9zeb0VHhgzkKhC9U03n+Zzov+CyPriAeNQ4AAAAAkGP7d+1+8WfWdrDuFB6FKAgVrSf1XHdb3YJLOF+wcB0AAAAAgIjInpcf69+2VkQ8Xn+wZjEJKRStK/669/o7w40LSQWocQAAAACAiIho3ffo3SP9W0TEG6gxwq2kpFD4wjXzLv1Kx7n/QCpKHDUOAAAAABgXHR3Z9IfvmmMDIuKv7PYYYXJSQGrmnksSShw1DgAAAAA4bujgnq1/vCP2+aOL+aAHoIDwdgUAAACABAc3vHi473GxPpijukfH2AE6kdUicTF6IuliknbPsCvHsGz7cZ+VS4xLi0gsOYkxop3bMz86q3PH6dlmnfMPyuArcqhxAAAAAEBp2/Lkz4YPbRARI1DjL+9QSiml7FdVIqtF4mLURNLFJO2eYVeOYdn24z4rlxiXFpFYchJjRDm3Z350VueO07PVzl219P33VXeu5HqmxgEAAAAApUtHIxvXfDsyclhEAhWzPb4KclKgZp/7jwuuuMVX1kgqSgE1DgAAAABwMHL00Nanvjf+wRzVPaIMclKgQrWdvdfd2Xb6xz08ulLsqHEAAAAAgLPDfa8f2LBGxj+YYyEJKWgNPVf2XHNHdecqUlHEqHEAAAAAQFrb1/5yYO+LImIEqn1ls0hIQfOFauec+6muC77o59GVIkWNAwAAAADS0tFI32P/MTq4S/hgjmJR0Xpy73V3N530fr4YuPhwRgEAAADAzejRQ1ueuMP6/NFw3Ul8MEdxaDn5Q4uuv6ei7TRSUUyocQAAAADABI7u2LD/rQetzx8N1SwiIcXBF67tuuDzXRd+2RuoIhvFgRoHAAAAAExs5/O/H9jzgoh4fGX+ijkkpGhUtJ6y5H331i+8kkdXigCnEAAAAAAyoHXfY/eMHNkkIr5wi9dfTUqKSfsZ/633+p+EG7hJp7BR4wAAAACAjESGBrY+/aPI0D4RCdb08MEcRcYXqp136Tdnn/tPBo+uFCxqHAAAAACQqaM7N+57Y/yDOQJV87TWWmsR0VpLbNv6q7t0MUm7Z9iVY1i2/bjPyiXGpUUklpzEGNHO7ZkfndW54/RsmRxa6lg1c1cvft/91Z2reXSFGgcAAAAAFLldLz0yuPdFETEC1b5wi1JKRJRSopS1bf3VXbqYpN0z7MoxLNt+3GflEuPSIhJLTmKMKOf2zI/O6txxerZMDi11LCuyc9VnFl5xa7CmkwueGgcAAAAAFC+t+x794ciRPhEJVHYqI0xKilKotqvnqjtmr/yMxwiSjUJBjQMAAAAAsjM2dLTv0dujI4dFJFjdw8KqiNXOXd177Q9r5q4mFQWBtyIAAAAAZG3wnW27X7rfjI56vP5AZRcJKWK+cO2clZ9ZeOX3/OVNZCPPUeMAAAAAgMnY++oTR7avFREjVO8N1JGQ4haq7Vp0/Y/bVvwNj67kM2ocAAAAADApWm95/EfjH8xRNY+vki0Fjb3X9FzzH5Xtp5OK/ESNAwAAAAAmKTo63PfYndYHc4RqekhIKfCFa7su+FLXhV/j0ZU8RI0DAAAAACZvcO+WPX/+lY6Oeoywv7yDhJSIitblvdf9pPmkD4nyko38QY0DAAAAAE7Inj8/cnTX8yLiCzd7fOUkpHS0nPLRJTfcW9m+glTkCWocAAAAAHBitN78yA9GB3aISKCymw/mKCm+cF33BV+Zs/L/GIEqsjHjqHEAAAAAwImKjg5vXHNLdLTf4/UHq/gq2ZJTO/fdS296oKHnGh5dmVnUOAAAAAAgB4YO7Nz5wn+KiNdf5Q02aFcikq49/qV0YS67OO6bST/us3KJcWkRGd9OihHt3J750VmdO07PlsmhpY6VyZSSJxbbaF/xt4uvv6+scTFvh5nCPVQAAAAAkBv7Xn+qsrWnes67AhVzzNF+bY6KiIhKClNKaS1KKWs7cVk+HmC1a61jASp+9+PbTo0iynrFboz149yJHRw3nCQVC+zZ2jOP7yepczvePpykEbU4t6fmyqomOM9KUrOUnOfUhKdG2YPalYs0kQlHZ09MKSVaJLaLv6x+wWXfPbDp4e1rv2pGhnlTTDPu4wAAAACAHNF6y+N3jxzdLiLBml7yUbJq57572Qcfrp77bh5dmWbUOAAAAAAgZ6Kjw5seusWMHFMen79iLgkpZXNWfXbBlbcHa7gMpg81DgAAAADIpaEDO3c+f4+IGME6j5/v2ihpodruhVffPXvlZz1GkGxMA2ocAAAAAJBj77z2eP/Wp0UkWDWfr5JFTdcFPdf+rHruBaRiqlHjAAAAAIBc07rvsTvHBveKSKCSRxUgvnDdnFX/b8FVd/vLm8nG1KHGAQAAAAC5Fx0d2vD7r2tzzOuvNMItJAQiEqrt7n3v/W1n/B2fRTpFqHEAAAAAwJQYOrBj+9rbRcRf1qa8IRICS+Oi9y6+8ZeV7WeSipyjxgEAAAAAU2XfG08e2fGciASr55MN2Hzhuq6LvtF10b/5y7nHJ5eocQAAAADAFNq45pbI8CHl8fnKZpENxKtoO33RDb9oXvYXPLqSK9Q4AAAAAGAK6Whkw4NfFRFfuMljlJMQJGlZ/rHFNz5Q1riUVJw4ahwAAAAAMLWO7dvyzmu/FpFAVRerMKTyhevmX3777FX/YgSrycaJ4IuaAQAAAGDKbV/74+o5p/vLm/wVs0eP9okorbVToBKR+Jdi247BorVWKnmX8Y6USupHp51d6nAOA9kd29vWRmwg7RKfNBlrfk7tE46ekCq72TEgsVG5JSCT4ZwCYhtxU8ko4c5j1cy9sGbuhTue+dr+t+4XHeVdMwlUEAEAAABgOrz1q8+JiBGs8/qrrNJAKrs8Yf9VTSRpF8d9M+nHJcy9K5cWq2STGiPKuT3zo7M6d5xefJVnEpnMZErJE8sgJ5knfNZZn1p842+DNd28ZahxAAAAAECeGhs8tO3p20XEXzGHtRhc+ML1Pdf8dPaqz3uMINnICu8rAAAAAJgm+974w7H9m5XH56+YTTbgrrbr4pM+/HT13Iv41pXMUeMAAAAAgOmz4XdfFhEjWOvxVZINTGjOqs8vvOoeHl3JEDUOAAAAAJg+keGjfY/+u4gEq7pE8S0QmFiodl7PNT9tO+MfeXRlQtQ4AAAAAGBaHdz4x6O73xSRAE+sIGONi97Xe/2vq+deTCpcUOMAAAAAgOm2+eGbRcTrr/T6q8kGMuQL188574sLrv6pv7yFbDiixgEAAAAA081+YsVfMYdPlERWQrXze2/4bdOyv+bKSaVEzIlitPWdxoUQo0VpERGtRU3UT5YxVsdOQ2o10ZwziNETxpiaR/UAAAAAIFPLPnpwfDWnlNainP+PX9kLTK21Faxcl4paa6VUQrCWpFWqFWOm6cbu3wpLnUlqV479jB3bv/3pfz6y/cnU5acWLaLTLKi107LadIp0Wglra3fTaXluph8x/fp9vE87CzqxNzMWHVWirLWz3aeVMi2mFlPE7OvbwH0cAAAAAAAUHl+4vuuiW7ouuc1f3ko2LNwaUJA8KpLupaT7QXTa0l1W98uQlTX4AAAgAElEQVS4lACn7t4ccxrHSjrMKRhLpblhatL3HGmdMvMTnLOZzXHpXOTHzOBin7AfLTJhfibsR2eTQ5no8BP6UU6Hmf6+reO5zewesZzk0NS6S0SU2uR6ll37sa7wzK5n5fbTKfOfP1kdu+v/Yygl4/+9o1OunPh+3K/8TP8zRLlePynnPc31o6z/aNLjV9kE80mXq2jGPze0StOJdn7vpLt+srp1NP2pdz5iM8sfHWbGv3pc/vcpdtlrPdkfHdq6JDI99Q75T8pVJqfeMT9JhxmLSf39pXXSrx6tPy4iSt2W/anP5lePih/aMVcJ14/je01Luv9SNZ3ehlqc32vZXT8u73p7LO16kbi+5J6TdDlMd+on/aMj3fWjnX4pp7sOna8f5Xr9pLx37LOW4T9dnK8f51u4tU6Zsk5/XGbm78Haeed2nvcJERk+9IY2R+NuDrDeYvb/4R///+n4/9WPOt96MH5HQNL9AvHHkBjvsX8bOt4yYLcrpUytJOU2BKVU/AztditJcTEJV7bTWB7HoZ1nJeMz0Vp7POM7vnxXbaktDyvbzui94Xc7nvny/jfvFR0t9cUy9QIAAAAAmCkHNzw5+M5GEfFXdNoFGh0Tv51O0i6O+2bSj0uYe1cuLVY1IzVGtHN75kdnde44vfj6yCQymcmUkieWQU6ySniGMfEzaT/zfy+6cU1Z4zJqHAAAAACAGbPx918WEY8RMkINVotSx2/lUBNJ2sVx30z6cQlz78qlJf52koQA5dye+dFZnTtOz5bJoaWOlcmUkieWQU6ySniGMUkz8Zc1zL/i7jnnfdkI1lDjAAAAAADMgMjw0S1P3Coi/rJ25fGTEJyI2q5Ll3zg8YbeG0vzW1eocQAAAADADDuw/rFjB7eISKCyk2zgxM06658WXvWzYM28UjtwahwAAAAAMPM2/PYLMv7EShPZwIkL1y3ovfbnc877iscIlc5RU+MAAAAAgJkXGTqy/ZkfiIi/rFl5gyQEOVHbdemyjzxX03VpiTy6Qo0DAAAAAPLCO68+ONy/U3hiBbnWed5XF151r7+8teiPlBoHAAAAAOSLt3/zeRFRHp8RbiEbyKFw3YJFNzzUfsani/vRFWocAAAAAJAvxgYP7nrhpyJiBOuVN0BCkFuNiz+46L1rarreU6wHSI0DAAAAAPLI7hd/HhnuFxF/BU+sIPd84YbO877ec82v/OVtxXd01DgAAAAAIL+8/Zt/ERHl8fnCrWQDUyFct2DJ+x5pPvm/FtlnkVLjAAAAAID8MnRw+/71D4uIEeKJFUyh1lM/ueSmxytnnVs0R0SNAwAAAADyztan7oyOHhWeWMEU84Ubui/+XveldxnBmiI4HGocAAAAAJB/zOjGNV8V6ztWQi06PSvcsd1x272rCdtTY1xaRMa3k2JEO7dnfnRW547Ts2VyaKljZTKl5IllkJOsEp5hjMNMJttVRetZSz7wbH3v+wv90RWDHx0AAAAAkIcG9rx1dM9rFc2LjVB9dPSwjo5Y7UopO8beim8UUdYrdqPWWikVF54aL0qpWFgyu10ppXXiBJQ9kEqNtxbgcTGxAHFuj+/E7iolxu5ExUZxnrbdmDrt1FzF1wvSRCYcnT0xpZRokcRdrJh03aScl+SZOCbfvSv3OVudx3flGN9x9mebl32i75FPDu59sUDfNdzHAQAAAAB5asODXzajoyLir5hNNjANfOGGBVf8dM553zCCtYU4f2ocAAAAAJCndGRk61PfEeuJlXAzCcH0qO2+fOkH/1TTdXnBPbpCjQMAAAAA8tfBDX8c6d8hIkawju9YwXTqXP2vC6/6VbBmfgHNmRoHAAAAAOS19b/5nDbHhCdWMO3CdQt7r/3dnPNu9hihgpgwNQ4AAAAAyGtjxw7vffVXwhMrmCG1XZcv+8irNV1X5P9UqXEAAAAAQL7b+fy9owN7hCdWMHM6z7t54dW/9Ze35fMkqXEAAAAAQN7T5obff8Xa9JXzxApmRriuZ/H7nm474//m7aMr1DgAAAAAoAAMH9pxcONjIqI8hjfUREIwUxoXf3TRDU/VdF2Zh3OjxgEAAAAAhWHLE9+LjPQLT6xgpvnCjZ2rb+m+9Mf+8va8mhg1DgAAAAAoDDo6tuWxb40vMnliBTOtsu2cxe9b23zy34ry5smUDM4KAAAAABSK/m0vH925rqJtufXESmRwt1JKRLTWSZFKqfhGnRpxXEKYc8Tx9uPdWhuxgbRLfNJkrPk5tU84enwPYjc7BiQ2KrcEZDKcU0BsI24qGSU8i7FcYlQshxn2kxqmczGlluX/o77nA9ue+tSR7Y/M+BuE+zgAAAAAoJBseuRbZmRYRIxgnccI2svdJPGNjgHuu2TelUuLyPh2Uowo53bHodPPynl68SWArDLguGO6bCREZpCTrBKeYYzDTKZyOJcYf1lT98V3d1/6EyNYS40DAAAAAJCp6PDAzufusraDFTyxgnxR2XbO0g++0tD7kRl8dIUaBwAAAAAUmHdef2Ro/3oRUR6fL9xMQpA/Zp39+SU3PV/WdOqMjE6NAwAAAAAKjTY3PXqLNiMi4gvWKY+PlCB/+MKNC6745ezzbvEYoWkemhoHAAAAABSekcO7973+gLXtL5tFQpBvaruuWvbRDTVdV03noyvUOAAAAACgIO147j9HBnaLiMcIenyVJAR5qHP1txdevSZUu3B6hqPGAQAAAAAFSUfHtq+9U5tjIuILNZEQ5KdwXW/vdY91rv7ONDy6Qo0DAAAAAApV/5YXj+xYJyLKY3gD9SQEeau2++rFNz5b2331lI5CjQMAAAAACtjWJ78fHRsQEV+ogQ8fRT7zhRs7V3+n59pH/OXtUzQENQ4AAAAAKGBjxw5vf/Yua9sItZAQ5LlwXe+Sm56fdda/eIxwzjunxgEAAAAAhe3AW08O928REa+vzGOUkRDkv8bFf734hj9Vzjo/t90aZBYAAAAACps2N675au81/+oxgr5w63D/BhFRSmmtj4fE/yVl//gw54jj7ce7tTZiA2mX+KTJiIgox/YJR4/vQexmx4DERuWWgEyGcwqIbcRNJaOEZzGWS4yK5TDDflLDdK6n5BjmcPatekSoofuiHx3Z+eS2J//H6MB2ahwAAAAAABGRkcO7D256rH7BJcpjGMH66MhBa21pLzWVUiIqfnmcUC1IXDCnrlStdqWU1gn72u3xncctvJNiEpbWqe3xnSQtkh1mJcpe3jsG2I2p004cUSWt29NEJhydPTGllGiRxF2smHTdpJyX5Jk4Jt+9K/c5W53Hd5Uu3nW48Rm6T8mxK5fhqtpXLrlp3a4XvrL7pW+Kjp7gG4FnVQAAAACgGGx7+q7RwT0i4gs1iPKSEBSQ1lP/19L3v3zij65Q4wAAAACAYqCjY9vX3qHNiIj4Qo0kBIXFF26ad8lP5qy+1QjWTboTahwAAAAAUCQO971wZNc6EfH6K5U3REJQcGq7r136obcaFv3l5O5FosYBAAAAAMVj6+O3RscGRcRf1ko2UKBmnf3lJe9/NVjbk+2O1DgAAAAAoHiMHTu849k7RUR5DI+/moSgQPnCTb3XPT1n9fc9RjjzvahxAAAAAEBR2f/W48P922T8UzkUCUHhqu2+7qSP7qjpvi7DR1eocQAAAABAcdHmxjVfMaPDImKEmsgHCl3n6u/3XPNUsLZ3wkhqHAAAAABQbEYO7zq48XGxPnzU4ychKHThusW91z3TftZX3B9docYBAAAAAEVo29N3jA6+IyJGuIVsoDg0Lv7E4htfqe1+b7oAahwAAAAAUIR0dGz72u9rM+LxBjy+ChKC4uALN3WuvrPn2mf95R2pr1LjAAAAAIDidLjv+aO7XpTx75Hlw0dRPMJ1S5bc9Gb7WV9L+ixSg9QAAAAAQLHa+vh3em9Y5PWVGaGm0WN70kTp41taO0ccb1f2trWhlNWiXeJjMXGUY/uEo8f3IHazY0Bio0p3aJkO5xQQ24ibSlyMzsVYLjEqlsMM+0kN07mekmOYw9nP0XANiz5R3XnNtif/S//2B60WahwAAAAAULTGjh3a+ewdHed80uuv9Awf0DpiL48TqgWJC+bUFabVrpTSOmFfuz3+PpG4hXdSTMLSOrU99WYTe5HsMCtR9vLeMcBuTJ124ogqaSGdJjLh6OyJKaVEiyTuYsWk68Z+IXHmyvFem3RHl3qMrheCsotN7vGuw43P0H1Kjl1NariMYvxlzd2X/PLVH88fHegTnlUBAAAAgOK2/63HRvq3iYivrJVsoLhR4wAAAACAoqbNjWu+ZEZH+PBRFD1qHAAAAABQ5EYO7zrc97SI+IL1ZANFjBoHAAAAABS/rU98NzJyRHkMb6CWbKBYUeMAAAAAgOKno2M7nr1TRHzBOqX49gkUJ2ocAAAAAFASDq5/bOhQn4gYPLGCIkWNAwAAAABKxabff0lEvP4K5Q2SDRQfahwAAAAAUCpGj+7dv/5hETGCDWQDxYcaBwAAAACUkG1P3WpGxzzegMcoJxsoMtQ4AAAAAKCUmJFdz90tIr5ws4giHygmfJouAAAAAJSWd159oGnZdb5QtTdQFxneJ6Ltl7TWjrvEtSt729pQymrRLvGxmDjKsX3C0eN7ELvZMSCxUaU7tEyHcwqIbcRNJS5G52IslxgVy2GG/aSG6VxPyTHM4exPzXBCjQMAAAAAStDGBz/Xc83NRqA6OnpYtJm0YE5dYVrtSimtJT7Gbo+/JSRu4Z0Uk7C0Tm1Pva/EXiQ7zEqUvbx3DLAbU6edOKJKWkiniUw4OntiSinRIom7WDHpurFfSJy5crytJt3RpR6j6wlXdrHJPd51uPEZuk/JsatJDZdFjI1nVQAAAACg5Azt3zi4b72I+MItZANFgxoHAAAAAJSiLY/eLCIeb8BjhMgGigM1DgAAAAAoRSP9Ow9ve1b4HlkUEWocAAAAAFCi+h75hogoj+HxVZINFAFqHAAAAABQosyxob2v3CcivlC9KJaHKHhcxAAAAABQunY+9yMzOiYi3kAd2UCho8YBAAAAACXMjOx+4T9ExOsrVx4/+UBBo8YBAAAAACVt7ysPREcHRMQI8eGjKGzUOAAAAACgtGmz79Gvy/j3yJaRDxQuahwAAAAAUOqObFs3NrhPRLyBWhFFQlCgqHEAAAAAAGTLYzeL9T2y/iqygQJlkAIAAAAAwNFdrw7sfb28aZERqBkZPSo6Ev+q1jq2qexta0Mpq0W7xMdi4ijHdu04t+R9x3sQu9kxILFROXeS+XBOAbGNuKnExehcjOUSo2I5zLCf1DCd6yk5hjmc/akZTqhxAAAAAAAsfY98bfGNtyuPYQRro8P74leY1kJaKaW1WNv2Mjv2p0qNt1amcTEJS+vU9tTHZOxFssO6V5S9vHcMsBtTp504okpaSKeJTDg6e2JKKdEiibtYMem6sV9InLlyfEoo3dGlHqPruVV2sck93nW48Rm6T8mxq0kNl0WMjWdVAAAAAAAiImOD+4/sXCfW98h6AyQEBYcaBwAAAABg3Lanv6vNiIh4A/VkAwWHGgcAAAAAYNzYwP4Db68REY/Xz60cKDjUOAAAAAAAx21fe4cZHRURI9hINlBYqHEAAAAAAI7T0dF3Xr1frO+RNcpICAoINQ4AAAAAQILdL94bHRsQEW+glmyggFDjAAAAAAAk0NHRnc/cLtatHP5qEoJCQY0DAAAAAJDswIbHIsOHRMQI1IgoEoKCQI0DAAAAAJBCm9v++G1r0+uvIh8oCNQ4AAAAAAAODvc9NzqwR0SMYK0og4Qg/3GZAgAAAACcaHPrU7fMu+QLIuIN1ESG3hEREaW1Hn9daxFRymrRCbtq+69Kax2LiaMc27XzRLRTuxK72TEgsVE5d5L5cE4BsY24qcTF6FyM5RKjYjnMsJ/UMJ3rKTmGOZz9qRlOqHEAAAAAANI5uuPPx/avD9cv8PrKoyOHlES1FmtRbS+zY3+q+BVpbOGdFJOwtE5tT/3gD3uR7LDuFWUv7x0D7EalVNK0E0dUSQvpNJEJR2dPTCklWiRxFysmXTf2C4kzV46fe5Lu6FKP0fVMKrvY5B7vOtz4DN2n5NjVpIbLIsbGsyoAAAAAgLS2PvVtbUZExAjWkw3kOWocAAAAAIC0ju3bOHRwo4h4jJDyBEgI8hk1DgAAAACAm40PfcGMjoqIN1BHNpDPqHEAAAAAANyMDezv3/KUiCiv3+MNkhDkLWocAAAAAIAJbH/2TutWDj6VA/mMGgcAAAAAYAJjgwcPbnhIRJTH6zHCJAT5iRoHAAAAAGBiO/50tzk2ICKGv8bxW06BGUeNAwAAAAAwsejIwJ5X7hMR5fF6fRUkBHmIGgcAAAAAICN7Xv5FZPSIiBiBam7lQB6ixgEAAAAAyIiOju5e92Nr2+uvJiHINwYpAAAAAABk6J3Xft245KpAebPhr4iM9GsdVUpprUV0fJjW9l+V1joWE0c5tmvHQZP3He9B7GbHgMRG5dxJ5sM5BcQ24qYSF6NzMZZLjIrlMMN+UsN0rqfkGOZw9qdmOKHGAQAAAADIgjZ3PHv73NWfVh6vL1gTGTlgLWLjH12JW3hL7NXxP+OX1qntqc+/2Itkh4mIspf3jgF2o1JKa+dORI7P3F5Ip4lMODp7Ykop0SKJu1gx6bqxX0icuXJ8/Cfd0aUeo+tpU3axyT3edbjxGbpPybGrSQ2XRYyNZ1UAAAAAAFk43PfMyMBOEfH6ykR5SQjyBzUOAAAAAEA2tLnj2bu0GRURg0/lQD6hxgEAAAAAyE7/1ueGDm0SbuVAnqHGAQAAAADIkja3Pvnv3MqBfEONAwAAAACQtWP7Nhw7uFG4lQP5hBoHAAAAAGAytj55ixkdFRGvv4psIB9Q4wAAAAAATMbQ/k1Hd78kIl6DWzmQF6hxAAAAAAAmaesT9q0clWQDM44aBwAAAABgksYGDxze+kcR8RphbuXAjKPGAQAAAACYvB3P3GGa3MqBvECNAwAAAAAweWODBw6+/QfhVg7kAYMUAAAAAABOxLY/3lrTtcrrC3t9lZGRgyKitY69qLTWSqm4FqvZsV079p+873gPYjc7BiQ2KudOMh/OKSC2ETeVuBidi7FcYlQshxn2kxqmcz0lxzCHsz81wwk1DgAAAADACdLR0b2v3N+6/INeXzg6dkSbkdjCe3wpbv8Zv7RObRdR6RbJDoOKspf3jgF2o1JKa+dORJQ9qL2QThN5fEr2ol0ppZQSLZK4ixWTrhv7hcSZq9TDdzm61GN0PUXKLja5x7sONz5D9yk5djWp4bKIsfGsCgAAAADgRO15+b5o5JjwqRyYUdQ4AAAAAAAnSkdHd7/wQ+FTOTCjqHEAAAAAAHJg76sPREb6RcTwV5ENzAhqHAAAAACAXNDmjj/dJSJeH7dyYGZQ4wAAAAAA5MaB9Q+PDR0QPpUDM4QaBwAAAAAgR7S55fFvCJ/KgRlCjQMAAAAAkDNHtq8b7t8u3MqBmUCNAwAAAACQS1se/1fhVg7MBGocAAAAAIBcGtz7hnUrh8GtHJhe1DgAAAAAADm26Q9fEL5gBdPOIAUAAAAAgNwaPtB3ZNfLla3LDH9lZOSQUkprnRChlNY6pV079pa873gPYjc7BiQ2KudOMh/OKSC2ETeVuBidi7FcYlQshxn2kxqmcz0lxzCHsz81wwk1DgAAAADAVNjy+NeX3Hi31xeOjh0VHbWW4vFLa6slvl1EpVskO6x7RdnLe8cAu1EppbVzJyLKHtReSKeJPD4le9GulFJKiRZJ3MWKSdeN/ULizFXq4bscXeoxup4NZVV5Jox3HW58hu5TcuxqUsNlEWPjWRUAAAAAQO6NDewb3LdeRDxGiGxgelDjAAAAAABMic1/+IKMf/KoIhuYBtQ4AAAAAABTYmxw/+FtfxIRj6+MbGAaUOMAAAAAAEyVbU99S/gSWUwXahwAAAAAgKkyNrh/cN/bIqK8QbKBqUaNAwAAAAAwhfoe/YqIeLmVA1OPGgcAAAAAYAqN9O8YOrhFKa/yBMgGphQ1DgAAAADA1Nr2x++IiNdfQSowpahxAAAAAACm1sDuP48dO6g8PuXxkQ1MHWocAAAAAIApt/2Z74qI119FKjB1DFIAAAAAAJhqhzY/Ya76nx6vX4tHdFSU0lorpbTWcVHacd/EmBgldrNjQGKjcu4k8+GcAmIbcVOJi9G5GMslRsVymGE/qWE611NyDEs5y1M1nFDjAAAAAABMB23ufeXelpPfb/grI6OHraWv/ae9bE+3SHboT5S9vHcMsBuVUlo7dyKi7EHthXSayONTshftSimllGiRxF2smHTd2C8kzlylHr7L0aUeo2v2lVXlmTDedbjxGbpPybGrSQ2XRYyNZ1UAAAAAANNh14v3aDPiMUKivGQDU4EaBwAAAABgWpiRIzvXiYjHGyIZmArUOAAAAAAA02TrU98UEcNf4fhcBnCCqHEAAAAAAKbJ2OD+gXfeEBGPUUY2kHPUOAAAAAAA02fXCz+Q8Vs5gByjxgEAAAAAmD5Hd740emy/iChvkGwgt6hxAAAAAACm1a51/yEiXh+3ciDHqHEAAAAAAKbVwQ2PmNERpbzK4ycbyCFqHAAAAACAaaWjo/ve/I1wKwdyjRoHAAAAAGC67X3lPm2OKY9PeXxkA7lCjQMAAAAAMN3GBvcf3f2yiHh9lWQDuWKQAgAAAADA9Nv5wt0Vracoj0+LR3RURES0Y6TWTu1K7GbHgMRG5dxJ5sM5BcQ24qYSF6NzMZZLjFJKa62UyrCf1DCd6yk5hlnznIoMpKLGAQAAAACYAcf2bRgd3BsobzV8FdGx/vFiQZpFssO6V5S9vHcMsBuVUlo7dyKi7EHthXSayONTshftSimllGiRxF2smHTd2C8kzlylHr7L0aUeo2uylVXlmTDedbjxGbpPybGrSQ2XRYyNZ1UAAAAAADNBm7vX3SMiHiPkuLwHskWNAwAAAAAwMw5ueiI6dlREPEaYbODEUeMAAAAAAMwMHRnZz5fIIneocQAAAAAAZsz+t9aYkSERUd4g2cAJosYBAAAAAJgxI4e3Dx3uE27lQC5Q4wAAAAAAzKRdz96uzTGlvMrjIxs4EXx3bEEyNScOQI5p3UUSAJzAz5CPkwQAuVBDCnAiuI8DAAAAAAAUA24HKEgeFUn3khat4r5ZWot2jpr426fjY7Tkpp+sYsxpHCvpMKdgLGWmCdGiJurHMUbrlJmf4JzNbI5L5yI/ZgYX+4T9aJEJ8zNhPzqbHMpEh5/Qj3I6zKT3qWNu08fER+ckh6Z1B4dSm1zPsms/1hWe2fWs3H46Zf7zJ6tjd/khNj5npZTWOuXKie/H/cpPzY/peP0o1+sn5bynuX6UaG3PR000n3S5imb8c0OrNJ1o5/dOuuvHzOZyTX/qnY/YzPJHh5nxr57014+KXfZaT/ZHh7YuiUxPvUP+k3KVyal3zE/SYcZiUn9/aZ30q8e6g0Op27I/9dn86lHxQzvmKuH6cXyvaTHVRL+S4s6FFuf3WnbXj8u73h5Lu14kri+55yRdDtOd+kn/6Eh3/WinX8rprkPn60e5Xj8p7x37rGX4Txfn62d85g7/JHP/90Z8P2aW78E0P39SZ6Jd/sma1a+e8X6Scxg34vgvRxGtzSz/+Zf++nH6Z5s1Q2+gYvFNP/T6KszIcHTsSNzrWimlnP6NoUVZHWqtPZ7x/79/+a5aFowlvVgmBQAAAACAmRUdOXpw46Mi4jH4dhVMHvdxAAAAAABm3oG3Hqydd6HXCClv2IwMxr+kHW8IiruRzjEgsVFprTOcyYSRdkBsw+GePp3ZeJlEpYux7rVRsZtZJnFoOtdTcgyz7wmSKR5OqHEAAAAAAPLBsX0bhg5uKm9cbPjLx6LHkhbJDuteUfby3jHAblRKae3ciYiyn7KxF9LK9fFbazh7Ykqp8SerUmLSdWO/kDhz5fjsXrqjSz1G1+wqq8ozYbzrcCr2lKJWEz6hnBg2qeGyiLHxrAoAAAAAIC/sffln2oyIiPIGyAYmgRoHAAAAACAv9O94ITo2ICJeo4xsYBKocQAAAAAA8oKOjOx58cdaR5XHUB4fCUG2qHEAAAAAAPLFoc1PmJEhEfFwKweyR40DAAAAAJAvxgb3D+5fLyIer18UK1ZkhysGAAAAAJBHdj17uxkZFhGPESYbyAo1DgAAAABAHjm2f+PI4B4R8VLjQJaocQAAAAAA8ok29778U+tLZPlUDmSFGgcAAAAAIL8c3PT4+JfI+kJkA5mjxgEAAAAAyC86MnJw0+NaR5XyKm+AhCBD1DgAAAAAAHln32s/N8eOiYiXx1WQMYMUAAAAAADyzfDh7QP711e1nqo8hihDm2PJEUq0Ht/U9lacxEblGONowkg7ILYRN5W4GJ2LsVxilFJaa6VUhv2khulcT8kxzJrnVGQgFTUOAAAAAEA+2vvij8sber2+sMcImWOR5HWvKHt5b22klgDiagHiGCOiRFTSQjpN5PH1tr1oV0oppUSLJO5ixaTrxn4hcebHZ5LaVbrJxB+jay6VVeWZMN51uPEZuk/JsatJDZdFjI1nVQAAAAAA+ejo7j+bkSER8XiDZAOZoMYBAAAAAMhL2tzz8k+0joqIosyBDFDjwP9v725+HMvO+wC/L6tmRlYsKbYTOIplR0Ccz0ViIPHCSOxlECCbbIMAcTZBEO+yyz+RRTZeBHAWDmAEsBHFEawgsmVbVixL1owsWx8z0sxoer66p7+ruqq7WFUkTxaXdZtVvPcWWU2yiuTzQBBuky/fc+qQXT33B95zAQAAbqiHP/hitfNoz86jzEDGAQAAwA01PD54+PYfRERmL9KGklxCxgEAAMDN9fCNL4yG/Yjo7f6I1aCbjAMAAICb69n9758+vR92HmUGMg4AAAButA++/l9LGYWdR7mMjAMAAIAb7cn736/Wk0kAAB+MSURBVBgNnoadR7mMjAMAAIAbbTQ4/ujPfiPsPMplZBwAAADcdA/f/NLZzqO+ykErARgAAAA33enT+0eP3/lLf+Xv9XZeHp5ERImMUsbPlvpowvkHs7Gm0aWVdcHZwcRUJmrKIsbqqMnMUkpmzthnuqwsekqNZdU8l7EC02QcAAAArIH3vvJf/u6//NXMXm/342X4rETWp/fVwXQEMJEFRGNNREbkhRPplsrn59v1SXtmZmaUiPMvqWra2tRPnJ/585lMt2qbzOTP2Ll4WaU8l9Z3DjeeYfeUGltdabg5amquVQEAAGANPHvw5unRg4jo7f6I1aCRjAMAAIB1UEZ3Xvv1sPMo7WQcAAAArIdHb35xNDwJO4/SQsYBAADAehgNjvff/2pE9HZebty9gi0n4wAAAGBt3P7GfytlFBG9nY9ZDS6QcQAAALA2+o9vnRzeCTuP0kTGAQAAwDr54Gu/GhGZvbTzKOfJOAAAAFgne7e+erbzqK9ycI6MAwAAgLVSRg9e/98R0eu97KyWST4NAAAArJnb3/zvZzuPvmI1qLl4CQAAgDUz7O89ffDGj/7Vv7+z+/Hh4FkpZbrm/IPZWNPo0sq64OwgY+olZbbxZqlqq8nMUkpmzthnuqwsekqNZdU8l7EC02QcAAAArJ/bf/prf/tf/OeIyN5LGcPGCGAiC3j+xwtVEXnhRLql8vn5dn3SnpmZGSXi/EuqmrY29RN1QnFhJtOt2iYz+TN2rlZWKc+l9Z3DjWfYPaXGVlcabo6ammtVAAAAWD8HH746PH0WETs7dh5lTMYBAADAWrr3nd+KiN7Oy5aCiowDAACAtXT3279VHWRPzEGEjAMAAIA1Nezv9/ffj4he72NWg5BxAAAAsL7uffdzEZG93cYNO9k2Mg4AAADW1YPvf6E6yN4rVgMZBwAAAOuqnB49e/TDiOjtuFwFGQcAAADr7N53fjMiMnuRO1Zjy8k4AAAAWGOP3vq9UkYRkfmS1dhyMg4AAADWWBkc9/duRcTO7setxpaTcQAAALDebr/6axaBiNi1BAAAAKy1/fe/XkaD7J07wy2lTPwpz/+xy6WVdcHZQcbUS8ps481S1VaTmaWUzJyxz3RZWfSUGsuqeS5jBabJOAAAAFhvZXB89Pjtj//E37kQAUxkAc//eCEoiMgLJ9Itlc/Pt+uT9szMzCgR519S1bS1qZ+oE4oLM5lu1TaZyZ+xc4WySnkure8cbjzD7ik1trrScHPU1FyrAgAAwNr78BsuV0HGAQAAwPo7vP3N0ejUOmw5GQcAAABrbzQ43nvny9Zhy8k4AAAA2AR3v/ObFmHLyTgAAADYBM/uvWERtpyMAwAAgI1QRtZgy8k4AAAAgE0g4wAAAAA2gYwDAACATZQ71mDbyDgAAADYxNPd3isWYdvsWgIAAAA2T2/nY8PB07M/ZSllxhdeWlkXnB1kTL2kzDbeLFVtNZlZSsnMGftMl5VFT6mxrJrnMlZgmowDAACAzZS9l6IMMrOUqLKA6ZKIvHAi3VL5/Hy7PmnPzMyMEnH+JVVNW5v6iTqhuDCT6VatP+DZU91zrppPtmqr7xxuPMPuKTW2utJwc9TUXKsCAADAZur1XrYI2/WOWwIAAAA284x352MWYbvecUsAAADAxkpbNGwRGQcAAAAbaDQ6DZerbBkZBwAAABuoDPvhcpUtI+MAAABgA91/47fHR7ljNbaEjAMAAIAN9PCNL1SXq2S6XGVbyDgAAADYQP29d0+PHoTLVbaJjAMAAIDN9OB7/2t85HKV7SDjAAAAYDPt3fqKu6tsFRkHAAAAm8nlKttm1xIAAACwqe5/73Of+flfiYgSvSjDWV5SSpmx4OwgY+ol5dIus43VUZOZpZTMnLHPdFlZ9JQay6p5LmMFpsk4AAAA2Fj7t/7fT/2jf5e9l3o7L5dhfzooiMgLJ9JVatBxvl2ftGdmZkaJOP+SqqatTf1EnVBcmMl0q7bJ1E91z7lqPtmqrb5zuPEMu6fU2OpKw81RU3OtCgAAABtr4nKVV6zGxpNxAAAAsMnuv+7uKttCxgEAAMAm23vnK6PhSURk7yWrsdlkHAAAAGyy/t67p0f3w+UqW0DGAQAAwIa7/93PjY9crrLRZBwAAABsuP33vjoaHofLVTadjAMAAIAN19979/ToYbhcZdPJOAAAANh8LlfZBjIOAAAANp/LVbaBjAMAAIDN19+75XKVjbdrCQAAANgGd77565/9pf8UESV6UYZtZaWU7j51wdlBxtRLyqVdZhuroyYzSymZOWOf6bKy6Ck1llXzXMYKTJNxAAAAsBX2bn159E/+Y2/nld7Oy2XYr4KCiLxwIl2lBh3n2/VJe2ZmZpSI8y+patra1E/UCcWFmUy3aptM/VT3nKvmk63a6juHG8+we0qNra403Bw1NdeqAAAAsBWGx0/6e++Fy1U2l4wDAACAbXH/e/9zfOTuKptIxgEAAMC2ePzOH7q7ygaTcQAAALAthsdPjvc/CBnHhpJxAAAAsEXuv/65iMjsNe7xyVqTcQAAALBFHr39pTIahK9ybCIZBwAAAFtkeLx/cngnIrL3stXYMDIOAAAAtsv9Nz4fEdlza5VNI+MAAABguzx44/OljCIictdqbBIZBwAAANtleLx/cng3bMmxcURWAAAAbJ1Hb3/x0z/3y72dlwaDowtPlVK6X1sXnB1kTL2kXNpltrE6ajKzlJKZM/aZLiuLnlJjWTXPZazANBkHAAAAW+fuX/yPT//cL0e1K0cZTZ5IV6lBx/l2fdKemZkZJeL8S6qatjb1E3VCUT3ceC/b8zWtrbrnXDWfbNVW3znceIbdU2psdaXh5qipuVYFAACArTPsPz49ehQRaUuODSLjAAAAYBs9eut3IyJ3bMmxOWQcAAAAbKN73/6NiMjsNV4kwjqScQAAALCNTg7vDU8OIyJ7LlfZEDIOAAAAttT+e18NGccGkXEAAACwpR58/3dCxrFBZBwAAABsqYMP/7SUUURE7liNDSDjAAAAYHv1H98KX+XYFDIOAAAAtld1B9nezsuWYgPIOAAAANheD9/8wvgonSCvPW8hAAAA2+v06b3h6VG4XGUjeAsBAADYak8+fPXHPvuLvd5Lw+FJRJRSuuvrgrODjKmXlEu7nG91hZrMLKVk5ox9psvKoqfUWFbNcxkrME3GAQAAwFZ79Ob/+bHP/mL2diKyOifvPt+uT9ozMzOjRJx/SVXT1qZ+ok4oqoer0RuHa5tM/VT3nKvmk63a6juHG8+we0qNra403Bw1NdeqAAAAsNWevP8nZTSMiOy5g+x6k3EAAACw1UaD/snT+xGR7q6y5mQcAAAAbLvH7/xBRPRsO7rmZBwAAABsu713fn985A6y68ybBwAAwLZ7eu+7o+FpRGT6Kscak3EAAACw9cro6OGbEZEuV1lnMg4AAACIh29/MdxaZc3JOAAAACAO3v9aKaOIiBRzrCsZBwAAAER//90y3pJDxrGuZBwAAAAQUUb7H3w9IsKWHGvLOwcAAAAREY/f/r0f++wvZfZGJSJKW1kp5fxBRinTNWWGEWepaqvJzFJKZs7YZ7qsLHpKjWXVPJexAtNkHAAAABARcfjRt8pomL2d7O1GGbSdb9cn7ZmZmVEiMqdrzj/2XP1EnVBUD0dk23BtE66f6qipm0+2aqvvHG48w+4pNba60nBz1NRcqwIAAAAREadP7w76++EOsmtLxgEAAABj++99JWQca0vGAQAAAGOPfvj7zpfXl/cMAAAAxp7df72MTiMieu4gu35kHAAAADA2PN4/PrgdLldZTzIOAAAAeO7xW78bEZm+x7F+ZBwAAADw3P77Xy1lFBEh5lg3Mg4AAAB47ujR2zEahK9yrCEZBwAAADw3GvQP7383IsKWHOtGxgEAAADnPH77SxGR2YtIq7FGZBwAAABwzsHtV0sZRtiSY8344g0AAACc0997twxPc3cne7ujwemFZ0sp5w8yzh6ZrCkzDDRLVVtNZpZSMnPGPtNlZdFTaiyr5rmMFZgm4wAAAIALZ9Wjw3vf+eRf/8fZ261ChMnz7fqkPTMzM0pEU022XOZSP1EnFNXDjdfFnK9pbdVRUzefbNVW3znceIbdU2psdaXh5qipuVYFAAAALnrw+uecOK8dbxUAAABc9PTut8voNCKiZ0uOtSHjAAAAgItODu+W0TAi0h1k14eMAwAAABo8/MHvRES6tcr6kHEAAABAg71bfzg+SufO68H7BAAAAA2e3X9jvCWHr3KsCRkHAAAANBgc7w/6++FylfUh4wAAAIBmD7//O2Hb0fUh4wAAAIBme+9+2enzGvEmAQAAQLOjR2+X0SAioudylTXg+zYAAADQbDTonxx+9MonPxPRK6VUD04dZJw9Uitl6qEms1S11WRmKSUzZ+wzXVYWPaXGsmqey1iBaTIOAAAAaLV36ys/+Q/+VW/npdHouDrfrk/aMzMzo0RkXjgnr55pVD9RJxTVwxHZeHrf2miiVUdN3XyyVVt953DjGXZPqbHVlYabo6bmWhUAAABo9eAHn584yedGk3EAAABAq/7jd0oZRkS4g+yNJ+MAAACAdmXU338/ItK2ozeejAMAAAC67L/7RxG+x7EG7Dm6lkbFGwcsWCl/0yIAL/A75N9bBGCDPXjj83/tH/6bzF6xFjeb73EAAABAl+P990oZRfgqx00n4wAAAIBL9PduRUTKOG42GQcAAABc4tFb/zciomffgBvN27M2ejkoUfKyGzJfqClRmqsuv7HzZE2JxfSZq2a0wrEu/JhLGCtHLSUl8rI+jTWlTM38Bec8mufnKotYn9EMH/xL+5SIS9fn0j5lnjWMy378c32y6cds/7v8fG1n+/u+kDUcNdVMv8udfapP+Gyf5+z67TT775+5fvaOX2LjOWdmKWXqkzPZp/uTP70+o8bPT3Z+fqbe95bPT0Yp9Xzysvm0rdVw5t8bJVualOa/O22fn9E8H9f2t775Jx7N+atjNPM/Pe2fnzz72Jdy1V8dpfpIzPrWN6z/hbWa5a1vXJ8LP+ZZzfS/X6W0/9Mz71s/zz89OTl041qd+/w0/l0rMcrL/kmaeC9KNP9dm+/z0/G3vh6rdH5IOp/qXpO2NWx71678q6Pt81Oa/lFu+xw2f36y8/Mz9Xenftdm/E+X5s/PeOYN/ 3 GIỚI THIỆU GIỚI THIỆU Mô hình nhân quả Mô hình chuỗi thời gian Hai loại mô hình dự báo chính: 2 NỘI DUNGNỘI DUNG Giới thiệu xây dựng Mô Hình ARIMA (Auto-Regressive Integrated ... 5 MÔ HÌNH ARIMA MÔ HÌNH ARIMA Tính dừng (Stationary) Tính mùa vụ (Seasonality) Nguyên lý Box-Jenkin Nhận dạng mô hình ARIMA Xác định thông số mô hình ARIMA Kiểm định về mô hình ... 12 NHẬN DẠNG MÔ HÌNHNHẬN DẠNG MÔ HÌNH Tìm các giá trị thích hợp của p, d, q. Với d là bậc sai phân của chuỗi được khảo sát p và q sẽ phụ thuộc vào SPAC = f(t) và SAC = f(t) Chọn mô hình AR(p)...
Ngày tải lên: 02/04/2014, 21:59
Tài liệu Tiểu luận " MÔ HÌNH EOQ TRONG QUẢN TRỊ DỰ TRỮ " doc
... đơn vị / năm thay vì một tỷ lệ, một mô hình khác có sẵn cho máy tính của EOQ (cột F - Tôi trong hình 3-1) Lưu ý rằng đơn giá là không cần thiết trong mô hình này thay thế 3,2 EOQ với backorders ... tính từ một mô hình dự báo. Các căn bậc của MSE của lỗi dự báo từ một trong những mô hình làm mịn trong Chương 2 là một độ lệch chuẩn gần đúng nhu cầu leadtime nếu leadtime là một trong những ... tính của EOQ (cột F - Tôi trong hình 3- 1) Lưu ý rằng đơn giá là không cần thiết trong mô hình này thay thế 3,2 EOQ với backorders (EOQBACK) Backorders được phổ biến trong hàng tồn kho được...
Ngày tải lên: 26/01/2014, 11:20
Tài liệu Một vài kết quả về những quan hệ trong mô hình cơ sở dữ liệu. pptx
... Armstrong relations and inferring func- tional dependencies in the relational datamodel, Computers and Mathematics with Applications 26(4) (1993) 43-55. [101 Demetrovics J., Thi V. D., Armtrong ... relation, functional dependencies and strong dependencies, Comput. and AI 14 (3) (1995) 279-298. [111 Man n ila H., Raiha K. J., Design by example: an application of Armstrong relations, J. Comput. Syst. ... 17, S.1 (2001), 31-34 SOME RESULTS ABOUT RELATIONS IN THE RELATIONAL DATAMODEL VU DUC TEl Abstract. We introduce the concepts of minimal family of a relation. First, we show the algorithm finding...
Ngày tải lên: 27/02/2014, 06:20
Báo cáo " MÔ HÌNH CƠ SỞ DỮ LIỆU MỜ TRONG HỆ THỐNG THÔNG TIN ĐỊA LÝ (GIS) " pot
... tượng không gian dựa vào mô hình dữ liệu đang sử dụng trong các hệ thống thông tin địa lý. Mô hình dữ liệu không gian được sử dụng trong bài viết này là mô hình raster. Trong đó, tại mỗi phần ... đồng thời có thể khai thác được các phép phân tích không gian trong GIS. Mô hình 1:n Hình 2: Mô hình cơ sở dữ liệu mờ trong GIS 1:n 1:n ĐỐI TƯỢNG KHÔNG GIAN - R1 Shape_SO FID BIẾN NGÔN ... dựa trên mô hình cơ sở dữ liệu mờ đã mô tả trong mục 3.1 và các phép chọn, chiếu, kết nối, kết nối không gian. Bên cạnh đó còn khai thác các khả năng của hệ thống thông tin địa lý trong việc...
Ngày tải lên: 11/03/2014, 06:20
BÁO CÁO " XÂY DỰNG MÔ HÌNH ARIMA CHO DỰ BÁO KHÁCH DU LỊCH QUỐC TẾ ĐẾN VIỆT NAM " doc
... hiệu quả các tiềm năng du lịch, tạo dấu ấn tốt trong lòng du khách, khắc phục những rủi ro trong kinh doanh dịch vụ du lịch, mục đích của bài viết này là xây dựng một mô hình ARIMA phù hợp để ... vì ngành du lịch là ngành chịu nhiều rủi ro. Tuy vậy, mô hình ARIMA có thể dùng để dự báo, song chưa phải là tối ưu, bởi vì sự phụ thuộc trong mô hình được giả định là tuyến tính. Trong thời ... Box-Jenkins để xây dựng mô hình ARIMA cho dự báo lượng khách quốc tế đến Việt Nam dựa trên số liệu công bố hàng tháng của Tổng cục Du lịch Việt Nam. Kết quả cho thấy trong số các mô hình ước lượng thử...
Ngày tải lên: 24/03/2014, 23:21
Tiên đề hóa các phụ thuộc đa trị mờ trong mô hình cơ sở dữ liệu mờ. potx
... mer. Cac tac gia dil. du& apos;a ra mot t%p lu%t suy d[n xac dang v a day dil de' co the' d[n ra them cac phu thuoc t ir met t%p cac phu thuec da trj mer dil. du- oc biet. Chung toi so rhg ... toi so rhg mot ket qui quan tro ng m a cac tac gia bai bao dung de' chirng minh tinh xac dang va tinh day dii cda cac lu%t suy d[n dil. duo-c ph at bie'u chira chinh xac (Bo' de 3.1 ... [1)). Chirng minh tinh xac dang cd a [1) con chu'a day dii va doi ch6 du& apos;o'ng nhu- khong ch~t che ve logic. Trong bai bao nay chung toi chinh xac hoa lai Ht qui noi tren va de xuat...
Ngày tải lên: 04/04/2014, 04:20
nghiên cứu khả năng phát triển mô hình cacao trồng xen dưới tán cây điều tại xã iakla, huyện đức cơ, tỉnh gia lai
... RRRR/&m$%"A QRRnRRRR`tRRRR/&mLZ*AQRRnGb$c. <I&-1M**Lg&4&3%"&-[!A 5v&11Gb%W$&y$ã$-v8_4&3@M LP$*&f*_s/&e4&4&C*M11Gb.** U[H$1&$*$(Mp$%0&(,?!&:8 %0&$%"AQRR-Gb%0M&M%0&V& &Z*<&"%&LAQRR$c!%0&*-1!8?< -I%";*%"&;*_&&*32-&%X$/&- 3&M-[M$M;(M-#$g$M@4&&@=*6 -$M(,_B@4&1-!C*3$H@=*6B% _!15$-&1-8*@8?<-l18_- &5**!H*_I&.;*@J*@4&$>&< %0&I1-*3:%c&<2EI&%X8:;* b&-$$%"8&g(M:$M!(M18?<[B[ @<-Z*<M$/&-*BU_!"M$/& *-H@4&:%c&&H*3_!"g& -!8-!!%X-"*-1(\23- !@-&$M%&%X21;[a@HC*3$HB@4&1* 3:%c&$"<%0&-GB1-$& $-&L&&H&1-$-88:;*' *3$-:-A&5M$.23-1;[a@$& !--*3UVW?*& 40 Hình 4b Hình 4a sHt7P*-11- Z*D G%X23-%0&Z A*K14W%l/Q;[a@ sH7W-&Z ... v-Dv- Ph n 2ầ 3 T NG QUAN V N NGHIÊN C UỔ Ấ ĐỀ Ứ 3 2.4. Tình hình phát tri n cây đi u trên th gi i và t i Vi t namể ề ế ớ ạ ệ 5 2.5. Tình hình phát tri n cây cacao trên th gi i và t i Vi t namể ế ... %?&$H \ $0 2 &5 ;[ s bQRRQ TQdlDs*3UM5jP$/&;B$/&&_kesePb4&&5 T du% ?&s/&sje=*6$/&;B$/&&_!OkesePb4& &5 TãdbA&%0&(V;1h#P$XM-$H@%0&4&&5blbb sb TdP$/&;B-5!-G&V*-|M5aWW TtdP$*&2@*3<4&@*3<&%-23$/&"c p@*3<4&4&&5;*(:4&&5 QRR$&...
Ngày tải lên: 02/05/2014, 14:47
Khảo sát ảnh hưởng của trường ban đầu hoá đến sự chuyển động của bão trong mô hình chính áp dự báo quĩ đạo bão khu vực biển Đông
... Trờng đầu vào từ mô hình toàn cầu (trờng phân tích toàn cầu) F E Thành phần môi trờng đóng góp trong F F V Thành phần xoáy đóng góp trong F F EL Thành phần môi trờng có qui mô lớn hơn xoáy ... xứng giả (TH2, TH3, TH4) là khá lớn. Hình 1. DURIAN TH5 Hình 2. DURIAN TH9 1 Khảo sát ảnh hởng của trờng ban đầu hoá đến sự chuyển động của bo trong mô hình chính áp dự báo quĩ đạo bo khu ... thành phần (bảng 1): trờng môi trờng F E và thành phần xoáy F V . Thành phần trờng môi trờng lại đợc phân chia thành trờng môi trờng qui mô lớn F EL và trờng môi trờng qui mô nhỏ F ES . Thành phần...
Ngày tải lên: 11/07/2014, 15:27
Ứng dụng mô hình toán trong nghiên cứu dự báo, cảnh báo lũ và ngập lụt cho vùng đồng bằng các sông lớn ở miền Trung docx
Ngày tải lên: 12/08/2014, 15:23
Bạn có muốn tìm thêm với từ khóa: