... BÁO CÁO MÔN KINH TẾ LƯỢNG ỨNG DỤNG MÔ HÌNH ARIMA TRONG DỰ BÁO GIÁ DẦU THÔ THẾ GIỚI Sinh viên thực hiện: Đặng Thị Thu Hiền Mã sinh viên: CQ500927 Giới thiệu về mô hình Arima Trong nghiên ... của mô hình là nhiễu trắng, mô hình phù hợp Hoặc ta có thể kiểm tra bằng cách: Vào View → Residual tests → Serial correlation- LM test → OK Ta được bảng sau : p>0.05 nên phần dư của mô hình ... giới: Nhìn vào bảng kết quả trên ta có mô hình ARIMA(p,1,q) Với: P=(1) Q=(1,2,5,6,7) -Ước lượng: Sau khi ước lượng và kiểm tra nhiều mô hình tôi thấy mô hình ARIMA(0,1,7) là phù hợp nhất Bảng...
Ngày tải lên: 25/03/2014, 09:32
... src=" 24p0 ENutuObJe5to7JzPQsJQIAACh1ZBwAgAqiZfJjZyJjZyO+5qqmQ41q0L24rYPZOgAAAEoWGQcAoPLMzUsadwectbtrQ111BW0dE5Hz0WwiS5EAAABKDhkHAKBypWOZ4Q9v3vz1WO0jgYYD9XbVHuoKhbpCqcn0zVOj8ZG4MFkHAABA6SDjAABUOl3To/2TE323PCFzXlKfGnTvfLo9l8pF+29F+6NaJk+VAAAAih8ZBwAAc5KR5JUTVx1eR3BXINzTaFft4Z7GcE9jbCA20RdNRhKUCAAAoJiRcQAAcJdsIjt2ZjxyfqJme3X9/no16A50BAIdgVwqN/LRyPTQNPOSAgAAFCcyDgAAlqBremxgKjYw5alXQ3vrAh0Bu2pvO9Imc/OSRpiXFAAAoNiQcQAAsJJkJDkYSQ2fHKnrrA33hEVkfl7S1M1TN5mXFAAAoHiQcQAAcH9aRhs7MzZ2dizQHqjfX68GVTWo7nx6Zy6Vi/ZHo/0TzEsKAACw5cg4AABYNUNiA7HYQMwdcDccaDAHsIR7wuGecGwgNtE3kYwkKRIAAMBWIeMAAGDN0rH0YO/g9V9dr++ur+uss6t25iUFAADYcmQcAAA8IF3TzQEsvmZf06EmNagWzEsaiZwfZ15SAACAzUTGAQDAwzEkPnw7Phx3eB313fWhrpCIhLrqQ131qcnUjfevJycSzEsKAACwCcg4AABYH9lEdvjk8M1TN4OPBBsPNtpVuxpUdz+7J5fKjXx0I3Z1kqQDAABgQ5FxAACwnnRNj/ZFo/0RT8jb+ult8wNY2pufbBk7Oxr7OMpUHQAAABuEjAMAgA1gSDKSuPRmn8PraDrUHOgI2lVH6+HtrYe3j54emTg/RtIBAACw7sg4AADYQNlEdrD32vVfDdV314d7mkUk3NMc7mmODdwaPTXMpKQAAADriIwDAIANp2v62JnRyPnxmu01zU+22lVHoKM20FEbG7g1/tvRTCxNiQAAAB4eGQcAAJtE1/Spgcmpq5OekLfl021qUDWTjtRkavj9wWQkQYkAAAAeBhkHAACby5BkJHH5zQuugLvhQDjQUasG1Uee3ZuaTN08dWNm5DbLrwAAADwYMg4AALZGJpYe6r06emo4sKsu3NOsBtWdT+/OpbIjH92YYqFZAACAtSPjAABgK2UT2fEzNyfOjwUfqWs4GLarjrYjHc1Ptkb7JybO32T5FQAAgNUj4wAAYOvpmh7ti0z0j1c314QPtapB1Vx+ZfT08K3+cS2jUSIAAID7IuMAAKBoGBIfvh0fvuCp9zY+1uxrrg73tIR7WmIDt0ZP3cgmZqkQAADACsg4AAAoOslIYuDEZYfXHupuDHU1Liw0G+0bT0Ti1AcAAGBJZBwAABSpbGJ25OTQ6Kkboe5wXWf9/EKzyeEPriXGSToAAAAWI+MAAKCo6Zo+fmZk/OyIv722+cltatDzyJf2pSaTN08NxUemWH4FAABgARkHAAClwJCpgVtTA7fUem/rp3eoQc/Op/fmUtmRjwZjV2+RdAAAAIiIhRIAAFBCkpGZy2 +du3 z8fGoyaVcdbUce6X7p8UBHrcXGZzoAAKh09HEAAFB6kpGZS2+e9dRXtX66Qw162o48IiKjp29Ezt/UNZ36AACAysR/8wEAoFQlIzOX3vyt2dMhIuGe1oPf+FTjoy30dAAAgMpEHwcAAKXNTDo89VWtn25Xg55wT2u4pzU2EL156no2MUt9AABA5SDjAACgHCxKOgIddYGOuthA9OapQZIOAABQIcg4AAAoH2bS4fA6mg5tN2OOQEddfGRq9Dc3kpE49QEAAOWNjAMAgHKTTcwO9n5y89T1pkPbAh11vma/r9mfmkzceP8qSQcAAChjzEkGAEB5MpOOC8dOxQYmREQNenc/u3/P8wd9LX5RKA8AAChD9HEAAFDOsonZwd6Pb54aajq0PdARUoPenU935VLZkY8GYlejYlAhAABQPujjAACg/JlJx0JPh111tB3p7H7pU4GOEAvNAgCAskEfBwAAlWJRT4dddbQd2SMio6eHIueHdU2nRAAAoKTxn24AAKgs8z0dH5k9HSIS7tl+8BufaXx0Gz0dAACgpPFVBgCASpRNZAZ7L5195b3R00Pmb8yko25vmBlJAQBAiSLjAACgcumaPnbm+rlXTy70dLQe3mnO00HSAQAASg4ZBwAAlU7L5AZ7Ly2MXjHn6SDpAAAAJYeMAwAAiMzN07Eo6eicTzqIOgAAQAkg4wAAAHcsmXTse+kpf0c9SQcAAChyZBwAAGCxe5IOZ9uRvSQdAACgyJFxAACApZlrr1w49lFsYFxIOgAAQNEj4wAAACvJJjJDvf0Xj51cIukAAAAoJmQcAADg/haSjtRkQuaTjj3PH/LUV1McAABQJMg4AADAamUTmctvnvr4+G/MpEMNVu1+9nGSDgAAUCTIOAAAwNokI7fnk44ZmUs6ekg6AADAliPjAAAADyIZuX3pzVOXj/+apAMAABQJMg4AAPDg5pOO0wVJx+N7nn/SHfBSHAAAsMnIOAAAwMO6N+nofOFTbUe6HF4XxQEAAJvGRgkAAMC6MJMOT72v/fe77aoz0NEY6GicuHjj5qkruqZTHwAAsNHo4wAAAOspGbl9/uh7g70XcqlZEQl1tR78xu82PrpDFIXiAACADUUfBwAAWG+GERsYj12NBNrrm5/cZVed4Z72us7mkY8+jl0dF8OgQgAAYCPQxwEAADaGYcQGxs8ffW/09ICI2FVn25Hu7pc+66mvoTYAAGAj0McBAAA2kmGMnbkWOX+9vntbuKfDrjp3P/tEanJm6Jfn07EE5QEAAOuIPg4AALDhdE0fO3P17Cu/mLh4XeYWXjncdqSbhVcAAMA6oo8DAABsEl3LD5+8HDk/1HRol7nqSqCjceLi9ZunruhanvoAAICHRB8HAADYVNlEZrD3/IVj78YGxkQk1LXt4Dd+r/HRdhZeAQAAD4mMAwAAbAEz6bh8/J9SkzMiEu7p6H7pc4GORpIOAADwwMg4AADAlklGpi+9edJMOlh4BQAAPCQyDgAAsMXMpOPK26dzqVlz4ZU9zx92B7xUBgAArAkZBwAAKArx4Vvnj7472Hs+l5pVg1WdL3ym7ch+h9dNZQAAwCqxrgoAACgahhEbGItdHQ+01zc/uTvQEQ50hCcuDt089QkLrwAAgPsi4wAAAEXGMGIDY8A7jzkAACAASURBVNNDkfrutnDPzlDX9lDX9hsf9EX7h8WgOgAAYFmMVQEAAMVI1/JjZwbOvvKziYtDItJ6eG/3S58PdISpDAAAWA4ZBwAAKF66lh8+eenCsXdiA6N21dl25OCe5z7j9ldRGQAAcC8yDgAAUOyyifRg77nLxz9MTcbVoK/zhd9p+/wBpiMFAACLkHEAAIDSkIxMX3rr/cHes7lUJtDRtO9rRxoP7rTYrFQGAACYyDgAAEDpMIzY1dHzx3pHT38iIuGeXV3/4nOB9rAoCrUBAABkHAAAoNQYxtjZK+de+3ls4KZddbUdObjnud/x1PspDAAAFY6MAwAAlCQtkx385W8vfLvXnKRj97Of3vnMk0zSAQBAJSPjAAAAJSybSF96670rb/9TLpXxNdfte/H3Wp7qYpIOAAAqExkHAAAoefHhifNHf3HjgwsiEuracfAbz9Tt3c4kHQAAVBoyDgAAUBYMI9o3dPaVExMXr4lI6+F93S/9nq8lRGEAAKgcZBwAAKB86Fp++OTFC8d+ER+J2lXXzqef2PP8Z92BKioDAEAlIOMAAADlJptIXznx0eXj75vTkXa+8Lm2I4/aXA4qAwBAeSPjAAAA5SkZmbr01q8Ge8/kUplAR9P+l7/Y+OguJukAAKCM2SgBAAAoW4YRG7g5PTRe390e7nkk3PNIXee2kY/6YgPD1AYAgPJDHwcAAChzupYfO/PJuVd/Ghu4aVddbUce2/P855mkAwCA8kPGAQAAKoKWyQ72nul/453U5G01WN35wpG2I49ZbFYqAwBA2SDjAAAAFSQdm7n01q8Ge0+LSKCj+eA3/qhubxuTdAAAUB7IOAAAQIUxjNjAyNlXfhQbGBGR1sPd3S99wVMfoDAAAJQ6Mg4AAFCJdC0/2Pub/jd6U5O37apr97Of2fnMYYdXpTIAAJQuMg4AAFC50rGZS2+9e+OD8yLiaw7te/GLjY/uZpIOAABKFBkHAACobIYR7Rs89+rb5oKy4Z49XV/9QqCjmcIAAFByyDgAAADMVVdOXz7+bi6VsauutiOP73n+dxm6AgBAaSHjAAAAmJOMxM4f/cmND86JiBqs3vfiF9uOPM7QFQAASgUZBwAAQAHDiPZdO/fqj82hK4GOloPf+GeBjhbWlwUAoPiRcQAAACymZbKDvb82h66ISNuRQ90vPeOpD1IZAACKGRkHAADA0pKR2Pmjb9/44LciYlddu5/9XNuRQ0zSAQBA0bJRAgAAgGUZRrTv6tTV4ZanDgQ6Wsz/jZ7uHzt7ScSgPAAAFBX6OAAAAO5Dy2QHe09defsDc+hKuKez+6U/DLS3UBkAAIoKGQcAAMCqxIfHzx89MXq6X0TsqqvtyBN7nv99hq4AAFA8yDgAAABWzTDGzly6cOzt+EhERNRgzb6vPdPy1AFWXQEAoBiQcQAAAKxNNpG6cuK9Kz953xy6Eura2f3SH/laGqgMAABbi4wDAADgQcSHx88f/dHExSsiYlddO5/+TNuRJ2wuJ5UBAGCrkHEAAAA8KMMY/vDchWM/Tk1Oi0igo3X/y18KdLQydAUAgC3B2rElQzc4WAAAlIQnRJ6gCgCw5RTLYYpQaejjAAAAAAAA5YCMAwAAAAAAlAMyDgAAAAAAUA6Y4qEkWRRtubsMMRRRCn9ceiu571xohdsYsj77WdM2+iY+1qKXuQGPpejLbGLcf166JbcxjHue+UM+Z30tr8tYj/roqzjZ77sfQ+S+9bnvfoy11FDu9/Lv2o+y1Mtc9D5dsrbLb1O49brUUDeMdhFRlKsrHuUV92Oe4as7n5WVrk6rv/6s6bWvcBGbe86KohiGcc+ZU7iflc/8e+ujL3n+KCueP/cc92XOH0UMY+H5KPd7PsvVKr/q64ahLLMTY+n3znLnj76W03X5Q7/0K9bXeOnQV/3Rs/z5o8yf9kufOeLwqu1fPKwGa8wfb3zwm2j/1UUXcPOUWO2hX6L+i2q1mkO/ZH0Wvcz5be79/DKMRR89hvHnIqIo/2Pth34tHz1K4UMvWau7zp8l32uG6Mr9PpIKjoUhS7/X1nb+rPCuX3gsY6XPl5XvWrkmy9VwuUP/wJeO5c4fY6kP5eXOw6XPH2XF8+ee987CUVvlV5elz5+5Z77EV7KVv28U7kdf43twmevPvc/EWOEr65o+eub2s7iGBY849+EoYhj6Gr/+LX/+LPW1rfAZFrwvVjj0K50/hvEe/2Cs6H8sUwIAAICNkE2kLr3588Hej8wfWw8/tue5L7gD1VQGAIANQsYBAACwgWIDN86+8mZs4LqIqMGazhf+oOWpgxablcoAALDuyDgAAAA2lq7lB3s/unz8H3OptIiEunZ1ffUPfS2NVAYAgPVFxgEAALAZkpFb54/+cPT0BRGxq+6dT//Ozmc+Z3M5qQwAAOuFjAMAAGCzGMbYmf4Lx36YmpwWEV9zQ/fLz9Xt3Xn/+XoBAMAqkHEAAABsqmwidenNnw72fmj+2HK4Z89zf+BiLlIAAB4aGQcAAMAWiA3cOPvK92IDQyKiBv2dLzzT/NSjzEUKAMDDIOMAAADYGrqWH+r9sP+NE/NzkT6y96t/zFykAAA8MDIOAACArZSJ3T5/9PvDH5wWEbvq7nj6c9uPHKahAwCAB0DGAQAAsNUMI9p35eKxH6Qmp0Qk0LF971ef9bWEKQwAAGtCxgEAAFAUsonk5bd+WtDQ8XkaOgAAWBMyDgAAgKIx19Dx/YWGjgPf+Kq/YzuFAQBgNcg4AAAAiks2kbz85onB3g/MH9uOHO545ojN5aQyAACsjIwDAACgGE0NDJ1/9Y34yJiI+Job97/8ZRo6AABYGRkHAABAkdIyswMnegsaOj7d8czv0tABAMByyDgAAACK2qKGju6Xv1y3d5coCpUBAGARMg4AAIBip2Vmr5z4x4G3e3OptIi0HD60+7lnHF4PlQEAoBAZBwAAQGmID4/2fef7sYFBEVGD/n0vPle39xEaOgAAWEDGAQAAUDJ0LT/U+8FCQ0fr4UN7nvsjGjoAADCRcQAAAJSYexo6Xmh8tJuGDgAAyDgAAABKj67lB3vfv3z8J2ZDR7jnYPdLX3YHaqgMAKCSkXEAAACUqmQkev7oGxMXL4mIXXV3vvDPWp46REMHAKBikXEAAACUMsMYPnmq/43jZkNHqGsPDR0AgIpFxgEAAFDy0rHp80e/N3GxX+YaOp5teeoJGjoAAJWGjAMAAKAszDd0pCZjIhLq6tzz3JccXi+FAQBUDjIOAACA8pGOTV9660fmDB1qMLDvxS/X7d1DWQAAFYKMAwAAoLzMNXR8P5dKiUjr4Sd3PvNFm8tJYQAAZY+MAwAAoAylY1Pnj37XnKHD1xze//KLvpYmygIAKG9kHAAAAGXKMIZP/tNCQ8fOp7+w4wuHLTYbhQEAlCsyDgAAgHJmNnTEBq6JiH/7rn0vPafWVlEWAEBZIuMAAAAod4Yx2Pvulbd/nkulbE7vnudeaDuyX1hYFgBQdsg4AAAAKkJ8eOTid96MDVwVkUDHo/u+9rQ76KAsAIByQsYBAABQKXRNW2jocHgbOp9/qfXTYcWiUxkAQHkg4wAAAKgsZkNHfGRUROo6v7j3y5/11OdEDCoDACh1ZBwAAAAVR9e0Kyd+Otj7rog4qzt2P/vnzU84rfYclQEAlDQyDgAAgAoVG7h27tVjZkNH/f5/ueuPn6xumWboCgCgdJFxAAAAVC4tM3vlxE8He98REbX2QNvv/tvwoxlXzQyVAQCUIjIOAACAShcbuHbu1aPxkZtWR1XDo/9+2+8cCrSPMnQFAFByyDgAAAAgWiZz5e2f3vjgpIh4Gw43P/mnDQdue0Ix5iIFAJQQMg4AAACIiIhhRPsuXTj2empy0u5pbDj4Xxr37wntueGsSlEbAEBJIOMAAADAHdlE4tJb3zcbOqq3fym0709qd84E2sYs1jzFAQAUOTIOAAAA3M0won2X+t94K5dOOqs76vb9x6rGUP3e62rwNkNXAADFjIwDAAAAS0jHps4f/Xbs6oDVUVW799/5tv2RLxwLdQ7b1QzFAQAUJzIOAAAALMMwBnt/eeUnPxERb8Ph0L5/7/BU1e4cq2mNMnQFAFCEyDgAAACwkvjw8LnXXpsZHbZ7GusP/hd3cL/bn6zvGnHVJBi6AgAoKmQcAAAAuA8tk/nkxE9HT58WEX/HV4O7/41isfu33ardNUpxAADFg4wDAAAAq2AYY2fP9r/xhjkRaWj/39jc9XZ3zrxTsehUCACw5cg4AAAAsFrpWOzit1+fuvaJ1VEV6v5Lb9MR8/cN+2+6/SnqAwDYWmQcAAAAWANd06794peDvb8QEV/z7y/83t82Vbs7YnVolAgAsFXIOAAAALBmsYGBc69+MzMdNX90B7pFxO7W6jrHfU3TDF0BAGwJMg4AAAA8CC2T6fveP5i3/e1fqW57wTAUEVHrErV7xh1VaUoEANhkZBwAAAB4UMbc2rFaJqEG9zcc/M82d72iKDaHEeyIBdpvMXQFALCZyDgAAADwsC4cez0xfsNqr6rf9x88oSfML5lOXza0N+JtmBExKBEAYBOQcQAAAOBh6Zr28Q9ODL3zMxGp3vbHwV0vW2yqeVdVYyLUNeH0ZagSAGCjkXEAAABgfUx+cvXCsde0TMJZ3dFw8P9xVu8yf2+164H2qZptU4o1T5UAABuHjAMAAADrJptInHvtW5OfnBWR4K6Xfa1/uPCF0x3IhPZF3LUJhq4AADYIGQcAAADWlWEMvfPR1Z/9MJ+d8dZ/qv7A31gdNQt3VjXHa7sm7J4sdQIArDsyDgAAAKy/6aGRi9/5bjI6ZLVX1e//T+5A98JdVrse2DVZvf22YqGhAwCwnsg4AAAAsCG0zOzlf3j75q97RcTf/pWaHV8u/PLpDszWH4i6/BmGrgAA1gsZBwAAADbQ+NlLn/zoe9psQg3ubzzwnwvHrYhITdtMcHfM5tIoFADg4ZFxAAAAYGPNjE70vf6dZHTI6qgKH/ibwnErImJX87WdU9Xb4wxdAQA8JDIOAAAAbDgtM3v5+yfGz50UkWD7VwJ3j1sREXdgtnbvpMufoVYAgAdGxgEAAIBNYRg3/+nswE+Pi4ga3N+w/z8tGrditRvm0BWrI0+1AAAPgIwDAAAAm+f29ZFzr/5vLZOw2qsauv/a5d9n3M3m1mr3TlY1zTB0BQCwVmQcAAAA2FRaZvbca69ODV6WuXErX1EUq3I3T32mtnPSWZWlXACA1SPjAAAAwKYzjGs///ngOz8RETXY3bD/rxeNWxERq90ItMeD7XGGrgAAVomMAwAAAFsj9smV/je+NT9u5a/cgX33buP05er33q5qSIswdAUAcB9kHAAAANgy6VjswrHXEuPXRSSw48v+theW/ILqa8w07Is7PBoVAwCsgIwDAAAAW0nXtI9/8IPRMx/K8uNWRMRqN+oeSfi3pyw2naIBAJZExgEAAICtN3b69OXj39NmVxq3IiJqINfQHVfrZhm6AgC4FxkHAAAAikIyMt73+reTE0NijlvZ8cJyX1arW9Oh7rjNzVykAIC7kHEAAACgWGiZzOXjP7p1+YyIqMHu+gN/teS4FTGHrnTOVG9PKRYaOgAAc8g4AAAAUEwM4/qvPhj42XERsTqqQvv/0rXMuBURcQdyDQdnXIEcQ1cAAELGAQAAgCJ0e+jGhWN/r2USIuJvf7667TkRZbmN/W3p2j0phq4AAMg4AAAAUIyyicS51/7v9PVLIuIO7qvb/1dWR/VyG9tVva4z6WvJMHQFACoZGQcAAACKlWFc/ekvRj7qFRGr3VvX/ZcOX4chxgKRgh8MQ62brd074/LnqBwAVCYyDgAAABS1yPmL/W98S5tNiEhg10tVjZ9VFIuiKIqiiIhyN5tD/DsytZ0pq0OndABQacg4AAAAUOzSU7G+14+Zy8pWNX0+uPPrisW+wvZ21Qh1p30ts8xFCgAVhYwDAAAAJUDLpC8f/8Gty78REadvR6jrP6wwPYfJU6+F9qedPuYiBYBKQcYBAACAEmEY13/13tWf/YOIWO3e+n1/6V5+WVmT1W4Edmb9HRmGrgBAJSDjAAAAQCmZHrpx4dgrc9Nz7Hje1/IHKywra3L69NC+WW+jxtAVAChvZBwAAAAoMdnEzIWj30yMXxcRb+iJ4M6vW2zqff/KF86HurN2Dw0dAFC2yDgAAABQenRN+/gH3x87+4GIOH076jr/wuYO3fevrHap3Z2radMsNho6AKAMkXEAAACgVI3++tTl498REavdG+r8C3egazV/pQb1+gOaGtIZugIAZYaMAwAAACUsGRk79+rfZW5PiIi/7fmatufuOz2HqXqbXrs3b3MTcwBA+SDjAAAAQGnTMum+7x6dGrokImpgX92eP1/N9BwiYlelritfs0NXLCQdAFAOyDgAAABQ+gzj2s9+MvzhP4qIXa2v3fPv7J6WVf6pOyiNPeIKGAxdAYBSR8YBAACAMjFx4fzl49/RZhNWu7f2kX+t1vYYhmEYhogY88zbBb+Y+42/3ajda1gdxBwAUMLIOAAAAFA+kpGxvtdfS0SGRKS69Rl/2/OKYhERZZ55u+AXC78Rh0dpOKD4Wg2GrgBAiSLjAAAAQFnRMulPfvBWtP83IuIOdIW6/+Mqp+cweRsk1C3uIIUEgNJDxgEAAICyYxjD778z9MsfiYjV7m048Nd2T/Pq/9rqEH+71O0Vq4NSAkApIeMAAABAeYpd+fjisf+lZRIiUrv7T7yNn1nTn9tVaTigVDUpVBIASgUZBwAAAMpWNhG/eOz/JMaGRKQq/NnAzhdF1pZZVDdbGg9aXNUkHQBQAsg4AAAAUM50TfvkR2+NnflARJy+HbV7/lRZy/QcImJ1KLWPWGsfsTB0BQCKHBkHAAAAyp1hjJ3+6Mrbb4iIXa2v3fNnNlfdWvfhqrY07Ld6Qnx/BoDixTUaAAAAFSE+PNj/xt9rmYTV7q3r/DO7p+kBduLfbm084HB4GboCAMWIjAMAAACVIhO71f/d/zszOiQitbte9jYcfoCdWB1KqNMeaLdabFQUAIoLGQcAAAAqiJZJX/nxG1NX+0WkqvF3arZ9aa2zkJrUoLXxUYc7yNdpACgiXJQBAABQYQxj8B9/PHr6fRFxB/YG2v+FYrE/2J4CHfbQPrvNzdAVACgKZBwAAACoRONnPvz4+FERcfraavf8ucXmfrD92FVLw35noMOh8M0aALYaV2IAAABUqGRk9OKx/2HOQlq7+09tathYkYgsd5c7aA0/7nYHrVQVALYQGQcAAAAqVzYR7//uK4nxIavdW7vrZbd/r7I8EVFWFNzpDO1zWR0MXQGArUHGAQAAgIqmZdKf/PC7U9f6RaRm+5c89YcfZm8Oj6XhoKt6G0NXAGALcOkFAABAxTOMwV/8cOzMeyJS1fgZf/tXH2yxlQVVjfaGAwxdAYDNRsYBAAAAiIiMnT55+fhrIuKs2h585F8rVvfD7M3qUII7XcE9LquToSsAsEnIOAAAAIA5ycjNi8f+VptN2N2h2t3/xuqofsgduqptDQc9VU12agsAm4CMAwAAALgjm4hfPPo/k9Ehq91b1/kXdrXp4ffpa3E2PKo6q22UFwA2FBkHAAAAcBddy338/dcnPzktIoGdX/fUP/Xw+7Q6LLW71do9HouNoSsAsFHIOAAAAIB7GMb1d38xevpnIuJt+ExV05GHnIXU5Kq2hXt83gYHBQaAjUDGAQAAACxt7MxvPvnRqyKi1j1W0/7CusQcIuJvUxsfrXJUseoKAKwzMg4AAABgWTOjIxeO/dd8NuGs2l7X9RcPudjKAqvD0tDlC+xUGboCAOuIjAMAAABYSTaROv+tv0tPDVnt3uDuP7F7mtZrz55aR9PjNWqtkyIDwLog4wAAAADuQ9dy/W98Z2rwtNXuDex80aaGjeWJiHE/C9uISO1Ob0N3tV1l6AoAPCwyDgAAAGAVDOPaz38evfSeiAR3veRteEpZhogo97OwjXnD6bWHDwRqd1YpfD0HgIfARRQAAABYrRvvvXf1Z98UEW/jp9drsZUFnjpX06NBhq4AwAMj4wAAAADWYHpo+MqJb+azCU/dY/4dL6xvzGF1WOp2+Rr3+61OvqgDwJpx6QQAAADWJj4y0v/G/8pnE86qbcFdL6/XYisLHB5b02PB6u0ehq4AwJpw1QQAAADWLJtInf/W/5eeGrK764K7/pXF7lv3h6gKuxsfC7r8DqoNAKtExgEAAAA8CF3L9b9xLDU5ZLV76vb8mV0Nr/tDWB3Wus6aur01DF0BgNXgWgkAAAA8KMO49ObRW5+8JyKBjq+5anZvxIO4apzhnjpfi4d6A8DKyDgAAACAh3L9nV+NfPR9Ealu/UNP6MkNepSabVVNh+pcflZdAYBlkXEAAAAADyty/sLcmrINh/07vry+i60ssDqsob3B4CM1Fhtf4wFgCVwcAQAAgHUwPXSj77v/LZ9LOqu21bQ9L4ptgx7IU6c2P9ngbWToCgAsRsYBAAAArI/M9O2+1/8um5hwVm2r3f2n676mbKFAe03ToUZHFauuAMAdZBwAAADAusmlUhe+/T/TU0NWuye4619txGIrC6wOa8P+UPCRgGJRqDwACBkHAAAAsM4Mo/+N16YGf221ewIdX7O5G417iMiiG/dssfxdd/PUeVqealbrVAoPAGQcAAAAwHozjGs//8lE/7siEtz5orf+U8rdRGTRjcVk+bvu2ZUoUru7tuFgg121U3sAlYyMAwAAANgQw++/e+1nfy8i3obDVeHPb9BiKwscXke4J1y7u46hKwAqFhkHAAAAsFGmh25cOfH3+VxCrX20Zsc/3+iYQ0Q8IW/ToWa1jlVXAFQiMg4AAABgA82M3Oj/3t/mswln1bbAzhc3dLEVk9Vhq9sTany0yeq0UX8AFYWMAwAAANhYuUTqwrf+W3pqyOauC+z6+ibEHCLi8Dqan2jxtweoP4DKQcYBAAAAbDhdy11649XU5JDV7gnsfGlzYg4R8TVVNz/Z4vKz6gqAikDGAQAAAGwKw7j81qvTg6ctdk9g19dtauPmPKzVYQt1NYa6Ghm6AqDskXEAAAAAm8Uwrv38x5Hz71rtHn/7VzYt5hARV43afKi9ujXIQQBQxsg4AAAAgE1186N3IuffFZFNjjlEpGZbbfOTHU6fm6MAoCyRcQAAAACb7eZH7wx/eEJE/O1fdlbv2syHtjlsDftba3eHLXYrBwJAmSHjAAAAALbAxIVTn/zwFRGpavmCu+7xTX50b8jX+qmdVWE/BwJAOSHjAAAAALZGYmz44+OviIin/gl3XY9RSAwRMVZBRMQQ88ZK28jibUQk2NHQ/OQuu+rkWAAoD2QcAAAAwJZJRoYvH/8/IuKpf1INHVIWiCIiyiqIiChi3lhpG1m8jXnb7rQ3P95Rt6dJsSgcDgCljowDAAAA2ErJyPCFY/81n0166p/wbX9WZAuyBm+oZttn9qqhaiHoAFDKyDgAAACALZZNTF/8zn/PzyYd3hbf9i/JFiUNdZ2tjY912D0MXQFQqsg4AAAAgK2nZVIXX//v2mxia2MOh9cdfnyXvyOsWPiXAoDSw5ULAAAAKApaJtX3+v87G59weFuqt39Jsbq26pn4muuantzjCdVwUACUFjIOAAAAoFhomdTF1/82dWvI4W0Jdry4hTGHzWmv27s9/PgjNpeD4wKgVJBxAAAAAMXE0C/9wzdTt4asdk+g/WtbGHOIiMPrbn6ys3pbA3ORAvj/2bvvODnKM8Hjz9tdHSfnqJFGMwozCggEiGCQECabDAbjvME+3955d2/3fOf1587nXeeweM3aBptg1jgt4IADFpiMBQYEmCwURjmgONKMJnXXe3/UdKlDdU33qGemw+/7hz6lt59637eeqp7R+6iquyBQ4wAAAADyjDbf/MXdg7Eyh8dXMbPTqelsaT9jcai2kjMDIM9R4wAAAADyjzbf+vldBzY85fWV1c//sC/UPLPTMQK+pqVdjUvn8egKgHxGjQMAAADIU1see/jAhqdEpGbudcZMlzlEJFRT2X7Gkoq2Rh5dAZCfqHEAAAAA+WvLYw+/8/rjIlLTeW0+lDlEpH5+x6wzTwpUlXN2AOQbahwAAABAXtv+x0e2rf25iNR0XhusWaQTiYhosTZ0GlY/STFJ8WlfSmy3XjICvtZTeht6uzw+gxMEIH/wIwkAAADId/tee2lssL/rgo9WtJzr8QaP7V+X8LISJUpElHJ+hsSqTlivpv45HpP41+PbWiS2bZU57H0rmusrmuv3r+87smuPaM4SgJnHfRwAAABAATjct3nTw3eJSFnj6eH65fkzsfoFnW2nLfWXhTlHAGYcNQ4AAACgMORtmSNQXta+4qTGRfOUh/UFgJnEzyAAAACgYORtmUNEKpob5p53RnlTA9+6AmCmUOMAAAAACkl8maOi7d2SZxWFxsUL205bZgQDnCkA048aBwAAAFBg7DJHsGpeVcd78q3M4S8v6zj7tLp5c3l0BcA043tVCpKpOXEAckzrLpIA4AR+hnycJMycdhHyDwAi3McBAAAAAACKA7cDFCSPiqR7SYtWEv8959o5auIbGuNjtOSmn6xizGkcK+kwp2AsZaYJ0aIm6scxRuuUmZ/gnM1sjkvnIj9mBhf7hP1okQnzM2E/OpscykSHn9CPcjrMpPepY27Tx8RH5ySHpnUHh1KbXM+yaz/WFZ7Z9azcfjpl/vMnq2N3+SE2PmellNY65cqJ78f9yk/Nj+l4/SjX6yflvKe5fpRobc9HTTSfdLmKZvxzQ6s0nWjn906668fM5nJNf+qdj9jM8keHmfGvnvTXj4pd9lpP9keHti6JTE+9Q/6TcpXJqXfMT9JhxmJSf39pnfSrx7qDQ6nbsj/12fzqUfFDO+Yq4fpxfK9pMdVEv5LizoUW5/dadtePo28bGgAAIABJREFUy7veHku7XiSuL2kR8ZeX9V7/t15f2ejgjiPbH3QMtn76KvHaP/FU7KdfQnfq+P+AHn9JHz98a8fYvt7k3wbKOhyP3X9cuzq4acuhLVvTnMe0PzqU6/WT8t6xz1qG/3Rxvn5E6TT/JHP/90Z8P2aW78E0P39SZ6Jd/sma1a+e8X6Scxg34vgvRxGtzSz/+Zf+V4/TP9viZxj3vnA59W7Xj9ZPsWAs6cUyKQAAAAAK1+jAwBv3fis6dsxf1l456xLlDebnPGu7Ouecc1a4vo5TBmDqUOMAAAAACtvowMAb9/6bVeao6bwub8scRiDQdsqy1lOWeXw+zhqAqUCNAwAAACh4dpnDY4TzucwhIuG62rmrzq1sb5v4CUcAyBI1DgAAAKAYxMocg1aZQzwBHWMFxD5b4XijjpP2pcT21H5SOXaVtNGwcP7sd50ZqKrkxAHIIWocAAAAQJEYHRh4/WffjI4Oeoxw7dzrPUbI/ohQiX0mqIqJ33Z7KbE9tZ9Ujl0lbYiILxhsO31545JeHl0BkCvUOAAAAIDiMXZs4LWf3myVOWo6r/MGavN8whUtzZ3nnVPe0syjKwBOHDUOAAAAoKhEhgfjyxxGqCn/59y8dPGsM1f4y8s5fQBOBDUOAAAAoNjYZQ4RqZ59ZUGUOQIVFR1nn9m0dLHyskgBMEn8+AAAAACKUGR48OW7vzh8eJuI1My5oiDKHCJS0dLS9e7zy5tbOIMAJoEaBwAAAFCktPn6vbfFlTkaC2XizUtPmnXm2UYwxDkEkBVqHAAAAEDxiitzVM95TwGVOQIVlZ0rV9Uv7FVeL6cRQIaocQAAAABFTZuv33vr0KGtUmhlDhGpnt05+5xV5S2tnEYAmaDGAQAAABQ7bb5x/23H9m8RkarZlxVWmcMIBJuXntx66goeXQEwIWocAAAAQAnQ5pu/GC9zFNzdHCISrqufvfL86q75ohQnE0A61DgAAACA0hBX5ii4uzkstd0LZq+6IFzfyMkE4IgaBwAAAFAyEssc3mCDjhERx22d2G69lBCQwrGrpI20wyWOlfqS1x9oXr6i5dSzPD4/5xNAEmocAAAAQClJLHP4wk1KKaWUiKiY+G2V2G69lBCQwrGrpI20wyWOlW6gcH1j5/mXVnXM5dEVAPGocQAAAAAlJq7MUdlxaSE+tGJp6D1p9qqLAtW1nFIAFmocAAAAQOmxyhwHtkiBlzmMQLBtxcrGpacpr5ezCoAaBwAAAFCStPnmz28d2LtZCrzMISIVrbO6LryqvGUWj64AJY4aBwAAAFCqtLn+gdsG9mwSkaqOS41gQ0EfTfOyFbPOOt9fXsWJBUoWNQ4AAACghGlz/a+/Z5U5qjsuKfQyR6CievY5FzYvW8GjK0BposYBAAAAlDZtrv/19wb39UlRlDlEpLJ1dueqSytaOzi3QKmhxgEAAACUPG2+9cvvWh9BWhxlDiMQaj75jI5zLjRCYU4vUDqocQAAAACwPoK0qMocIhKorO5cfXlD7yk8ugKUCGocAAAAAETE+kLZ7w73bxeRqlkXF0eZQ0SqO+fPXnVZuKGFMwwUPWocAAAAAGJM8/V7/734yhxGINR2+sq2FecZoTJOMlDEqHEAAAAAiGOar9/7reIrc4hIWUNz5+orauctFqU4z0BRosYBAAAAIJFpvvmLb48M7BSRqo6LvcF6rbXW2nrR2tDpxb9qbydtOMYkdWIPl+EQ7lMaH1dL3bylnauvKmto5TwDxYcaBwAAAIBk5ujYG/fdYpU5qjsu9oUaVezeB2tDpRf/qr2dtOEYk9SJPVyGQ7hPaXxcJUopXzDcvmJ1y8nneP0BzjVQTKhxAAAAAHBglTlGB3eLSFXHRcX00Iqlsq2z+8Ibqucs4NEVoGhQ4wAAAADgzBwde/s3tx0vc4Qaiu8Ymxav6Dr/en9FNacbKALUOAAAAACkNdJ/1C5zVHdcXHx3c4iIEQx1rryy5eRzlNfgjAMFjRoHAAAAADcj/Uc3PXSXGRkSkaqOi5S3OD/DorJt7oJLP1DZNpdHV4DCRY0DAAAAwASO7Tuw5ck7YmWOy4q1zCEiraesnP2uKwIVNZx0oBBR4wAAAAAwsUMb+7Y8+X0zMuQxQlUdlylP0ZY5gpW1nSuvbly0gkdXgIJDjQMAAABARg5t3Lz9mR+IiMcIVXZcXMRlDhGp7VzUvfr6irYuzjtQQKhxAAAAAMjU/rfe3vf6L0TEY4TKms8UKeaPrjCC4dZTVs9eeY0RKufUAwWBGgcAAACAjGnZtvZJq8zhCzeXt64s7jKHiAQr67re/b7GxWfxWaRA/qPGAQAAACAbWratffLQ5gelZMocIlIzd3HXu99f1jiL8w/kM2ocAAAAALKkZcsTjx7d9ScR8YWbw00rdBwRSd1O2nCMSepkfCgnE+7u2JvWWnS6DifuxxsIta+4pP2MS32hCi4BgBoHAAAAgCJhjkU2rrlv8J2XRSRQMSdUu1jFiEjqdtKGY0w8eyDlZMLdHXtTSolK12Gm/ZQ1tHdd8P66+ct5dAWgxgEAAACgiMocv//J0IFXRSRUtyRQ01s6x96w8PTuCz8cqm3mMgDyCjUOAAAAAJMUGR7d9IefjZc5akurzGEEw7PPuaZ1+QVef5ArAcgT1DgAAAAATN5I/8CmR+4dO7ZHREK1S7zBupI6/Mr2efMu+YvqzsU8ugLkA2ocAAAAAE7IyOH+LY//wCpzVLatNkqszCEizUvPnXfRhwOVdVwMwMyixgEAAADgRB3ZsXv72nvGyxzt53tLr8xhBMs6V9/UeuqFymtwPQAzhRoHAAAAgBw4tHn79rX3mJFhEalsW+31V5VgEirbFyy4/BOV7Qt4dAWYEdQ4AAAAAOTGoc3b9776n2ZkSETKW85VnkBp5qH11Is7z/uAL1zJJQFMM2ocAAAAAHJm1wsv7H3lXjMy7DGClbMuLNkyR7Cqofuiv2pauopHV4DpRI0DAAAAQO5o2bVu3d5X48sc/pJNRm3XKd0X/mVl+0KuC2B6UOMAAAAAkFNadq97sX/7kyLiMYLlLeeKlO6HUxjBsrbTLutc/SEeXQGmATUOAAAAADmmTXPLE78/tHmNiHgD1WXNZ4sorbXWWkTsP+NbkhzvysmEuzv2prUWna7DLPpJjYx1njBWvEBlfdeFf1W34Aw+ixSgxgEAAACgwJhjkS1PPnSo7yER8YWbyprPVkoppUTE/jO+JYndj3Iy4e6OvSmlRKXrMIt+UiNjnSeMlaqx9+x5F/+XsqZOLg+AGgcAAACAwipzjO187olj+18SEV+4MVDNx1KIESzrOOuajnddz6MrwFSgxgEAAABgqoz0H+l75L6hg2+ISLCmx1+1gJyISHnj7O6LPlYz92QeXQFyixoHAAAAgCk03H9k88M/GunfKCLBmh5fWTs5sTQvu2DeJZ8I1bWRCiBXqHEAAAAAmFrD/Ud2Pv9AZOgdEQk3nuYN1JITixEs71z1gbbTr/D6Q2QDOHHUOAAAAABMuUOb+7atvccqc5S3rqTMEa9q1qIFl/9dTddyHl0BThA1DgAAAADT4dCmvu1rf2RGhkWkom2V8vjJSbyWZRfOPf8vApUNpAKYNGocAAAAAKbJwc19+1673ypzlLedT5kjSbCqce67/6r1tKuU10c2gEmgxgEAAABgumi94/k/WWUOjxGsbHs3ZY5UVbMW9Vz1qapZi3l0BcgWNQ4AAAAA00jrHc8/e2jTQyLiMYLhhtNEWMk7aF9xddf5H/OFq0gFkDlqHAAAAACml9bb1j7ev/UPIuILNZY1nUWZw1GwqmnexZ9sPukiHl0BMkSNAwAAAMB0M8fGNj/6u0NbHxYRX6gxVL+cnKRT171i3sX/vWrWElIBTIgaBwAAAIAZYI6NbXn0waFDb4iIv6zdX7lAx7HDtJP49nQxqb1prUWn6zCLflIjY50njDVhV+5TjQ8zAmVtp13T8a4P+sLVXDkANQ4AAAAA+Vjm2Pzwj4cOvSkioZqeYPVCFWPHKCfx7elikuKtMFHpOsyin9TIWOcJY03YlftUU8MqmrrmX/r3DT2rRLGOA6hxAAAAAMgzw4f7Nz/8o9HBHSISrO4xgk3kxF3jotUL3vOP5c3zSQWQihoHAAAAgJk0fLi/77G7I0PviEhZ05neQC05cecLVsw550Nzzv2INxAmG0A8ahwAAAAAZtjArt3bnrnHKnOUN5/rDdSQkwmVN3X1XPHpmq4VPLoC2HgzAAAAAJh5hzZu2v7sT8zosIiEG05VHj85yUTzyZfNu+wfQnUdpAIQahwAAAAA8sTBDW/veeknZnTYYwTLW1dS5siQEazoXP3XbStu8AbKyAZKHDUOAAAAAPli90vr9r1+vxkZ9hjBcNMZ1tedIBPVs09aeOVnqjpO4tEVlDKufgAAAAB5Q+sdf3rm4MZHRMTrrww3nk5KstJ+xg1dF/xNoIqvp0GJosYBAAAAIJ9ovfWpB4/seFpEjFCDv2oeKclKsLql+6K/a1txo/L6yAZKDTUOAAAAAHlG600P33ds/xsiEqxeYIRbSUm2qmcv673281Udy0gFSgo1DgAAAAB5xxwbffvX3x8b3Csi4YZT+DbZyZl15k1dF/29L0z2UCqocQAAAADIR9Gx0fUP3BwdPSIiofrlonw6RkQct9OxOtRai5Y0AVn0kxoZ6zxhrAm7cp/qJI7OcYhAVcu893y6adkVPLoCahwAAAAAMGNGj/ZvfPAW69tkK9rOVcqjlFJKiYiKid9Ox+pNKSVK0gRk0U9qZKzzhLEm7Mp9qpM4Opch6ua/a95l/7u8ZSEXFahxAAAAAMDMGNy7Y9OD3xIRjzdY1nga3yY7ab5QZce5f9Wx8mM8uoIiRo0DAAAAQF47uqtv57M/FBFfqD5Yw50IJ6S8ef68yz9T33uBKBaDKEJc1gAAAADy3d5X1h7avFZEAhVz/OUdJOQENS65eP4Vny1v6SEVKDLUOAAAAAAUgL4//LB/+0siEqpd5PVXk5AT5AtVzl75sfYzP+gNlJENFA1qHAAAAAAKw6Y1d4wc2SUi5c1nKm+IhJy46tnLF179+dp55/DoCooD1zEAAACAAmFG37z/q9GxIbHKHB4/KcmJluXXzb/ic+H6TlKBQkeNAwAAAEDBMMdGXv/pZ6NjQx5vIFx/El+zkiu+UOXcC/6+7YwPKy+VIxQwahwAAAAACklk6Ojmh24VESNYX9Z4KgnJoerZyxdd/42q2ct5dAUFigsXAAAAQIE5uvOtLU/8QESMYH2gqouE5NasMz/SfdGnAlUtpAIFhxoHAAAAgMJzcP0zu1/8rYiEqucZwXoSklvB6rbuiz/dfiaPrqDAGKQAAAAAQCHate7XFW0Lypu6yxqXH939R3NsIP5VnRKvtRattMMropSIKK31eNjxTnRimDreVWL7+L6xmKQAJypNTPLusW3nDrXW6Ua0Z2VHpp9T6nAiIlUdy8MN8/a8/PP+rc9zvaEgcB8HAAAAgMKkzbcf+Mbw4d0iUtZ4qsfrV2nYa35RkiZAWQHu4ssHSe1KjXftGODYlftU3cNcdnHcN5N+HMP84aqOsz7affE/+cpqueJAjQMAAAAAprTM8fXI8FGPN1DWfBZfszJFgtVtC6/4fMsp1/PoCvIcNQ4AAAAABSwyPPD2b24WEY83EG44hTLH1KlfcN7CK/65vGUxqUDeosYBAAAAoLANH9y5/ldfFREjWOev7CQhU8cXqpqz6r/NWf13vrI6soE8RI0DAAAAQMEb3Ltp1wsPiEiwqtsINZOQKVXe3LPgyi82LL5MFCtK5BeuSAAAAADFYM+Lvzmy800RCdUt8fqrSMhUa1p6xfwrvxSu7yIVyB/UOAAAAAAUiY0P/tvY0BERCdadpDw+EjLVfKGquRd+qv2sv/QGyskG8gE1DgAAAADFQptv3PtZsT5/tH45nz86ParnnN573c1181fz6ApmHJcgAAAAgOIRGR5461dfFhGvryJcdzIJmTatp9208OqvBarbSAVmEDUOAAAAAEVlcO+mXet+LdbXrFTMJSHTxheqmn/Z52ad/THl9ZMNzAhqHAAAAACKze51DwzseVtEgpVdfP7oNKuec8aiG75bNWcFj65g+nHNAQAAAChC63/9jcjIgIiUNZyuvEESMs06zv549yWfDVTx6AqmFTUOAAAAAMVIm6//7P9Ym+WNK5THp7UWLdqJiBZxfikxLNZ3SrvW4107Bjh25TLEhGEuuzjum0k/7rNyiUnXEqxun3fZP7csfx+ProAaBwAAAACckMjwwFsPfFlEPN5AqGaJUh5RopxY38CiJmL3nNqu1HjXjgGOXbkMMWGYyy6O+2bSj/usXGJcWkRU3YILFlz51ao5Z3BBghoHAAAAAEze4J6Ne17+nYgYwbpA5TwSMiN8oaqOsz8+77Iv+MrqyQamFDUOAAAAAMVs53P3D+7bLCL+8g5fWTsJmSmhmo6eq/61dfkH+CxSTB2uLQAAAABF7q1ffik6ekxEQtUL+ZqVmVW/8MKeq79Z0XoSqcBUoMYBAAAAoNhp87Wf/ZO1GW5Yrjw+UjKDfKHqOef9Q+fqT/HoCnKOGgcAAACA4hcZOrrh9zdb2+HG060PGcUMKm9Z3HP1zY1LrubRFeQQFxMAAACAknBk22v71z8uIh5vIFi3lDJHPmhedu3Ca28JN8wnFcgJahwAAAAASsXWJ344fHi7iBiBWl/5bBKSD3yh6q6LPzvrXX/jDVSQDZwgahwAAAAASsjr9/2LGRkWkUBlpzdQS0LyRHXnWb3vvbVuwUU8uoITwdUDAAAAoJSY0dfv/b/WZqjuJI9RRkryR9vpH+2+7IuB6lmkApNDjQMAAABAaRk9emDrk9+3toN1Jwlfs5JPQjWz51/+1Vnv+qQyAmQD2aLGAQAAAKDk7H/r2cNb/yQiHm8gVLfMatQTsXdPbddaS1xMJl25DDFhmMsujvtm0o/7rFxiXFpEYslJjBHt3G6rnnPW4hvvrppzNo+ugBoHAAAAAExg00O3jQ6+IyJeX7m/sltE1ETsfVPblVISF5NJVy5DTBjmsovjvpn04z4rlxiXFuvLa1JjRDm3J5l9zie7L/2Sr6yByxXUOAAAAAAgPa3fuO//mdEREfGXtxuhRlKSh0I1s3uu+ffW0z7i4dEVZIAaBwAAAIASFR0Z2rTmG9Z2sKZXeVlF56mGnksXXn1Ldee7SAXcUeMAAAAAULqO7Niw+8WfWtvBulNISN7yhapnn/PJ+Zd/nUdX4IIaBwAAAICStmvdmoE9r4iIx+sPVPeQkHwWqpnTe+2tTUuv47NI4YjLAgAAAEBp03rjmlvHju0XESPUyAdz5L/mZTf2XndbRRv33SAZNQ4AAAAApS46MrTx9zeb0VHhgzkKhC9U03n+Zzov+CyPriAeNQ4AAAAAkGP7d+1+8WfWdrDuFB6FKAgVrSf1XHdb3YJLOF+wcB0AAAAAgIjInpcf69+2VkQ8Xn+wZjEJKRStK/669/o7w40LSQWocQAAAACAiIho3ffo3SP9W0TEG6gxwq2kpFD4wjXzLv1Kx7n/QCpKHDUOAAAAABgXHR3Z9IfvmmMDIuKv7PYYYXJSQGrmnksSShw1DgAAAAA4bujgnq1/vCP2+aOL+aAHoIDwdgUAAACABAc3vHi473GxPpijukfH2AE6kdUicTF6IuliknbPsCvHsGz7cZ+VS4xLi0gsOYkxop3bMz86q3PH6dlmnfMPyuArcqhxAAAAAEBp2/Lkz4YPbRARI1DjL+9QSiml7FdVIqtF4mLURNLFJO2eYVeOYdn24z4rlxiXFpFYchJjRDm3Z350VueO07PVzl219P33VXeu5HqmxgEAAAAApUtHIxvXfDsyclhEAhWzPb4KclKgZp/7jwuuuMVX1kgqSgE1DgAAAABwMHL00Nanvjf+wRzVPaIMclKgQrWdvdfd2Xb6xz08ulLsqHEAAAAAgLPDfa8f2LBGxj+YYyEJKWgNPVf2XHNHdecqUlHEqHEAAAAAQFrb1/5yYO+LImIEqn1ls0hIQfOFauec+6muC77o59GVIkWNAwAAAADS0tFI32P/MTq4S/hgjmJR0Xpy73V3N530fr4YuPhwRgEAAADAzejRQ1ueuMP6/NFw3Ul8MEdxaDn5Q4uuv6ei7TRSUUyocQAAAADABI7u2LD/rQetzx8N1SwiIcXBF67tuuDzXRd+2RuoIhvFgRoHAAAAAExs5/O/H9jzgoh4fGX+ijkkpGhUtJ6y5H331i+8kkdXigCnEAAAAAAyoHXfY/eMHNkkIr5wi9dfTUqKSfsZ/633+p+EG7hJp7BR4wAAAACAjESGBrY+/aPI0D4RCdb08MEcRcYXqp136Tdnn/tPBo+uFCxqHAAAAACQqaM7N+57Y/yDOQJV87TWWmsR0VpLbNv6q7t0MUm7Z9iVY1i2/bjPyiXGpUUklpzEGNHO7ZkfndW54/RsmRxa6lg1c1cvft/91Z2reXSFGgcAAAAAFLldLz0yuPdFETEC1b5wi1JKRJRSopS1bf3VXbqYpN0z7MoxLNt+3GflEuPSIhJLTmKMKOf2zI/O6txxerZMDi11LCuyc9VnFl5xa7CmkwueGgcAAAAAFC+t+x794ciRPhEJVHYqI0xKilKotqvnqjtmr/yMxwiSjUJBjQMAAAAAsjM2dLTv0dujI4dFJFjdw8KqiNXOXd177Q9r5q4mFQWBtyIAAAAAZG3wnW27X7rfjI56vP5AZRcJKWK+cO2clZ9ZeOX3/OVNZCPPUeMAAAAAgMnY++oTR7avFREjVO8N1JGQ4haq7Vp0/Y/bVvwNj67kM2ocAAAAADApWm95/EfjH8xRNY+vki0Fjb3X9FzzH5Xtp5OK/ESNAwAAAAAmKTo63PfYndYHc4RqekhIKfCFa7su+FLXhV/j0ZU8RI0DAAAAACZvcO+WPX/+lY6Oeoywv7yDhJSIitblvdf9pPmkD4nyko38QY0DAAAAAE7Inj8/cnTX8yLiCzd7fOUkpHS0nPLRJTfcW9m+glTkCWocAAAAAHBitN78yA9GB3aISKCymw/mKCm+cF33BV+Zs/L/GIEqsjHjqHEAAAAAwImKjg5vXHNLdLTf4/UHq/gq2ZJTO/fdS296oKHnGh5dmVnUOAAAAAAgB4YO7Nz5wn+KiNdf5Q02aFcikq49/qV0YS67OO6bST/us3KJcWkRGd9OihHt3J750VmdO07PlsmhpY6VyZSSJxbbaF/xt4uvv6+scTFvh5nCPVQAAAAAkBv7Xn+qsrWnes67AhVzzNF+bY6KiIhKClNKaS1KKWs7cVk+HmC1a61jASp+9+PbTo0iynrFboz149yJHRw3nCQVC+zZ2jOP7yepczvePpykEbU4t6fmyqomOM9KUrOUnOfUhKdG2YPalYs0kQlHZ09MKSVaJLaLv6x+wWXfPbDp4e1rv2pGhnlTTDPu4wAAAACAHNF6y+N3jxzdLiLBml7yUbJq57572Qcfrp77bh5dmWbUOAAAAAAgZ6Kjw5seusWMHFMen79iLgkpZXNWfXbBlbcHa7gMpg81DgAAAADIpaEDO3c+f4+IGME6j5/v2ihpodruhVffPXvlZz1GkGxMA2ocAAAAAJBj77z2eP/Wp0UkWDWfr5JFTdcFPdf+rHruBaRiqlHjAAAAAIBc07rvsTvHBveKSKCSRxUgvnDdnFX/b8FVd/vLm8nG1KHGAQAAAAC5Fx0d2vD7r2tzzOuvNMItJAQiEqrt7n3v/W1n/B2fRTpFqHEAAAAAwJQYOrBj+9rbRcRf1qa8IRICS+Oi9y6+8ZeV7WeSipyjxgEAAAAAU2XfG08e2fGciASr55MN2Hzhuq6LvtF10b/5y7nHJ5eocQAAAADAFNq45pbI8CHl8fnKZpENxKtoO33RDb9oXvYXPLqSK9Q4AAAAAGAK6Whkw4NfFRFfuMljlJMQJGlZ/rHFNz5Q1riUVJw4ahwAAAAAMLWO7dvyzmu/FpFAVRerMKTyhevmX3777FX/YgSrycaJ4IuaAQAAAGDKbV/74+o5p/vLm/wVs0eP9okorbVToBKR+Jdi247BorVWKnmX8Y6USupHp51d6nAOA9kd29vWRmwg7RKfNBlrfk7tE46ekCq72TEgsVG5JSCT4ZwCYhtxU8ko4c5j1cy9sGbuhTue+dr+t+4XHeVdMwlUEAEAAABgOrz1q8+JiBGs8/qrrNJAKrs8Yf9VTSRpF8d9M+nHJcy9K5cWq2STGiPKuT3zo7M6d5xefJVnEpnMZErJE8sgJ5knfNZZn1p842+DNd28ZahxAAAAAECeGhs8tO3p20XEXzGHtRhc+ML1Pdf8dPaqz3uMINnICu8rAAAAAJgm+974w7H9m5XH56+YTTbgrrbr4pM+/HT13Iv41pXMUeMAAAAAgOmz4XdfFhEjWOvxVZINTGjOqs8vvOoeHl3JEDUOAAAAAJg+keGjfY/+u4gEq7pE8S0QmFiodl7PNT9tO+MfeXRlQtQ4AAAAAGBaHdz4x6O73xSRAE+sIGONi97Xe/2vq+deTCpcUOMAAAAAgOm2+eGbRcTrr/T6q8kGMuQL188574sLrv6pv7yFbDiixgEAAAAA081+YsVfMYdPlERWQrXze2/4bdOyv+bKSaVEzIlitPWdxoUQo0VpERGtRU3UT5YxVsdOQ2o10ZwziNETxpiaR/UAAAAAIFPLPnpwfDWnlNainP+PX9kLTK21Faxcl4paa6VUQrCWpFWqFWOm6cbu3wpLnUlqV479jB3bv/3pfz6y/cnU5acWLaLTLKi107LadIp0Wglra3fTaXluph8x/fp9vE87CzqxNzMWHVWirLWz3aeVMi2mFlPE7OvbwH0cAAAAAAAUHl+4vuuiW7ouuc1f3ko2LNwaUJA8KpLupaT7QXTa0l1W98uQlTX4AAAgAElEQVS4lACn7t4ccxrHSjrMKRhLpblhatL3HGmdMvMTnLOZzXHpXOTHzOBin7AfLTJhfibsR2eTQ5no8BP6UU6Hmf6+reO5zewesZzk0NS6S0SU2uR6ll37sa7wzK5n5fbTKfOfP1kdu+v/Yygl4/+9o1OunPh+3K/8TP8zRLlePynnPc31o6z/aNLjV9kE80mXq2jGPze0StOJdn7vpLt+srp1NP2pdz5iM8sfHWbGv3pc/vcpdtlrPdkfHdq6JDI99Q75T8pVJqfeMT9JhxmLSf39pXXSrx6tPy4iSt2W/anP5lePih/aMVcJ14/je01Luv9SNZ3ehlqc32vZXT8u73p7LO16kbi+5J6TdDlMd+on/aMj3fWjnX4pp7sOna8f5Xr9pLx37LOW4T9dnK8f51u4tU6Zsk5/XGbm78Haeed2nvcJERk+9IY2R+NuDrDeYvb/4R///+n4/9WPOt96MH5HQNL9AvHHkBjvsX8bOt4yYLcrpUytJOU2BKVU/AztditJcTEJV7bTWB7HoZ1nJeMz0Vp7POM7vnxXbaktDyvbzui94Xc7nvny/jfvFR0t9cUy9QIAAAAAmCkHNzw5+M5GEfFXdNoFGh0Tv51O0i6O+2bSj0uYe1cuLVY1IzVGtHN75kdnde44vfj6yCQymcmUkieWQU6ySniGMfEzaT/zfy+6cU1Z4zJqHAAAAACAGbPx918WEY8RMkINVotSx2/lUBNJ2sVx30z6cQlz78qlJf52koQA5dye+dFZnTtOz5bJoaWOlcmUkieWQU6ySniGMUkz8Zc1zL/i7jnnfdkI1lDjAAAAAADMgMjw0S1P3Coi/rJ25fGTEJyI2q5Ll3zg8YbeG0vzW1eocQAAAADADDuw/rFjB7eISKCyk2zgxM06658WXvWzYM28UjtwahwAAAAAMPM2/PYLMv7EShPZwIkL1y3ovfbnc877iscIlc5RU+MAAAAAgJkXGTqy/ZkfiIi/rFl5gyQEOVHbdemyjzxX03VpiTy6Qo0DAAAAAPLCO68+ONy/U3hiBbnWed5XF151r7+8teiPlBoHAAAAAOSLt3/zeRFRHp8RbiEbyKFw3YJFNzzUfsani/vRFWocAAAAAJAvxgYP7nrhpyJiBOuVN0BCkFuNiz+46L1rarreU6wHSI0DAAAAAPLI7hd/HhnuFxF/BU+sIPd84YbO877ec82v/OVtxXd01DgAAAAAIL+8/Zt/ERHl8fnCrWQDUyFct2DJ+x5pPvm/FtlnkVLjAAAAAID8MnRw+/71D4uIEeKJFUyh1lM/ueSmxytnnVs0R0SNAwAAAADyztan7oyOHhWeWMEU84Ubui/+XveldxnBmiI4HGocAAAAAJB/zOjGNV8V6ztWQi06PSvcsd1x272rCdtTY1xaRMa3k2JEO7dnfnRW547Ts2VyaKljZTKl5IllkJOsEp5hjMNMJttVRetZSz7wbH3v+wv90RWDHx0AAAAAkIcG9rx1dM9rFc2LjVB9dPSwjo5Y7UopO8beim8UUdYrdqPWWikVF54aL0qpWFgyu10ppXXiBJQ9kEqNtxbgcTGxAHFuj+/E7iolxu5ExUZxnrbdmDrt1FzF1wvSRCYcnT0xpZRokcRdrJh03aScl+SZOCbfvSv3OVudx3flGN9x9mebl32i75FPDu59sUDfNdzHAQAAAAB5asODXzajoyLir5hNNjANfOGGBVf8dM553zCCtYU4f2ocAAAAAJCndGRk61PfEeuJlXAzCcH0qO2+fOkH/1TTdXnBPbpCjQMAAAAA8tfBDX8c6d8hIkawju9YwXTqXP2vC6/6VbBmfgHNmRoHAAAAAOS19b/5nDbHhCdWMO3CdQt7r/3dnPNu9hihgpgwNQ4AAAAAyGtjxw7vffVXwhMrmCG1XZcv+8irNV1X5P9UqXEAAAAAQL7b+fy9owN7hCdWMHM6z7t54dW/9Ze35fMkqXEAAAAAQN7T5obff8Xa9JXzxApmRriuZ/H7nm474//m7aMr1DgAAAAAoAAMH9pxcONjIqI8hjfUREIwUxoXf3TRDU/VdF2Zh3OjxgEAAAAAhWHLE9+LjPQLT6xgpvnCjZ2rb+m+9Mf+8va8mhg1DgAAAAAoDDo6tuWxb40vMnliBTOtsu2cxe9b23zy34ry5smUDM4KAAAAABSK/m0vH925rqJtufXESmRwt1JKRLTWSZFKqfhGnRpxXEKYc8Tx9uPdWhuxgbRLfNJkrPk5tU84enwPYjc7BiQ2KrcEZDKcU0BsI24qGSU8i7FcYlQshxn2kxqmczGlluX/o77nA9ue+tSR7Y/M+BuE+zgAAAAAoJBseuRbZmRYRIxgnccI2svdJPGNjgHuu2TelUuLyPh2Uowo53bHodPPynl68SWArDLguGO6bCREZpCTrBKeYYzDTKZyOJcYf1lT98V3d1/6EyNYS40DAAAAAJCp6PDAzufusraDFTyxgnxR2XbO0g++0tD7kRl8dIUaBwAAAAAUmHdef2Ro/3oRUR6fL9xMQpA/Zp39+SU3PV/WdOqMjE6NAwAAAAAKjTY3PXqLNiMi4gvWKY+PlCB/+MKNC6745ezzbvEYoWkemhoHAAAAABSekcO7973+gLXtL5tFQpBvaruuWvbRDTVdV03noyvUOAAAAACgIO147j9HBnaLiMcIenyVJAR5qHP1txdevSZUu3B6hqPGAQAAAAAFSUfHtq+9U5tjIuILNZEQ5KdwXW/vdY91rv7ONDy6Qo0DAAAAAApV/5YXj+xYJyLKY3gD9SQEeau2++rFNz5b2331lI5CjQMAAAAACtjWJ78fHRsQEV+ogQ8fRT7zhRs7V3+n59pH/OXtUzQENQ4AAAAAKGBjxw5vf/Yua9sItZAQ5LlwXe+Sm56fdda/eIxwzjunxgEAAAAAhe3AW08O928REa+vzGOUkRDkv8bFf734hj9Vzjo/t90aZBYAAAAACps2N675au81/+oxgr5w63D/BhFRSmmtj4fE/yVl//gw54jj7ce7tTZiA2mX+KTJiIgox/YJR4/vQexmx4DERuWWgEyGcwqIbcRNJaOEZzGWS4yK5TDDflLDdK6n5BjmcPatekSoofuiHx3Z+eS2J//H6MB2ahwAAAAAABGRkcO7D256rH7BJcpjGMH66MhBa21pLzWVUiIqfnmcUC1IXDCnrlStdqWU1gn72u3xncctvJNiEpbWqe3xnSQtkh1mJcpe3jsG2I2p004cUSWt29NEJhydPTGllGiRxF2smHTdpJyX5Jk4Jt+9K/c5W53Hd5Uu3nW48Rm6T8mxK5fhqtpXLrlp3a4XvrL7pW+Kjp7gG4FnVQAAAACgGGx7+q7RwT0i4gs1iPKSEBSQ1lP/19L3v3zij65Q4wAAAACAYqCjY9vX3qHNiIj4Qo0kBIXFF26ad8lP5qy+1QjWTboTahwAAAAAUCQO971wZNc6EfH6K5U3REJQcGq7r136obcaFv3l5O5FosYBAAAAAMVj6+O3RscGRcRf1ko2UKBmnf3lJe9/NVjbk+2O1DgAAAAAoHiMHTu849k7RUR5DI+/moSgQPnCTb3XPT1n9fc9RjjzvahxAAAAAEBR2f/W48P922T8UzkUCUHhqu2+7qSP7qjpvi7DR1eocQAAAABAcdHmxjVfMaPDImKEmsgHCl3n6u/3XPNUsLZ3wkhqHAAAAABQbEYO7zq48XGxPnzU4ychKHThusW91z3TftZX3B9docYBAAAAAEVo29N3jA6+IyJGuIVsoDg0Lv7E4htfqe1+b7oAahwAAAAAUIR0dGz72u9rM+LxBjy+ChKC4uALN3WuvrPn2mf95R2pr1LjAAAAAIDidLjv+aO7XpTx75Hlw0dRPMJ1S5bc9Gb7WV9L+ixSg9QAAAAAQLHa+vh3em9Y5PWVGaGm0WN70kTp41taO0ccb1f2trWhlNWiXeJjMXGUY/uEo8f3IHazY0Bio0p3aJkO5xQQ24ibSlyMzsVYLjEqlsMM+0kN07mekmOYw9nP0XANiz5R3XnNtif/S//2B60WahwAAAAAULTGjh3a+ewdHed80uuv9Awf0DpiL48TqgWJC+bUFabVrpTSOmFfuz3+PpG4hXdSTMLSOrU99WYTe5HsMCtR9vLeMcBuTJ124ogqaSGdJjLh6OyJKaVEiyTuYsWk68Z+IXHmyvFem3RHl3qMrheCsotN7vGuw43P0H1Kjl1NariMYvxlzd2X/PLVH88fHegTnlUBAAAAgOK2/63HRvq3iYivrJVsoLhR4wAAAACAoqbNjWu+ZEZH+PBRFD1qHAAAAABQ5EYO7zrc97SI+IL1ZANFjBoHAAAAABS/rU98NzJyRHkMb6CWbKBYUeMAAAAAgOKno2M7nr1TRHzBOqX49gkUJ2ocAAAAAFASDq5/bOhQn4gYPLGCIkWNAwAAAABKxabff0lEvP4K5Q2SDRQfahwAAAAAUCpGj+7dv/5hETGCDWQDxYcaBwAAAACUkG1P3WpGxzzegMcoJxsoMtQ4AAAAAKCUmJFdz90tIr5ws4giHygmfJouAAAAAJSWd159oGnZdb5QtTdQFxneJ6Ltl7TWjrvEtSt729pQymrRLvGxmDjKsX3C0eN7ELvZMSCxUaU7tEyHcwqIbcRNJS5G52IslxgVy2GG/aSG6VxPyTHM4exPzXBCjQMAAAAAStDGBz/Xc83NRqA6OnpYtJm0YE5dYVrtSimtJT7Gbo+/JSRu4Z0Uk7C0Tm1Pva/EXiQ7zEqUvbx3DLAbU6edOKJKWkiniUw4OntiSinRIom7WDHpurFfSJy5crytJt3RpR6j6wlXdrHJPd51uPEZuk/JsatJDZdFjI1nVQAAAACg5Azt3zi4b72I+MItZANFgxoHAAAAAJSiLY/eLCIeb8BjhMgGigM1DgAAAAAoRSP9Ow9ve1b4HlkUEWocAAAAAFCi+h75hogoj+HxVZINFAFqHAAAAABQosyxob2v3CcivlC9KJaHKHhcxAAAAABQunY+9yMzOiYi3kAd2UCho8YBAAAAACXMjOx+4T9ExOsrVx4/+UBBo8YBAAAAACVt7ysPREcHRMQI8eGjKGzUOAAAAACgtGmz79Gvy/j3yJaRDxQuahwAAAAAUOqObFs3NrhPRLyBWhFFQlCgqHEAAAAAAGTLYzeL9T2y/iqygQJlkAIAAAAAwNFdrw7sfb28aZERqBkZPSo6Ev+q1jq2qexta0Mpq0W7xMdi4ijHdu04t+R9x3sQu9kxILFROXeS+XBOAbGNuKnExehcjOUSo2I5zLCf1DCd6yk5hjmc/akZTqhxAAAAAAAsfY98bfGNtyuPYQRro8P74leY1kJaKaW1WNv2Mjv2p0qNt1amcTEJS+vU9tTHZOxFssO6V5S9vHcMsBtTp504okpaSKeJTDg6e2JKKdEiibtYMem6sV9InLlyfEoo3dGlHqPruVV2sck93nW48Rm6T8mxq0kNl0WMjWdVAAAAAAAiImOD+4/sXCfW98h6AyQEBYcaBwAAAABg3Lanv6vNiIh4A/VkAwWHGgcAAAAAYNzYwP4Db68REY/Xz60cKDjUOAAAAAAAx21fe4cZHRURI9hINlBYqHEAAAAAAI7T0dF3Xr1frO+RNcpICAoINQ4AAAAAQILdL94bHRsQEW+glmyggFDjAAAAAAAk0NHRnc/cLtatHP5qEoJCQY0DAAAAAJDswIbHIsOHRMQI1IgoEoKCQI0DAAAAAJBCm9v++G1r0+uvIh8oCNQ4AAAAAAAODvc9NzqwR0SMYK0og4Qg/3GZAgAAAACcaHPrU7fMu+QLIuIN1ESG3hEREaW1Hn9daxFRymrRCbtq+69Kax2LiaMc27XzRLRTuxK72TEgsVE5d5L5cE4BsY24qcTF6FyM5RKjYjnMsJ/UMJ3rKTmGOZz9qRlOqHEAAAAAANI5uuPPx/avD9cv8PrKoyOHlES1FmtRbS+zY3+q+BVpbOGdFJOwtE5tT/3gD3uR7LDuFWUv7x0D7EalVNK0E0dUSQvpNJEJR2dPTCklWiRxFysmXTf2C4kzV46fe5Lu6FKP0fVMKrvY5B7vOtz4DN2n5NjVpIbLIsbGsyoAAAAAgLS2PvVtbUZExAjWkw3kOWocAAAAAIC0ju3bOHRwo4h4jJDyBEgI8hk1DgAAAACAm40PfcGMjoqIN1BHNpDPqHEAAAAAANyMDezv3/KUiCiv3+MNkhDkLWocAAAAAIAJbH/2TutWDj6VA/mMGgcAAAAAYAJjgwcPbnhIRJTH6zHCJAT5iRoHAAAAAGBiO/50tzk2ICKGv8bxW06BGUeNAwAAAAAwsejIwJ5X7hMR5fF6fRUkBHmIGgcAAAAAICN7Xv5FZPSIiBiBam7lQB6ixgEAAAAAyIiOju5e92Nr2+uvJiHINwYpAAAAAABk6J3Xft245KpAebPhr4iM9GsdVUpprUV0fJjW9l+V1joWE0c5tmvHQZP3He9B7GbHgMRG5dxJ5sM5BcQ24qYSF6NzMZZLjIrlMMN+UsN0rqfkGOZw9qdmOKHGAQAAAADIgjZ3PHv73NWfVh6vL1gTGTlgLWLjH12JW3hL7NXxP+OX1qntqc+/2Itkh4mIspf3jgF2o1JKa+dORI7P3F5Ip4lMODp7Ykop0SKJu1gx6bqxX0icuXJ8/Cfd0aUeo+tpU3axyT3edbjxGbpPybGrSQ2XRYyNZ1UAAAAAAFk43PfMyMBOEfH6ykR5SQjyBzUOAAAAAEA2tLnj2bu0GRURg0/lQD6hxgEAAAAAyE7/1ueGDm0SbuVAnqHGAQAAAADIkja3Pvnv3MqBfEONAwAAAACQtWP7Nhw7uFG4lQP5hBoHAAAAAGAytj55ixkdFRGvv4psIB9Q4wAAAAAATMbQ/k1Hd78kIl6DWzmQF6hxAAAAAAAmaesT9q0clWQDM44aBwAAAABgksYGDxze+kcR8RphbuXAjKPGAQAAAACYvB3P3GGa3MqBvECNAwAAAAAweWODBw6+/QfhVg7kAYMUAAAAAABOxLY/3lrTtcrrC3t9lZGRgyKitY69qLTWSqm4FqvZsV079p+873gPYjc7BiQ2KudOMh/OKSC2ETeVuBidi7FcYlQshxn2kxqmcz0lxzCHsz81wwk1DgAAAADACdLR0b2v3N+6/INeXzg6dkSbkdjCe3wpbv8Zv7RObRdR6RbJDoOKspf3jgF2o1JKa+dORJQ9qL2QThN5fEr2ol0ppZQSLZK4ixWTrhv7hcSZq9TDdzm61GN0PUXKLja5x7sONz5D9yk5djWp4bKIsfGsCgAAAADgRO15+b5o5JjwqRyYUdQ4AAAAAAAnSkdHd7/wQ+FTOTCjqHEAAAAAAHJg76sPREb6RcTwV5ENzAhqHAAAAACAXNDmjj/dJSJeH7dyYGZQ4wAAAAAA5MaB9Q+PDR0QPpUDM4QaBwAAAAAgR7S55fFvCJ/KgRlCjQMAAAAAkDNHtq8b7t8u3MqBmUCNAwAAAACQS1se/1fhVg7MBGocAAAAAIBcGtz7hnUrh8GtHJhe1DgAAAAAADm26Q9fEL5gBdPOIAUAAAAAgNwaPtB3ZNfLla3LDH9lZOSQUkprnRChlNY6pV079pa873gPYjc7BiQ2KudOMh/OKSC2ETeVuBidi7FcYlQshxn2kxqmcz0lxzCHsz81wwk1DgAAAADAVNjy+NeX3Hi31xeOjh0VHbWW4vFLa6slvl1EpVskO6x7RdnLe8cAu1EppbVzJyLKHtReSKeJPD4le9GulFJKiRZJ3MWKSdeN/ULizFXq4bscXeoxup4NZVV5Jox3HW58hu5TcuxqUsNlEWPjWRUAAAAAQO6NDewb3LdeRDxGiGxgelDjAAAAAABMic1/+IKMf/KoIhuYBtQ4AAAAAABTYmxw/+FtfxIRj6+MbGAaUOMAAAAAAEyVbU99S/gSWUwXahwAAAAAgKkyNrh/cN/bIqK8QbKBqUaNAwAAAAAwhfoe/YqIeLmVA1OPGgcAAAAAYAqN9O8YOrhFKa/yBMgGphQ1DgAAAADA1Nr2x++IiNdfQSowpahxAAAAAACm1sDuP48dO6g8PuXxkQ1MHWocAAAAAIApt/2Z74qI119FKjB1DFIAAAAAAJhqhzY/Ya76nx6vX4tHdFSU0lorpbTWcVHacd/EmBgldrNjQGKjcu4k8+GcAmIbcVOJi9G5GMslRsVymGE/qWE611NyDEs5y1M1nFDjAAAAAABMB23ufeXelpPfb/grI6OHraWv/ae9bE+3SHboT5S9vHcMsBuVUlo7dyKi7EHthXSayONTshftSimllGiRxF2smHTd2C8kzlylHr7L0aUeo2v2lVXlmTDedbjxGbpPybGrSQ2XRYyNZ1UAAAAAANNh14v3aDPiMUKivGQDU4EaBwAAAABgWpiRIzvXiYjHGyIZmArUOAAAAAAA02TrU98UEcNf4fhcBnCCqHEAAAAAAKbJ2OD+gXfeEBGPUUY2kHPUOAAAAAAA02fXCz+Q8Vs5gByjxgEAAAAAmD5Hd740emy/iChvkGwgt6hxAAAAAACm1a51/yEiXh+3ciDHqHEAAAAAAKbVwQ2PmNERpbzK4ycbyCFqHAAAAACAaaWjo/ve/I1wKwdyjRoHAAAAAGC67X3lPm2OKY9PeXxkA7lCjQMAAAAAMN3GBvcf3f2yiHh9lWQDuWKQAgAAAADA9Nv5wt0Vracoj0+LR3RURES0Y6TWTu1K7GbHgMRG5dxJ5sM5BcQ24qYSF6NzMZZLjFJKa62UyrCf1DCd6yk5hlnznIoMpKLGAQAAAACYAcf2bRgd3BsobzV8FdGx/vFiQZpFssO6V5S9vHcMsBuVUlo7dyKi7EHthXSayONTshftSimllGiRxF2smHTd2C8kzlylHr7L0aUeo2uylVXlmTDedbjxGbpPybGrSQ2XRYyNZ1UAAAAAADNBm7vX3SMiHiPkuLwHskWNAwAAAAAwMw5ueiI6dlREPEaYbODEUeMAAAAAAMwMHRnZz5fIIneocQAAAAAAZsz+t9aYkSERUd4g2cAJosYBAAAAAJgxI4e3Dx3uE27lQC5Q4wAAAAAAzKRdz96uzTGlvMrjIxs4EXx3bEEyNScOQI5p3UUSAJzAz5CPkwQAuVBDCnAiuI8DAAAAAAAUA24HKEgeFUn3khat4r5ZWot2jpr426fjY7Tkpp+sYsxpHCvpMKdgLGWmCdGiJurHMUbrlJmf4JzNbI5L5yI/ZgYX+4T9aJEJ8zNhPzqbHMpEh5/Qj3I6zKT3qWNu08fER+ckh6Z1B4dSm1zPsms/1hWe2fWs3H46Zf7zJ6tjd/khNj5npZTWOuXKie/H/cpPzY/peP0o1+sn5bynuX6UaG3PR000n3S5imb8c0OrNJ1o5/dOuuvHzOZyTX/qnY/YzPJHh5nxr57014+KXfZaT/ZHh7YuiUxPvUP+k3KVyal3zE/SYcZiUn9/aZ30q8e6g0Op27I/9dn86lHxQzvmKuH6cXyvaTHVRL+S4s6FFuf3WnbXj8u73h5Lu14kri+55yRdDtOd+kn/6Eh3/WinX8rprkPn60e5Xj8p7x37rGX4Txfn62d85g7/JHP/90Z8P2aW78E0P39SZ6Jd/sma1a+e8X6Scxg34vgvRxGtzSz/+Zf++nH6Z5s1Q2+gYvFNP/T6KszIcHTsSNzrWimlnP6NoUVZHWqtPZ7x/79/+a5aFowlvVgmBQAAAACAmRUdOXpw46Mi4jH4dhVMHvdxAAAAAABm3oG3Hqydd6HXCClv2IwMxr+kHW8IiruRzjEgsVFprTOcyYSRdkBsw+GePp3ZeJlEpYux7rVRsZtZJnFoOtdTcgyz7wmSKR5OqHEAAAAAAPLBsX0bhg5uKm9cbPjLx6LHkhbJDuteUfby3jHAblRKae3ciYiyn7KxF9LK9fFbazh7Ykqp8SerUmLSdWO/kDhz5fjsXrqjSz1G1+wqq8ozYbzrcCr2lKJWEz6hnBg2qeGyiLHxrAoAAAAAIC/sffln2oyIiPIGyAYmgRoHAAAAACAv9O94ITo2ICJeo4xsYBKocQAAAAAA8oKOjOx58cdaR5XHUB4fCUG2qHEAAAAAAPLFoc1PmJEhEfFwKweyR40DAAAAAJAvxgb3D+5fLyIer18UK1ZkhysGAAAAAJBHdj17uxkZFhGPESYbyAo1DgAAAABAHjm2f+PI4B4R8VLjQJaocQAAAAAA8ok29778U+tLZPlUDmSFGgcAAAAAIL8c3PT4+JfI+kJkA5mjxgEAAAAAyC86MnJw0+NaR5XyKm+AhCBD1DgAAAAAAHln32s/N8eOiYiXx1WQMYMUAAAAAADyzfDh7QP711e1nqo8hihDm2PJEUq0Ht/U9lacxEblGONowkg7ILYRN5W4GJ2LsVxilFJaa6VUhv2khulcT8kxzJrnVGQgFTUOAAAAAEA+2vvij8sber2+sMcImWOR5HWvKHt5b22klgDiagHiGCOiRFTSQjpN5PH1tr1oV0oppUSLJO5ixaTrxn4hcebHZ5LaVbrJxB+jay6VVeWZMN51uPEZuk/JsatJDZdFjI1nVQAAAAAA+ejo7j+bkSER8XiDZAOZoMYBAAAAAMhL2tzz8k+0joqIosyBDFDjwP9v725+HMvO+wC/L6tmRlYsKbYTOIplR0Ccz0ViIPHCSOxlECCbbIMAcTZBEO+yyz+RRTZeBHAWDmAEsBHFEawgsmVbVixL1owsWx8z0sxoer66p7+ruqq7WFUkTxaXdZtVvPcWWU2yiuTzQBBuky/fc+qQXT33B95zAQAAbqiHP/hitfNoz86jzEDGAQAAwA01PD54+PYfRERmL9KGklxCxgEAAMDN9fCNL4yG/Yjo7f6I1aCbjAMAAICb69n9758+vR92HmUGMg4AAAButA++/l9LGYWdR7mMjAMAAIAb7cn736/Wk0kAAB+MSURBVBgNnoadR7mMjAMAAIAbbTQ4/ujPfiPsPMplZBwAAADcdA/f/NLZzqO+ykErARgAAAA33enT+0eP3/lLf+Xv9XZeHp5ERImMUsbPlvpowvkHs7Gm0aWVdcHZwcRUJmrKIsbqqMnMUkpmzthnuqwsekqNZdU8l7EC02QcAAAArIH3vvJf/u6//NXMXm/342X4rETWp/fVwXQEMJEFRGNNREbkhRPplsrn59v1SXtmZmaUiPMvqWra2tRPnJ/585lMt2qbzOTP2Ll4WaU8l9Z3DjeeYfeUGltdabg5amquVQEAAGANPHvw5unRg4jo7f6I1aCRjAMAAIB1UEZ3Xvv1sPMo7WQcAAAArIdHb35xNDwJO4/SQsYBAADAehgNjvff/2pE9HZebty9gi0n4wAAAGBt3P7GfytlFBG9nY9ZDS6QcQAAALA2+o9vnRzeCTuP0kTGAQAAwDr54Gu/GhGZvbTzKOfJOAAAAFgne7e+erbzqK9ycI6MAwAAgLVSRg9e/98R0eu97KyWST4NAAAArJnb3/zvZzuPvmI1qLl4CQAAgDUz7O89ffDGj/7Vv7+z+/Hh4FkpZbrm/IPZWNPo0sq64OwgY+olZbbxZqlqq8nMUkpmzthnuqwsekqNZdU8l7EC02QcAAAArJ/bf/prf/tf/OeIyN5LGcPGCGAiC3j+xwtVEXnhRLql8vn5dn3SnpmZGSXi/EuqmrY29RN1QnFhJtOt2iYz+TN2rlZWKc+l9Z3DjWfYPaXGVlcabo6ammtVAAAAWD8HH746PH0WETs7dh5lTMYBAADAWrr3nd+KiN7Oy5aCiowDAACAtXT3279VHWRPzEGEjAMAAIA1Nezv9/ffj4he72NWg5BxAAAAsL7uffdzEZG93cYNO9k2Mg4AAADW1YPvf6E6yN4rVgMZBwAAAOuqnB49e/TDiOjtuFwFGQcAAADr7N53fjMiMnuRO1Zjy8k4AAAAWGOP3vq9UkYRkfmS1dhyMg4AAADWWBkc9/duRcTO7setxpaTcQAAALDebr/6axaBiNi1BAAAAKy1/fe/XkaD7J07wy2lTPwpz/+xy6WVdcHZQcbUS8ps481S1VaTmaWUzJyxz3RZWfSUGsuqeS5jBabJOAAAAFhvZXB89Pjtj//E37kQAUxkAc//eCEoiMgLJ9Itlc/Pt+uT9szMzCgR519S1bS1qZ+oE4oLM5lu1TaZyZ+xc4WySnkure8cbjzD7ik1trrScHPU1FyrAgAAwNr78BsuV0HGAQAAwPo7vP3N0ejUOmw5GQcAAABrbzQ43nvny9Zhy8k4AAAA2AR3v/ObFmHLyTgAAADYBM/uvWERtpyMAwAAgI1QRtZgy8k4AAAAgE0g4wAAAAA2gYwDAACATZQ71mDbyDgAAADYxNPd3isWYdvsWgIAAAA2T2/nY8PB07M/ZSllxhdeWlkXnB1kTL2kzDbeLFVtNZlZSsnMGftMl5VFT6mxrJrnMlZgmowDAACAzZS9l6IMMrOUqLKA6ZKIvHAi3VL5/Hy7PmnPzMyMEnH+JVVNW5v6iTqhuDCT6VatP+DZU91zrppPtmqr7xxuPMPuKTW2utJwc9TUXKsCAADAZur1XrYI2/WOWwIAAAA284x352MWYbvecUsAAADAxkpbNGwRGQcAAAAbaDQ6DZerbBkZBwAAABuoDPvhcpUtI+MAAABgA91/47fHR7ljNbaEjAMAAIAN9PCNL1SXq2S6XGVbyDgAAADYQP29d0+PHoTLVbaJjAMAAIDN9OB7/2t85HKV7SDjAAAAYDPt3fqKu6tsFRkHAAAAm8nlKttm1xIAAACwqe5/73Of+flfiYgSvSjDWV5SSpmx4OwgY+ol5dIus43VUZOZpZTMnLHPdFlZ9JQay6p5LmMFpsk4AAAA2Fj7t/7fT/2jf5e9l3o7L5dhfzooiMgLJ9JVatBxvl2ftGdmZkaJOP+SqqatTf1EnVBcmMl0q7bJ1E91z7lqPtmqrb5zuPEMu6fU2OpKw81RU3OtCgAAABtr4nKVV6zGxpNxAAAAsMnuv+7uKttCxgEAAMAm23vnK6PhSURk7yWrsdlkHAAAAGyy/t67p0f3w+UqW0DGAQAAwIa7/93PjY9crrLRZBwAAABsuP33vjoaHofLVTadjAMAAIAN19979/ToYbhcZdPJOAAAANh8LlfZBjIOAAAANp/LVbaBjAMAAIDN19+75XKVjbdrCQAAANgGd77565/9pf8UESV6UYZtZaWU7j51wdlBxtRLyqVdZhuroyYzSymZOWOf6bKy6Ck1llXzXMYKTJNxAAAAsBX2bn159E/+Y2/nld7Oy2XYr4KCiLxwIl2lBh3n2/VJe2ZmZpSI8y+patra1E/UCcWFmUy3aptM/VT3nKvmk63a6juHG8+we0qNra403Bw1NdeqAAAAsBWGx0/6e++Fy1U2l4wDAACAbXH/e/9zfOTuKptIxgEAAMC2ePzOH7q7ygaTcQAAALAthsdPjvc/CBnHhpJxAAAAsEXuv/65iMjsNe7xyVqTcQAAALBFHr39pTIahK9ybCIZBwAAAFtkeLx/cngnIrL3stXYMDIOAAAAtsv9Nz4fEdlza5VNI+MAAABguzx44/OljCIictdqbBIZBwAAANtleLx/cng3bMmxcURWAAAAbJ1Hb3/x0z/3y72dlwaDowtPlVK6X1sXnB1kTL2kXNpltrE6ajKzlJKZM/aZLiuLnlJjWTXPZazANBkHAAAAW+fuX/yPT//cL0e1K0cZTZ5IV6lBx/l2fdKemZkZJeL8S6qatjb1E3VCUT3ceC/b8zWtrbrnXDWfbNVW3znceIbdU2psdaXh5qipuVYFAACArTPsPz49ehQRaUuODSLjAAAAYBs9eut3IyJ3bMmxOWQcAAAAbKN73/6NiMjsNV4kwjqScQAAALCNTg7vDU8OIyJ7LlfZEDIOAAAAttT+e18NGccGkXEAAACwpR58/3dCxrFBZBwAAABsqYMP/7SUUURE7liNDSDjAAAAYHv1H98KX+XYFDIOAAAAtld1B9nezsuWYgPIOAAAANheD9/8wvgonSCvPW8hAAAA2+v06b3h6VG4XGUjeAsBAADYak8+fPXHPvuLvd5Lw+FJRJRSuuvrgrODjKmXlEu7nG91hZrMLKVk5ox9psvKoqfUWFbNcxkrME3GAQAAwFZ79Ob/+bHP/mL2diKyOifvPt+uT9ozMzOjRJx/SVXT1qZ+ok4oqoer0RuHa5tM/VT3nKvmk63a6juHG8+we0qNra403Bw1NdeqAAAAsNWevP8nZTSMiOy5g+x6k3EAAACw1UaD/snT+xGR7q6y5mQcAAAAbLvH7/xBRPRsO7rmZBwAAABsu713fn985A6y68ybBwAAwLZ7eu+7o+FpRGT6Kscak3EAAACw9cro6OGbEZEuV1lnMg4AAACIh29/MdxaZc3JOAAAACAO3v9aKaOIiBRzrCsZBwAAAER//90y3pJDxrGuZBwAAAAQUUb7H3w9IsKWHGvLOwcAAAAREY/f/r0f++wvZfZGJSJKW1kp5fxBRinTNWWGEWepaqvJzFJKZs7YZ7qsLHpKjWXVPJexAtNkHAAAABARcfjRt8pomL2d7O1GGbSdb9cn7ZmZmVEiMqdrzj/2XP1EnVBUD0dk23BtE66f6qipm0+2aqvvHG48w+4pNba60nBz1NRcqwIAAAAREadP7w76++EOsmtLxgEAAABj++99JWQca0vGAQAAAGOPfvj7zpfXl/cMAAAAxp7df72MTiMieu4gu35kHAAAADA2PN4/PrgdLldZTzIOAAAAeO7xW78bEZm+x7F+ZBwAAADw3P77Xy1lFBEh5lg3Mg4AAAB47ujR2zEahK9yrCEZBwAAADw3GvQP7383IsKWHOtGxgEAAADnPH77SxGR2YtIq7FGZBwAAABwzsHtV0sZRtiSY8344g0AAACc0997twxPc3cne7ujwemFZ0sp5w8yzh6ZrCkzDDRLVVtNZpZSMnPGPtNlZdFTaiyr5rmMFZgm4wAAAIALZ9Wjw3vf+eRf/8fZ261ChMnz7fqkPTMzM0pEU022XOZSP1EnFNXDjdfFnK9pbdVRUzefbNVW3znceIbdU2psdaXh5qipuVYFAAAALnrw+uecOK8dbxUAAABc9PTut8voNCKiZ0uOtSHjAAAAgItODu+W0TAi0h1k14eMAwAAABo8/MHvRES6tcr6kHEAAABAg71bfzg+SufO68H7BAAAAA2e3X9jvCWHr3KsCRkHAAAANBgc7w/6++FylfUh4wAAAIBmD7//O2Hb0fUh4wAAAIBme+9+2enzGvEmAQAAQLOjR2+X0SAioudylTXg+zYAAADQbDTonxx+9MonPxPRK6VUD04dZJw9Uitl6qEms1S11WRmKSUzZ+wzXVYWPaXGsmqey1iBaTIOAAAAaLV36ys/+Q/+VW/npdHouDrfrk/aMzMzo0RkXjgnr55pVD9RJxTVwxHZeHrf2miiVUdN3XyyVVt953DjGXZPqbHVlYabo6bmWhUAAABo9eAHn584yedGk3EAAABAq/7jd0oZRkS4g+yNJ+MAAACAdmXU338/ItK2ozeejAMAAAC67L/7RxG+x7EG7Dm6lkbFGwcsWCl/0yIAL/A75N9bBGCDPXjj83/tH/6bzF6xFjeb73EAAABAl+P990oZRfgqx00n4wAAAIBL9PduRUTKOG42GQcAAABc4tFb/zciomffgBvN27M2ejkoUfKyGzJfqClRmqsuv7HzZE2JxfSZq2a0wrEu/JhLGCtHLSUl8rI+jTWlTM38Bec8mufnKotYn9EMH/xL+5SIS9fn0j5lnjWMy378c32y6cds/7v8fG1n+/u+kDUcNdVMv8udfapP+Gyf5+z67TT775+5fvaOX2LjOWdmKWXqkzPZp/uTP70+o8bPT3Z+fqbe95bPT0Yp9Xzysvm0rdVw5t8bJVualOa/O22fn9E8H9f2t775Jx7N+atjNPM/Pe2fnzz72Jdy1V8dpfpIzPrWN6z/hbWa5a1vXJ8LP+ZZzfS/X6W0/9Mz71s/zz89OTl041qd+/w0/l0rMcrL/kmaeC9KNP9dm+/z0/G3vh6rdH5IOp/qXpO2NWx71678q6Pt81Oa/lFu+xw2f36y8/Mz9Xenftdm/E+X5s/PeOYN/ 3 GIỚI THIỆU GIỚI THIỆU Mô hình nhân quả Mô hình chuỗi thời gian Hai loại mô hình dự báo chính: 2 NỘI DUNGNỘI DUNG Giới thiệu xây dựng Mô Hình ARIMA (Auto-Regressive Integrated ... 5 MÔ HÌNH ARIMA MÔ HÌNH ARIMA Tính dừng (Stationary) Tính mùa vụ (Seasonality) Nguyên lý Box-Jenkin Nhận dạng mô hình ARIMA Xác định thông số mô hình ARIMA Kiểm định về mô hình ... 12 NHẬN DẠNG MÔ HÌNHNHẬN DẠNG MÔ HÌNH Tìm các giá trị thích hợp của p, d, q. Với d là bậc sai phân của chuỗi được khảo sát p và q sẽ phụ thuộc vào SPAC = f(t) và SAC = f(t) Chọn mô hình AR(p)...
Ngày tải lên: 02/04/2014, 21:59
Tài liệu Tiểu luận " MÔ HÌNH EOQ TRONG QUẢN TRỊ DỰ TRỮ " doc
... đơn vị / năm thay vì một tỷ lệ, một mô hình khác có sẵn cho máy tính của EOQ (cột F - Tôi trong hình 3-1) Lưu ý rằng đơn giá là không cần thiết trong mô hình này thay thế 3,2 EOQ với backorders ... tính từ một mô hình dự báo. Các căn bậc của MSE của lỗi dự báo từ một trong những mô hình làm mịn trong Chương 2 là một độ lệch chuẩn gần đúng nhu cầu leadtime nếu leadtime là một trong những ... tính của EOQ (cột F - Tôi trong hình 3- 1) Lưu ý rằng đơn giá là không cần thiết trong mô hình này thay thế 3,2 EOQ với backorders (EOQBACK) Backorders được phổ biến trong hàng tồn kho được...
Ngày tải lên: 26/01/2014, 11:20
Tài liệu Một vài kết quả về những quan hệ trong mô hình cơ sở dữ liệu. pptx
... Armstrong relations and inferring func- tional dependencies in the relational datamodel, Computers and Mathematics with Applications 26(4) (1993) 43-55. [101 Demetrovics J., Thi V. D., Armtrong ... relation, functional dependencies and strong dependencies, Comput. and AI 14 (3) (1995) 279-298. [111 Man n ila H., Raiha K. J., Design by example: an application of Armstrong relations, J. Comput. Syst. ... 17, S.1 (2001), 31-34 SOME RESULTS ABOUT RELATIONS IN THE RELATIONAL DATAMODEL VU DUC TEl Abstract. We introduce the concepts of minimal family of a relation. First, we show the algorithm finding...
Ngày tải lên: 27/02/2014, 06:20
Báo cáo " MÔ HÌNH CƠ SỞ DỮ LIỆU MỜ TRONG HỆ THỐNG THÔNG TIN ĐỊA LÝ (GIS) " pot
... tượng không gian dựa vào mô hình dữ liệu đang sử dụng trong các hệ thống thông tin địa lý. Mô hình dữ liệu không gian được sử dụng trong bài viết này là mô hình raster. Trong đó, tại mỗi phần ... đồng thời có thể khai thác được các phép phân tích không gian trong GIS. Mô hình 1:n Hình 2: Mô hình cơ sở dữ liệu mờ trong GIS 1:n 1:n ĐỐI TƯỢNG KHÔNG GIAN - R1 Shape_SO FID BIẾN NGÔN ... dựa trên mô hình cơ sở dữ liệu mờ đã mô tả trong mục 3.1 và các phép chọn, chiếu, kết nối, kết nối không gian. Bên cạnh đó còn khai thác các khả năng của hệ thống thông tin địa lý trong việc...
Ngày tải lên: 11/03/2014, 06:20
BÁO CÁO " XÂY DỰNG MÔ HÌNH ARIMA CHO DỰ BÁO KHÁCH DU LỊCH QUỐC TẾ ĐẾN VIỆT NAM " doc
... hiệu quả các tiềm năng du lịch, tạo dấu ấn tốt trong lòng du khách, khắc phục những rủi ro trong kinh doanh dịch vụ du lịch, mục đích của bài viết này là xây dựng một mô hình ARIMA phù hợp để ... vì ngành du lịch là ngành chịu nhiều rủi ro. Tuy vậy, mô hình ARIMA có thể dùng để dự báo, song chưa phải là tối ưu, bởi vì sự phụ thuộc trong mô hình được giả định là tuyến tính. Trong thời ... Box-Jenkins để xây dựng mô hình ARIMA cho dự báo lượng khách quốc tế đến Việt Nam dựa trên số liệu công bố hàng tháng của Tổng cục Du lịch Việt Nam. Kết quả cho thấy trong số các mô hình ước lượng thử...
Ngày tải lên: 24/03/2014, 23:21
Tiên đề hóa các phụ thuộc đa trị mờ trong mô hình cơ sở dữ liệu mờ. potx
... mer. Cac tac gia dil. du& apos;a ra mot t%p lu%t suy d[n xac dang v a day dil de' co the' d[n ra them cac phu thuoc t ir met t%p cac phu thuec da trj mer dil. du- oc biet. Chung toi so rhg ... toi so rhg mot ket qui quan tro ng m a cac tac gia bai bao dung de' chirng minh tinh xac dang va tinh day dii cda cac lu%t suy d[n dil. duo-c ph at bie'u chira chinh xac (Bo' de 3.1 ... [1)). Chirng minh tinh xac dang cd a [1) con chu'a day dii va doi ch6 du& apos;o'ng nhu- khong ch~t che ve logic. Trong bai bao nay chung toi chinh xac hoa lai Ht qui noi tren va de xuat...
Ngày tải lên: 04/04/2014, 04:20
nghiên cứu khả năng phát triển mô hình cacao trồng xen dưới tán cây điều tại xã iakla, huyện đức cơ, tỉnh gia lai
Ngày tải lên: 02/05/2014, 14:47
Khảo sát ảnh hưởng của trường ban đầu hoá đến sự chuyển động của bão trong mô hình chính áp dự báo quĩ đạo bão khu vực biển Đông
Ngày tải lên: 11/07/2014, 15:27
Ứng dụng mô hình toán trong nghiên cứu dự báo, cảnh báo lũ và ngập lụt cho vùng đồng bằng các sông lớn ở miền Trung docx
Ngày tải lên: 12/08/2014, 15:23
đánh giá hiệu quả một số mô hình rừng trồng theo dự án 661 tại huyện phú lương - tỉnh thái nguyên
Ngày tải lên: 13/11/2014, 19:39
Một số giải pháp cơ bản nhằm khai thác bản sắc văn hóa trong du lịch VN.doc
... văn hoá trong kinh doanh du lịch ở Việt Nam nh thế nào ? Muốn phát triển du lịch ở nớc ta phải đa ra những sản phẩm hàng hoá và dịch vụ du lịch đặc trng riêng. Làm sao khi nói đến du lịch Việt ... Nam: Nguồn tài nguyên du lịch là điều kiện quyết định để phát triển du lịch. Đối với Việt Nam, một nớc du lịch cha phát triển điều này lại càng quan trọng. Trong các nguồn tài nguyên du lịch Việt Nam, ... với du lịch Việt Nam vấn đề khai thác bản sắc văn hoá dân tộc trong sự phát triển du lịch, trong mấy năm gần đây rất đợc Đảng và Nhà nớc quan tâm. Mong muốn của du khách khi thực hiện chuyến du...
Ngày tải lên: 28/08/2012, 10:37
Những vấn đề cơ bản trong du lịch
... khác nhau: - Du lịch thiên nhiên - Du lịch dựa vào thiên nhiên - Du lịch môi trường - Du lịch đăc thù - Du lịch xanh - Du lịch thám hiểm - Du lịch bản xứ - Du lịch có trách ... tế + Du lịch nội điạ 2.3.2 Căn cứ vào nhu cầu đi du lịch của du khách + Du lịch chữa bệnh + Du lịch nghỉ ngơi giải trí + Du lịch thể thao + Du lịch công vụ + Du lịch tôn ... giáo + Du lịch khám phá + Du lịch thăm hỏi + Du lịch quá cảnh 2.3.3 Căn cứ vào phương tiện giao thông + Du lịch bằng xe đạp + Du lịch tàu hỏa + Du lịch tàu biển + Du lịch ô...
Ngày tải lên: 30/08/2012, 23:14
Một số giải pháp mở rộng thị trường du lịch nội địa của Công ty cổ phần đầu tư và phát triển du lịch VINACONEX(VINACONEX – ITC).doc
... Kim Tuyến - Lớp Kinh tế phát triển 47A _ QN 36 Sản phẩm du lịch Khách du lịch Công ty du lịch Đại lý du lịch bán buôn Đại lý du lịch bán lẻ Đại lý chi nhánh điểm bán 1 2 3 4 5 6 7 nhiều ... của du lịch thế giới hiện nay,khách du lịch tự do phát triển và khách du lịch đi theo tour trọn gói giảm dần. Theo các nhà khảo sát điều tra,khách du lịch tự do chiếm tới 60% tổng khách du lịch. Với ... thị trường du lịch. Đặc điểm chung của thị trường du lịch. Đặc điểm của thị trường du lịch là nơi chứa tổng cung và tổng cầu. Trên thị trường hoạt động trao đổi du lịch diễn ra trong một không...
Ngày tải lên: 03/09/2012, 10:28
Bạn có muốn tìm thêm với từ khóa: