mô hình 4p trong du lịch

BÁO CÁO MÔN KINH TẾ LƯỢNG ỨNG DỤNG MÔ HÌNH ARIMA TRONG DỰ BÁO GIÁ DẦU THÔ THẾ GIỚI

BÁO CÁO MÔN KINH TẾ LƯỢNG ỨNG DỤNG MÔ HÌNH ARIMA TRONG DỰ BÁO GIÁ DẦU THÔ THẾ GIỚI

... BÁO CÁO MÔN KINH TẾ LƯỢNG ỨNG DỤNG HÌNH ARIMA TRONG DỰ BÁO GIÁ DẦU THÔ THẾ GIỚI Sinh viên thực hiện: Đặng Thị Thu Hiền Mã sinh viên: CQ500927 Giới thiệu về hình Arima Trong nghiên ... của hình là nhiễu trắng, hình phù hợp Hoặc ta có thể kiểm tra bằng cách: Vào View → Residual tests → Serial correlation- LM test → OK Ta được bảng sau : p>0.05 nên phần của hình ... giới: Nhìn vào bảng kết quả trên ta có hình ARIMA(p,1,q) Với: P=(1) Q=(1,2,5,6,7) -Ước lượng: Sau khi ước lượng và kiểm tra nhiều hình tôi thấy hình ARIMA(0,1,7) là phù hợp nhất Bảng...

Ngày tải lên: 25/03/2014, 09:32

7 2,1K 53
Bài giảng sử dụng mô hình arima trong dự báo chuỗi thời gian  - cao hào thi

Bài giảng sử dụng mô hình arima trong dự báo chuỗi thời gian - cao hào thi

... src=" 24p0 ENutuObJe5to7JzPQsJQIAACh1ZBwAgAqiZfJjZyJjZyO+5qqmQ41q0L24rYPZOgAAAEoWGQcAoPLMzUsadwectbtrQ111BW0dE5Hz0WwiS5EAAABKDhkHAKBypWOZ4Q9v3vz1WO0jgYYD9XbVHuoKhbpCqcn0zVOj8ZG4MFkHAABA6SDjAABUOl3To/2TE323PCFzXlKfGnTvfLo9l8pF+29F+6NaJk+VAAAAih8ZBwAAc5KR5JUTVx1eR3BXINzTaFft4Z7GcE9jbCA20RdNRhKUCAAAoJiRcQAAcJdsIjt2ZjxyfqJme3X9/no16A50BAIdgVwqN/LRyPTQNPOSAgAAFCcyDgAAlqBremxgKjYw5alXQ3vrAh0Bu2pvO9Imc/OSRpiXFAAAoNiQcQAAsJJkJDkYSQ2fHKnrrA33hEVkfl7S1M1TN5mXFAAAoHiQcQAAcH9aRhs7MzZ2dizQHqjfX68GVTWo7nx6Zy6Vi/ZHo/0TzEsKAACw5cg4AABYNUNiA7HYQMwdcDccaDAHsIR7wuGecGwgNtE3kYwkKRIAAMBWIeMAAGDN0rH0YO/g9V9dr++ur+uss6t25iUFAADYcmQcAAA8IF3TzQEsvmZf06EmNagWzEsaiZwfZ15SAACAzUTGAQDAwzEkPnw7Phx3eB313fWhrpCIhLrqQ131qcnUjfevJycSzEsKAACwCcg4AABYH9lEdvjk8M1TN4OPBBsPNtpVuxpUdz+7J5fKjXx0I3Z1kqQDAABgQ5FxAACwnnRNj/ZFo/0RT8jb+ult8wNY2pufbBk7Oxr7OMpUHQAAABuEjAMAgA1gSDKSuPRmn8PraDrUHOgI2lVH6+HtrYe3j54emTg/RtIBAACw7sg4AADYQNlEdrD32vVfDdV314d7mkUk3NMc7mmODdwaPTXMpKQAAADriIwDAIANp2v62JnRyPnxmu01zU+22lVHoKM20FEbG7g1/tvRTCxNiQAAAB4eGQcAAJtE1/Spgcmpq5OekLfl021qUDWTjtRkavj9wWQkQYkAAAAeBhkHAACby5BkJHH5zQuugLvhQDjQUasG1Uee3ZuaTN08dWNm5DbLrwAAADwYMg4AALZGJpYe6r06emo4sKsu3NOsBtWdT+/OpbIjH92YYqFZAACAtSPjAABgK2UT2fEzNyfOjwUfqWs4GLarjrYjHc1Ptkb7JybO32T5FQAAgNUj4wAAYOvpmh7ti0z0j1c314QPtapB1Vx+ZfT08K3+cS2jUSIAAID7IuMAAKBoGBIfvh0fvuCp9zY+1uxrrg73tIR7WmIDt0ZP3cgmZqkQAADACsg4AAAoOslIYuDEZYfXHupuDHU1Liw0G+0bT0Ti1AcAAGBJZBwAABSpbGJ25OTQ6Kkboe5wXWf9/EKzyeEPriXGSToAAAAWI+MAAKCo6Zo+fmZk/OyIv722+cltatDzyJf2pSaTN08NxUemWH4FAABgARkHAAClwJCpgVtTA7fUem/rp3eoQc/Op/fmUtmRjwZjV2+RdAAAAIiIhRIAAFBCkpGZy2 +du3 z8fGoyaVcdbUce6X7p8UBHrcXGZzoAAKh09HEAAFB6kpGZS2+e9dRXtX66Qw162o48IiKjp29Ezt/UNZ36AACAysR/8wEAoFQlIzOX3vyt2dMhIuGe1oPf+FTjoy30dAAAgMpEHwcAAKXNTDo89VWtn25Xg55wT2u4pzU2EL156no2MUt9AABA5SDjAACgHCxKOgIddYGOuthA9OapQZIOAABQIcg4AAAoH2bS4fA6mg5tN2OOQEddfGRq9Dc3kpE49QEAAOWNjAMAgHKTTcwO9n5y89T1pkPbAh11vma/r9mfmkzceP8qSQcAAChjzEkGAEB5MpOOC8dOxQYmREQNenc/u3/P8wd9LX5RKA8AAChD9HEAAFDOsonZwd6Pb54aajq0PdARUoPenU935VLZkY8GYlejYlAhAABQPujjAACg/JlJx0JPh111tB3p7H7pU4GOEAvNAgCAskEfBwAAlWJRT4dddbQd2SMio6eHIueHdU2nRAAAoKTxn24AAKgs8z0dH5k9HSIS7tl+8BufaXx0Gz0dAACgpPFVBgCASpRNZAZ7L5195b3R00Pmb8yko25vmBlJAQBAiSLjAACgcumaPnbm+rlXTy70dLQe3mnO00HSAQAASg4ZBwAAlU7L5AZ7Ly2MXjHn6SDpAAAAJYeMAwAAiMzN07Eo6eicTzqIOgAAQAkg4wAAAHcsmXTse+kpf0c9SQcAAChyZBwAAGCxe5IOZ9uRvSQdAACgyJFxAACApZlrr1w49lFsYFxIOgAAQNEj4wAAACvJJjJDvf0Xj51cIukAAAAoJmQcAADg/haSjtRkQuaTjj3PH/LUV1McAABQJMg4AADAamUTmctvnvr4+G/MpEMNVu1+9nGSDgAAUCTIOAAAwNokI7fnk44ZmUs6ekg6AADAliPjAAAADyIZuX3pzVOXj/+apAMAABQJMg4AAPDg5pOO0wVJx+N7nn/SHfBSHAAAsMnIOAAAwMO6N+nofOFTbUe6HF4XxQEAAJvGRgkAAMC6MJMOT72v/fe77aoz0NEY6GicuHjj5qkruqZTHwAAsNHo4wAAAOspGbl9/uh7g70XcqlZEQl1tR78xu82PrpDFIXiAACADUUfBwAAWG+GERsYj12NBNrrm5/cZVed4Z72us7mkY8+jl0dF8OgQgAAYCPQxwEAADaGYcQGxs8ffW/09ICI2FVn25Hu7pc+66mvoTYAAGAj0McBAAA2kmGMnbkWOX+9vntbuKfDrjp3P/tEanJm6Jfn07EE5QEAAOuIPg4AALDhdE0fO3P17Cu/mLh4XeYWXjncdqSbhVcAAMA6oo8DAABsEl3LD5+8HDk/1HRol7nqSqCjceLi9ZunruhanvoAAICHRB8HAADYVNlEZrD3/IVj78YGxkQk1LXt4Dd+r/HRdhZeAQAAD4mMAwAAbAEz6bh8/J9SkzMiEu7p6H7pc4GORpIOAADwwMg4AADAlklGpi+9edJMOlh4BQAAPCQyDgAAsMXMpOPK26dzqVlz4ZU9zx92B7xUBgAArAkZBwAAKArx4Vvnj7472Hs+l5pVg1WdL3ym7ch+h9dNZQAAwCqxrgoAACgahhEbGItdHQ+01zc/uTvQEQ50hCcuDt089QkLrwAAgPsi4wAAAEXGMGIDY8A7jzkAACAASURBVNNDkfrutnDPzlDX9lDX9hsf9EX7h8WgOgAAYFmMVQEAAMVI1/JjZwbOvvKziYtDItJ6eG/3S58PdISpDAAAWA4ZBwAAKF66lh8+eenCsXdiA6N21dl25OCe5z7j9ldRGQAAcC8yDgAAUOyyifRg77nLxz9MTcbVoK/zhd9p+/wBpiMFAACLkHEAAIDSkIxMX3rr/cHes7lUJtDRtO9rRxoP7rTYrFQGAACYyDgAAEDpMIzY1dHzx3pHT38iIuGeXV3/4nOB9rAoCrUBAABkHAAAoNQYxtjZK+de+3ls4KZddbUdObjnud/x1PspDAAAFY6MAwAAlCQtkx385W8vfLvXnKRj97Of3vnMk0zSAQBAJSPjAAAAJSybSF96670rb/9TLpXxNdfte/H3Wp7qYpIOAAAqExkHAAAoefHhifNHf3HjgwsiEuracfAbz9Tt3c4kHQAAVBoyDgAAUBYMI9o3dPaVExMXr4lI6+F93S/9nq8lRGEAAKgcZBwAAKB86Fp++OTFC8d+ER+J2lXXzqef2PP8Z92BKioDAEAlIOMAAADlJptIXznx0eXj75vTkXa+8Lm2I4/aXA4qAwBAeSPjAAAA5SkZmbr01q8Ge8/kUplAR9P+l7/Y+OguJukAAKCM2SgBAAAoW4YRG7g5PTRe390e7nkk3PNIXee2kY/6YgPD1AYAgPJDHwcAAChzupYfO/PJuVd/Ghu4aVddbUce2/P855mkAwCA8kPGAQAAKoKWyQ72nul/453U5G01WN35wpG2I49ZbFYqAwBA2SDjAAAAFSQdm7n01q8Ge0+LSKCj+eA3/qhubxuTdAAAUB7IOAAAQIUxjNjAyNlXfhQbGBGR1sPd3S99wVMfoDAAAJQ6Mg4AAFCJdC0/2Pub/jd6U5O37apr97Of2fnMYYdXpTIAAJQuMg4AAFC50rGZS2+9e+OD8yLiaw7te/GLjY/uZpIOAABKFBkHAACobIYR7Rs89+rb5oKy4Z49XV/9QqCjmcIAAFByyDgAAADMVVdOXz7+bi6VsauutiOP73n+dxm6AgBAaSHjAAAAmJOMxM4f/cmND86JiBqs3vfiF9uOPM7QFQAASgUZBwAAQAHDiPZdO/fqj82hK4GOloPf+GeBjhbWlwUAoPiRcQAAACymZbKDvb82h66ISNuRQ90vPeOpD1IZAACKGRkHAADA0pKR2Pmjb9/44LciYlddu5/9XNuRQ0zSAQBA0bJRAgAAgGUZRrTv6tTV4ZanDgQ6Wsz/jZ7uHzt7ScSgPAAAFBX6OAAAAO5Dy2QHe09defsDc+hKuKez+6U/DLS3UBkAAIoKGQcAAMCqxIfHzx89MXq6X0TsqqvtyBN7nv99hq4AAFA8yDgAAABWzTDGzly6cOzt+EhERNRgzb6vPdPy1AFWXQEAoBiQcQAAAKxNNpG6cuK9Kz953xy6Eura2f3SH/laGqgMAABbi4wDAADgQcSHx88f/dHExSsiYlddO5/+TNuRJ2wuJ5UBAGCrkHEAAAA8KMMY/vDchWM/Tk1Oi0igo3X/y18KdLQydAUAgC3B2rElQzc4WAAAlIQnRJ6gCgCw5RTLYYpQaejjAAAAAAAA5YCMAwAAAAAAlAMyDgAAAAAAUA6Y4qEkWRRtubsMMRRRCn9ceiu571xohdsYsj77WdM2+iY+1qKXuQGPpejLbGLcf166JbcxjHue+UM+Z30tr8tYj/roqzjZ77sfQ+S+9bnvfoy11FDu9/Lv2o+y1Mtc9D5dsrbLb1O49brUUDeMdhFRlKsrHuUV92Oe4as7n5WVrk6rv/6s6bWvcBGbe86KohiGcc+ZU7iflc/8e+ujL3n+KCueP/cc92XOH0UMY+H5KPd7PsvVKr/q64ahLLMTY+n3znLnj76W03X5Q7/0K9bXeOnQV/3Rs/z5o8yf9kufOeLwqu1fPKwGa8wfb3zwm2j/1UUXcPOUWO2hX6L+i2q1mkO/ZH0Wvcz5be79/DKMRR89hvHnIqIo/2Pth34tHz1K4UMvWau7zp8l32uG6Mr9PpIKjoUhS7/X1nb+rPCuX3gsY6XPl5XvWrkmy9VwuUP/wJeO5c4fY6kP5eXOw6XPH2XF8+ee987CUVvlV5elz5+5Z77EV7KVv28U7kdf43twmevPvc/EWOEr65o+eub2s7iGBY849+EoYhj6Gr/+LX/+LPW1rfAZFrwvVjj0K50/hvEe/2Cs6H8sUwIAAICNkE2kLr3588Hej8wfWw8/tue5L7gD1VQGAIANQsYBAACwgWIDN86+8mZs4LqIqMGazhf+oOWpgxablcoAALDuyDgAAAA2lq7lB3s/unz8H3OptIiEunZ1ffUPfS2NVAYAgPVFxgEAALAZkpFb54/+cPT0BRGxq+6dT//Ozmc+Z3M5qQwAAOuFjAMAAGCzGMbYmf4Lx36YmpwWEV9zQ/fLz9Xt3Xn/+XoBAMAqkHEAAABsqmwidenNnw72fmj+2HK4Z89zf+BiLlIAAB4aGQcAAMAWiA3cOPvK92IDQyKiBv2dLzzT/NSjzEUKAMDDIOMAAADYGrqWH+r9sP+NE/NzkT6y96t/zFykAAA8MDIOAACArZSJ3T5/9PvDH5wWEbvq7nj6c9uPHKahAwCAB0DGAQAAsNUMI9p35eKxH6Qmp0Qk0LF971ef9bWEKQwAAGtCxgEAAFAUsonk5bd+WtDQ8XkaOgAAWBMyDgAAgKIx19Dx/YWGjgPf+Kq/YzuFAQBgNcg4AAAAiks2kbz85onB3g/MH9uOHO545ojN5aQyAACsjIwDAACgGE0NDJ1/9Y34yJiI+Job97/8ZRo6AABYGRkHAABAkdIyswMnegsaOj7d8czv0tABAMByyDgAAACK2qKGju6Xv1y3d5coCpUBAGARMg4AAIBip2Vmr5z4x4G3e3OptIi0HD60+7lnHF4PlQEAoBAZBwAAQGmID4/2fef7sYFBEVGD/n0vPle39xEaOgAAWEDGAQAAUDJ0LT/U+8FCQ0fr4UN7nvsjGjoAADCRcQAAAJSYexo6Xmh8tJuGDgAAyDgAAABKj67lB3vfv3z8J2ZDR7jnYPdLX3YHaqgMAKCSkXEAAACUqmQkev7oGxMXL4mIXXV3vvDPWp46REMHAKBikXEAAACUMsMYPnmq/43jZkNHqGsPDR0AgIpFxgEAAFDy0rHp80e/N3GxX+YaOp5teeoJGjoAAJWGjAMAAKAszDd0pCZjIhLq6tzz3JccXi+FAQBUDjIOAACA8pGOTV9660fmDB1qMLDvxS/X7d1DWQAAFYKMAwAAoLzMNXR8P5dKiUjr4Sd3PvNFm8tJYQAAZY+MAwAAoAylY1Pnj37XnKHD1xze//KLvpYmygIAKG9kHAAAAGXKMIZP/tNCQ8fOp7+w4wuHLTYbhQEAlCsyDgAAgHJmNnTEBq6JiH/7rn0vPafWVlEWAEBZIuMAAAAod4Yx2Pvulbd/nkulbE7vnudeaDuyX1hYFgBQdsg4AAAAKkJ8eOTid96MDVwVkUDHo/u+9rQ76KAsAIByQsYBAABQKXRNW2jocHgbOp9/qfXTYcWiUxkAQHkg4wAAAKgsZkNHfGRUROo6v7j3y5/11OdEDCoDACh1ZBwAAAAVR9e0Kyd+Otj7rog4qzt2P/vnzU84rfYclQEAlDQyDgAAgAoVG7h27tVjZkNH/f5/ueuPn6xumWboCgCgdJFxAAAAVC4tM3vlxE8He98REbX2QNvv/tvwoxlXzQyVAQCUIjIOAACAShcbuHbu1aPxkZtWR1XDo/9+2+8cCrSPMnQFAFByyDgAAAAgWiZz5e2f3vjgpIh4Gw43P/mnDQdue0Ix5iIFAJQQMg4AAACIiIhhRPsuXTj2empy0u5pbDj4Xxr37wntueGsSlEbAEBJIOMAAADAHdlE4tJb3zcbOqq3fym0709qd84E2sYs1jzFAQAUOTIOAAAA3M0won2X+t94K5dOOqs76vb9x6rGUP3e62rwNkNXAADFjIwDAAAAS0jHps4f/Xbs6oDVUVW799/5tv2RLxwLdQ7b1QzFAQAUJzIOAAAALMMwBnt/eeUnPxERb8Ph0L5/7/BU1e4cq2mNMnQFAFCEyDgAAACwkvjw8LnXXpsZHbZ7GusP/hd3cL/bn6zvGnHVJBi6AgAoKmQcAAAAuA8tk/nkxE9HT58WEX/HV4O7/41isfu33ardNUpxAADFg4wDAAAAq2AYY2fP9r/xhjkRaWj/39jc9XZ3zrxTsehUCACw5cg4AAAAsFrpWOzit1+fuvaJ1VEV6v5Lb9MR8/cN+2+6/SnqAwDYWmQcAAAAWANd06794peDvb8QEV/z7y/83t82Vbs7YnVolAgAsFXIOAAAALBmsYGBc69+MzMdNX90B7pFxO7W6jrHfU3TDF0BAGwJMg4AAAA8CC2T6fveP5i3/e1fqW57wTAUEVHrErV7xh1VaUoEANhkZBwAAAB4UMbc2rFaJqEG9zcc/M82d72iKDaHEeyIBdpvMXQFALCZyDgAAADwsC4cez0xfsNqr6rf9x88oSfML5lOXza0N+JtmBExKBEAYBOQcQAAAOBh6Zr28Q9ODL3zMxGp3vbHwV0vW2yqeVdVYyLUNeH0ZagSAGCjkXEAAABgfUx+cvXCsde0TMJZ3dFw8P9xVu8yf2+164H2qZptU4o1T5UAABuHjAMAAADrJptInHvtW5OfnBWR4K6Xfa1/uPCF0x3IhPZF3LUJhq4AADYIGQcAAADWlWEMvfPR1Z/9MJ+d8dZ/qv7A31gdNQt3VjXHa7sm7J4sdQIArDsyDgAAAKy/6aGRi9/5bjI6ZLVX1e//T+5A98JdVrse2DVZvf22YqGhAwCwnsg4AAAAsCG0zOzlf3j75q97RcTf/pWaHV8u/PLpDszWH4i6/BmGrgAA1gsZBwAAADbQ+NlLn/zoe9psQg3ubzzwnwvHrYhITdtMcHfM5tIoFADg4ZFxAAAAYGPNjE70vf6dZHTI6qgKH/ibwnErImJX87WdU9Xb4wxdAQA8JDIOAAAAbDgtM3v5+yfGz50UkWD7VwJ3j1sREXdgtnbvpMufoVYAgAdGxgEAAIBNYRg3/+nswE+Pi4ga3N+w/z8tGrditRvm0BWrI0+1AAAPgIwDAAAAm+f29ZFzr/5vLZOw2qsauv/a5d9n3M3m1mr3TlY1zTB0BQCwVmQcAAAA2FRaZvbca69ODV6WuXErX1EUq3I3T32mtnPSWZWlXACA1SPjAAAAwKYzjGs///ngOz8RETXY3bD/rxeNWxERq90ItMeD7XGGrgAAVomMAwAAAFsj9smV/je+NT9u5a/cgX33buP05er33q5qSIswdAUAcB9kHAAAANgy6VjswrHXEuPXRSSw48v+theW/ILqa8w07Is7PBoVAwCsgIwDAAAAW0nXtI9/8IPRMx/K8uNWRMRqN+oeSfi3pyw2naIBAJZExgEAAICtN3b69OXj39NmVxq3IiJqINfQHVfrZhm6AgC4FxkHAAAAikIyMt73+reTE0NijlvZ8cJyX1arW9Oh7rjNzVykAIC7kHEAAACgWGiZzOXjP7p1+YyIqMHu+gN/teS4FTGHrnTOVG9PKRYaOgAAc8g4AAAAUEwM4/qvPhj42XERsTqqQvv/0rXMuBURcQdyDQdnXIEcQ1cAAELGAQAAgCJ0e+jGhWN/r2USIuJvf7667TkRZbmN/W3p2j0phq4AAMg4AAAAUIyyicS51/7v9PVLIuIO7qvb/1dWR/VyG9tVva4z6WvJMHQFACoZGQcAAACKlWFc/ekvRj7qFRGr3VvX/ZcOX4chxgKRgh8MQ62brd074/LnqBwAVCYyDgAAABS1yPmL/W98S5tNiEhg10tVjZ9VFIuiKIqiiIhyN5tD/DsytZ0pq0OndABQacg4AAAAUOzSU7G+14+Zy8pWNX0+uPPrisW+wvZ21Qh1p30ts8xFCgAVhYwDAAAAJUDLpC8f/8Gty78REadvR6jrP6wwPYfJU6+F9qedPuYiBYBKQcYBAACAEmEY13/13tWf/YOIWO3e+n1/6V5+WVmT1W4Edmb9HRmGrgBAJSDjAAAAQCmZHrpx4dgrc9Nz7Hje1/IHKywra3L69NC+WW+jxtAVAChvZBwAAAAoMdnEzIWj30yMXxcRb+iJ4M6vW2zqff/KF86HurN2Dw0dAFC2yDgAAABQenRN+/gH3x87+4GIOH076jr/wuYO3fevrHap3Z2radMsNho6AKAMkXEAAACgVI3++tTl498REavdG+r8C3egazV/pQb1+gOaGtIZugIAZYaMAwAAACUsGRk79+rfZW5PiIi/7fmatufuOz2HqXqbXrs3b3MTcwBA+SDjAAAAQGnTMum+7x6dGrokImpgX92eP1/N9BwiYlelritfs0NXLCQdAFAOyDgAAABQ+gzj2s9+MvzhP4qIXa2v3fPv7J6WVf6pOyiNPeIKGAxdAYBSR8YBAACAMjFx4fzl49/RZhNWu7f2kX+t1vYYhmEYhogY88zbBb+Y+42/3ajda1gdxBwAUMLIOAAAAFA+kpGxvtdfS0SGRKS69Rl/2/OKYhERZZ55u+AXC78Rh0dpOKD4Wg2GrgBAiSLjAAAAQFnRMulPfvBWtP83IuIOdIW6/+Mqp+cweRsk1C3uIIUEgNJDxgEAAICyYxjD778z9MsfiYjV7m048Nd2T/Pq/9rqEH+71O0Vq4NSAkApIeMAAABAeYpd+fjisf+lZRIiUrv7T7yNn1nTn9tVaTigVDUpVBIASgUZBwAAAMpWNhG/eOz/JMaGRKQq/NnAzhdF1pZZVDdbGg9aXNUkHQBQAsg4AAAAUM50TfvkR2+NnflARJy+HbV7/lRZy/QcImJ1KLWPWGsfsTB0BQCKHBkHAAAAyp1hjJ3+6Mrbb4iIXa2v3fNnNlfdWvfhqrY07Ld6Qnx/BoDixTUaAAAAFSE+PNj/xt9rmYTV7q3r/DO7p+kBduLfbm084HB4GboCAMWIjAMAAACVIhO71f/d/zszOiQitbte9jYcfoCdWB1KqNMeaLdabFQUAIoLGQcAAAAqiJZJX/nxG1NX+0WkqvF3arZ9aa2zkJrUoLXxUYc7yNdpACgiXJQBAABQYQxj8B9/PHr6fRFxB/YG2v+FYrE/2J4CHfbQPrvNzdAVACgKZBwAAACoRONnPvz4+FERcfraavf8ucXmfrD92FVLw35noMOh8M0aALYaV2IAAABUqGRk9OKx/2HOQlq7+09tathYkYgsd5c7aA0/7nYHrVQVALYQGQcAAAAqVzYR7//uK4nxIavdW7vrZbd/r7I8EVFWFNzpDO1zWR0MXQGArUHGAQAAgIqmZdKf/PC7U9f6RaRm+5c89YcfZm8Oj6XhoKt6G0NXAGALcOkFAABAxTOMwV/8cOzMeyJS1fgZf/tXH2yxlQVVjfaGAwxdAYDNRsYBAAAAiIiMnT55+fhrIuKs2h585F8rVvfD7M3qUII7XcE9LquToSsAsEnIOAAAAIA5ycjNi8f+VptN2N2h2t3/xuqofsgduqptDQc9VU12agsAm4CMAwAAALgjm4hfPPo/k9Ehq91b1/kXdrXp4ffpa3E2PKo6q22UFwA2FBkHAAAAcBddy338/dcnPzktIoGdX/fUP/Xw+7Q6LLW71do9HouNoSsAsFHIOAAAAIB7GMb1d38xevpnIuJt+ExV05GHnIXU5Kq2hXt83gYHBQaAjUDGAQAAACxt7MxvPvnRqyKi1j1W0/7CusQcIuJvUxsfrXJUseoKAKwzMg4AAABgWTOjIxeO/dd8NuGs2l7X9RcPudjKAqvD0tDlC+xUGboCAOuIjAMAAABYSTaROv+tv0tPDVnt3uDuP7F7mtZrz55aR9PjNWqtkyIDwLog4wAAAADuQ9dy/W98Z2rwtNXuDex80aaGjeWJiHE/C9uISO1Ob0N3tV1l6AoAPCwyDgAAAGAVDOPaz38evfSeiAR3veRteEpZhogo97OwjXnD6bWHDwRqd1YpfD0HgIfARRQAAABYrRvvvXf1Z98UEW/jp9drsZUFnjpX06NBhq4AwAMj4wAAAADWYHpo+MqJb+azCU/dY/4dL6xvzGF1WOp2+Rr3+61OvqgDwJpx6QQAAADWJj4y0v/G/8pnE86qbcFdL6/XYisLHB5b02PB6u0ehq4AwJpw1QQAAADWLJtInf/W/5eeGrK764K7/pXF7lv3h6gKuxsfC7r8DqoNAKtExgEAAAA8CF3L9b9xLDU5ZLV76vb8mV0Nr/tDWB3Wus6aur01DF0BgNXgWgkAAAA8KMO49ObRW5+8JyKBjq+5anZvxIO4apzhnjpfi4d6A8DKyDgAAACAh3L9nV+NfPR9Ealu/UNP6MkNepSabVVNh+pcflZdAYBlkXEAAAAADyty/sLcmrINh/07vry+i60ssDqsob3B4CM1Fhtf4wFgCVwcAQAAgHUwPXSj77v/LZ9LOqu21bQ9L4ptgx7IU6c2P9ngbWToCgAsRsYBAAAArI/M9O2+1/8um5hwVm2r3f2n676mbKFAe03ToUZHFauuAMAdZBwAAADAusmlUhe+/T/TU0NWuye4619txGIrC6wOa8P+UPCRgGJRqDwACBkHAAAAsM4Mo/+N16YGf221ewIdX7O5G417iMiiG/dssfxdd/PUeVqealbrVAoPAGQcAAAAwHozjGs//8lE/7siEtz5orf+U8rdRGTRjcVk+bvu2ZUoUru7tuFgg121U3sAlYyMAwAAANgQw++/e+1nfy8i3obDVeHPb9BiKwscXke4J1y7u46hKwAqFhkHAAAAsFGmh25cOfH3+VxCrX20Zsc/3+iYQ0Q8IW/ToWa1jlVXAFQiMg4AAABgA82M3Oj/3t/mswln1bbAzhc3dLEVk9Vhq9sTany0yeq0UX8AFYWMAwAAANhYuUTqwrf+W3pqyOauC+z6+ibEHCLi8Dqan2jxtweoP4DKQcYBAAAAbDhdy11649XU5JDV7gnsfGlzYg4R8TVVNz/Z4vKz6gqAikDGAQAAAGwKw7j81qvTg6ctdk9g19dtauPmPKzVYQt1NYa6Ghm6AqDskXEAAAAAm8Uwrv38x5Hz71rtHn/7VzYt5hARV43afKi9ujXIQQBQxsg4AAAAgE1186N3IuffFZFNjjlEpGZbbfOTHU6fm6MAoCyRcQAAAACb7eZH7wx/eEJE/O1fdlbv2syHtjlsDftba3eHLXYrBwJAmSHjAAAAALbAxIVTn/zwFRGpavmCu+7xTX50b8jX+qmdVWE/BwJAOSHjAAAAALZGYmz44+OviIin/gl3XY9RSAwRMVZBRMQQ88ZK28jibUQk2NHQ/OQuu+rkWAAoD2QcAAAAwJZJRoYvH/8/IuKpf1INHVIWiCIiyiqIiChi3lhpG1m8jXnb7rQ3P95Rt6dJsSgcDgCljowDAAAA2ErJyPCFY/81n0166p/wbX9WZAuyBm+oZttn9qqhaiHoAFDKyDgAAACALZZNTF/8zn/PzyYd3hbf9i/JFiUNdZ2tjY912D0MXQFQqsg4AAAAgK2nZVIXX//v2mxia2MOh9cdfnyXvyOsWPiXAoDSw5ULAAAAKApaJtX3+v87G59weFuqt39Jsbq26pn4muuantzjCdVwUACUFjIOAAAAoFhomdTF1/82dWvI4W0Jdry4hTGHzWmv27s9/PgjNpeD4wKgVJBxAAAAAMXE0C/9wzdTt4asdk+g/WtbGHOIiMPrbn6ys3pbA3ORAvj/2bvvODnKM8Hjz9tdHSfnqJFGMwozCggEiGCQECabDAbjvME+3955d2/3fOf1587nXeeweM3aBptg1jgt4IADFpiMBQYEmCwURjmgONKMJnXXe3/UdKlDdU33qGemw+/7hz6lt59637eeqp7R+6iquyBQ4wAAAADyjDbf/MXdg7Eyh8dXMbPTqelsaT9jcai2kjMDIM9R4wAAAADyjzbf+vldBzY85fWV1c//sC/UPLPTMQK+pqVdjUvn8egKgHxGjQMAAADIU1see/jAhqdEpGbudcZMlzlEJFRT2X7Gkoq2Rh5dAZCfqHEAAAAA+WvLYw+/8/rjIlLTeW0+lDlEpH5+x6wzTwpUlXN2AOQbahwAAABAXtv+x0e2rf25iNR0XhusWaQTiYhosTZ0GlY/STFJ8WlfSmy3XjICvtZTeht6uzw+gxMEIH/wIwkAAADId/tee2lssL/rgo9WtJzr8QaP7V+X8LISJUpElHJ+hsSqTlivpv45HpP41+PbWiS2bZU57H0rmusrmuv3r+87smuPaM4SgJnHfRwAAABAATjct3nTw3eJSFnj6eH65fkzsfoFnW2nLfWXhTlHAGYcNQ4AAACgMORtmSNQXta+4qTGRfOUh/UFgJnEzyAAAACgYORtmUNEKpob5p53RnlTA9+6AmCmUOMAAAAACkl8maOi7d2SZxWFxsUL205bZgQDnCkA048aBwAAAFBg7DJHsGpeVcd78q3M4S8v6zj7tLp5c3l0BcA043tVCpKpOXEAckzrLpIA4AR+hnycJMycdhHyDwAi3McBAAAAAACKA7cDFCSPiqR7SYtWEv8959o5auIbGuNjtOSmn6xizGkcK+kwp2AsZaYJ0aIm6scxRuuUmZ/gnM1sjkvnIj9mBhf7hP1okQnzM2E/OpscykSHn9CPcjrMpPepY27Tx8RH5ySHpnUHh1KbXM+yaz/WFZ7Z9azcfjpl/vMnq2N3+SE2PmellNY65cqJ78f9yk/Nj+l4/SjX6yflvKe5fpRobc9HTTSfdLmKZvxzQ6s0nWjn906668fM5nJNf+qdj9jM8keHmfGvnvTXj4pd9lpP9keHti6JTE+9Q/6TcpXJqXfMT9JhxmJSf39pnfSrx7qDQ6nbsj/12fzqUfFDO+Yq4fpxfK9pMdVEv5LizoUW5/dadtePo28bGgAAIABJREFUy7veHku7XiSuL2kR8ZeX9V7/t15f2ejgjiPbH3QMtn76KvHaP/FU7KdfQnfq+P+AHn9JHz98a8fYvt7k3wbKOhyP3X9cuzq4acuhLVvTnMe0PzqU6/WT8t6xz1qG/3Rxvn5E6TT/JHP/90Z8P2aW78E0P39SZ6Jd/sma1a+e8X6Scxg34vgvRxGtzSz/+Zf+V4/TP9viZxj3vnA59W7Xj9ZPsWAs6cUyKQAAAAAK1+jAwBv3fis6dsxf1l456xLlDebnPGu7Ouecc1a4vo5TBmDqUOMAAAAACtvowMAb9/6bVeao6bwub8scRiDQdsqy1lOWeXw+zhqAqUCNAwAAACh4dpnDY4TzucwhIuG62rmrzq1sb5v4CUcAyBI1DgAAAKAYxMocg1aZQzwBHWMFxD5b4XijjpP2pcT21H5SOXaVtNGwcP7sd50ZqKrkxAHIIWocAAAAQJEYHRh4/WffjI4Oeoxw7dzrPUbI/ohQiX0mqIqJ33Z7KbE9tZ9Ujl0lbYiILxhsO31545JeHl0BkCvUOAAAAIDiMXZs4LWf3myVOWo6r/MGavN8whUtzZ3nnVPe0syjKwBOHDUOAAAAoKhEhgfjyxxGqCn/59y8dPGsM1f4y8s5fQBOBDUOAAAAoNjYZQ4RqZ59ZUGUOQIVFR1nn9m0dLHyskgBMEn8+AAAAACKUGR48OW7vzh8eJuI1My5oiDKHCJS0dLS9e7zy5tbOIMAJoEaBwAAAFCktPn6vbfFlTkaC2XizUtPmnXm2UYwxDkEkBVqHAAAAEDxiitzVM95TwGVOQIVlZ0rV9Uv7FVeL6cRQIaocQAAAABFTZuv33vr0KGtUmhlDhGpnt05+5xV5S2tnEYAmaDGAQAAABQ7bb5x/23H9m8RkarZlxVWmcMIBJuXntx66goeXQEwIWocAAAAQAnQ5pu/GC9zFNzdHCISrqufvfL86q75ohQnE0A61DgAAACA0hBX5ii4uzkstd0LZq+6IFzfyMkE4IgaBwAAAFAyEssc3mCDjhERx22d2G69lBCQwrGrpI20wyWOlfqS1x9oXr6i5dSzPD4/5xNAEmocAAAAQClJLHP4wk1KKaWUiKiY+G2V2G69lBCQwrGrpI20wyWOlW6gcH1j5/mXVnXM5dEVAPGocQAAAAAlJq7MUdlxaSE+tGJp6D1p9qqLAtW1nFIAFmocAAAAQOmxyhwHtkiBlzmMQLBtxcrGpacpr5ezCoAaBwAAAFCStPnmz28d2LtZCrzMISIVrbO6LryqvGUWj64AJY4aBwAAAFCqtLn+gdsG9mwSkaqOS41gQ0EfTfOyFbPOOt9fXsWJBUoWNQ4AAACghGlz/a+/Z5U5qjsuKfQyR6CievY5FzYvW8GjK0BposYBAAAAlDZtrv/19wb39UlRlDlEpLJ1dueqSytaOzi3QKmhxgEAAACUPG2+9cvvWh9BWhxlDiMQaj75jI5zLjRCYU4vUDqocQAAAACwPoK0qMocIhKorO5cfXlD7yk8ugKUCGocAAAAAETE+kLZ7w73bxeRqlkXF0eZQ0SqO+fPXnVZuKGFMwwUPWocAAAAAGJM8/V7/734yhxGINR2+sq2FecZoTJOMlDEqHEAAAAAiGOar9/7reIrc4hIWUNz5+orauctFqU4z0BRosYBAAAAIJFpvvmLb48M7BSRqo6LvcF6rbXW2nrR2tDpxb9qbydtOMYkdWIPl+EQ7lMaH1dL3bylnauvKmto5TwDxYcaBwAAAIBk5ujYG/fdYpU5qjsu9oUaVezeB2tDpRf/qr2dtOEYk9SJPVyGQ7hPaXxcJUopXzDcvmJ1y8nneP0BzjVQTKhxAAAAAHBglTlGB3eLSFXHRcX00Iqlsq2z+8Ibqucs4NEVoGhQ4wAAAADgzBwde/s3tx0vc4Qaiu8Ymxav6Dr/en9FNacbKALUOAAAAACkNdJ/1C5zVHdcXHx3c4iIEQx1rryy5eRzlNfgjAMFjRoHAAAAADcj/Uc3PXSXGRkSkaqOi5S3OD/DorJt7oJLP1DZNpdHV4DCRY0DAAAAwASO7Tuw5ck7YmWOy4q1zCEiraesnP2uKwIVNZx0oBBR4wAAAAAwsUMb+7Y8+X0zMuQxQlUdlylP0ZY5gpW1nSuvbly0gkdXgIJDjQMAAABARg5t3Lz9mR+IiMcIVXZcXMRlDhGp7VzUvfr6irYuzjtQQKhxAAAAAMjU/rfe3vf6L0TEY4TKms8UKeaPrjCC4dZTVs9eeY0RKufUAwWBGgcAAACAjGnZtvZJq8zhCzeXt64s7jKHiAQr67re/b7GxWfxWaRA/qPGAQAAACAbWratffLQ5gelZMocIlIzd3HXu99f1jiL8w/kM2ocAAAAALKkZcsTjx7d9ScR8YWbw00rdBwRSd1O2nCMSepkfCgnE+7u2JvWWnS6DifuxxsIta+4pP2MS32hCi4BgBoHAAAAgCJhjkU2rrlv8J2XRSRQMSdUu1jFiEjqdtKGY0w8eyDlZMLdHXtTSolK12Gm/ZQ1tHdd8P66+ct5dAWgxgEAAACgiMocv//J0IFXRSRUtyRQ01s6x96w8PTuCz8cqm3mMgDyCjUOAAAAAJMUGR7d9IefjZc5akurzGEEw7PPuaZ1+QVef5ArAcgT1DgAAAAATN5I/8CmR+4dO7ZHREK1S7zBupI6/Mr2efMu+YvqzsU8ugLkA2ocAAAAAE7IyOH+LY//wCpzVLatNkqszCEizUvPnXfRhwOVdVwMwMyixgEAAADgRB3ZsXv72nvGyxzt53tLr8xhBMs6V9/UeuqFymtwPQAzhRoHAAAAgBw4tHn79rX3mJFhEalsW+31V5VgEirbFyy4/BOV7Qt4dAWYEdQ4AAAAAOTGoc3b9776n2ZkSETKW85VnkBp5qH11Is7z/uAL1zJJQFMM2ocAAAAAHJm1wsv7H3lXjMy7DGClbMuLNkyR7Cqofuiv2pauopHV4DpRI0DAAAAQO5o2bVu3d5X48sc/pJNRm3XKd0X/mVl+0KuC2B6UOMAAAAAkFNadq97sX/7kyLiMYLlLeeKlO6HUxjBsrbTLutc/SEeXQGmATUOAAAAADmmTXPLE78/tHmNiHgD1WXNZ4sorbXWWkTsP+NbkhzvysmEuzv2prUWna7DLPpJjYx1njBWvEBlfdeFf1W34Aw+ixSgxgEAAACgwJhjkS1PPnSo7yER8YWbyprPVkoppUTE/jO+JYndj3Iy4e6OvSmlRKXrMIt+UiNjnSeMlaqx9+x5F/+XsqZOLg+AGgcAAACAwipzjO187olj+18SEV+4MVDNx1KIESzrOOuajnddz6MrwFSgxgEAAABgqoz0H+l75L6hg2+ISLCmx1+1gJyISHnj7O6LPlYz92QeXQFyixoHAAAAgCk03H9k88M/GunfKCLBmh5fWTs5sTQvu2DeJZ8I1bWRCiBXqHEAAAAAmFrD/Ud2Pv9AZOgdEQk3nuYN1JITixEs71z1gbbTr/D6Q2QDOHHUOAAAAABMuUOb+7atvccqc5S3rqTMEa9q1qIFl/9dTddyHl0BThA1DgAAAADT4dCmvu1rf2RGhkWkom2V8vjJSbyWZRfOPf8vApUNpAKYNGocAAAAAKbJwc19+1673ypzlLedT5kjSbCqce67/6r1tKuU10c2gEmgxgEAAABgumi94/k/WWUOjxGsbHs3ZY5UVbMW9Vz1qapZi3l0BcgWNQ4AAAAA00jrHc8/e2jTQyLiMYLhhtNEWMk7aF9xddf5H/OFq0gFkDlqHAAAAACml9bb1j7ev/UPIuILNZY1nUWZw1GwqmnexZ9sPukiHl0BMkSNAwAAAMB0M8fGNj/6u0NbHxYRX6gxVL+cnKRT171i3sX/vWrWElIBTIgaBwAAAIAZYI6NbXn0waFDb4iIv6zdX7lAx7HDtJP49nQxqb1prUWn6zCLflIjY50njDVhV+5TjQ8zAmVtp13T8a4P+sLVXDkANQ4AAAAA+Vjm2Pzwj4cOvSkioZqeYPVCFWPHKCfx7elikuKtMFHpOsyin9TIWOcJY03YlftUU8MqmrrmX/r3DT2rRLGOA6hxAAAAAMgzw4f7Nz/8o9HBHSISrO4xgk3kxF3jotUL3vOP5c3zSQWQihoHAAAAgJk0fLi/77G7I0PviEhZ05neQC05cecLVsw550Nzzv2INxAmG0A8ahwAAAAAZtjArt3bnrnHKnOUN5/rDdSQkwmVN3X1XPHpmq4VPLoC2HgzAAAAAJh5hzZu2v7sT8zosIiEG05VHj85yUTzyZfNu+wfQnUdpAIQahwAAAAA8sTBDW/veeknZnTYYwTLW1dS5siQEazoXP3XbStu8AbKyAZKHDUOAAAAAPli90vr9r1+vxkZ9hjBcNMZ1tedIBPVs09aeOVnqjpO4tEVlDKufgAAAAB5Q+sdf3rm4MZHRMTrrww3nk5KstJ+xg1dF/xNoIqvp0GJosYBAAAAIJ9ovfWpB4/seFpEjFCDv2oeKclKsLql+6K/a1txo/L6yAZKDTUOAAAAAHlG600P33ds/xsiEqxeYIRbSUm2qmcv673281Udy0gFSgo1DgAAAAB5xxwbffvX3x8b3Csi4YZT+DbZyZl15k1dF/29L0z2UCqocQAAAADIR9Gx0fUP3BwdPSIiofrlonw6RkQct9OxOtRai5Y0AVn0kxoZ6zxhrAm7cp/qJI7OcYhAVcu893y6adkVPLoCahwAAAAAMGNGj/ZvfPAW69tkK9rOVcqjlFJKiYiKid9Ox+pNKSVK0gRk0U9qZKzzhLEm7Mp9qpM4Opch6ua/a95l/7u8ZSEXFahxAAAAAMDMGNy7Y9OD3xIRjzdY1nga3yY7ab5QZce5f9Wx8mM8uoIiRo0DAAAAQF47uqtv57M/FBFfqD5Yw50IJ6S8ef68yz9T33uBKBaDKEJc1gAAAADy3d5X1h7avFZEAhVz/OUdJOQENS65eP4Vny1v6SEVKDLUOAAAAAAUgL4//LB/+0siEqpd5PVXk5AT5AtVzl75sfYzP+gNlJENFA1qHAAAAAAKw6Y1d4wc2SUi5c1nKm+IhJy46tnLF179+dp55/DoCooD1zEAAACAAmFG37z/q9GxIbHKHB4/KcmJluXXzb/ic+H6TlKBQkeNAwAAAEDBMMdGXv/pZ6NjQx5vIFx/El+zkiu+UOXcC/6+7YwPKy+VIxQwahwAAAAACklk6Ojmh24VESNYX9Z4KgnJoerZyxdd/42q2ct5dAUFigsXAAAAQIE5uvOtLU/8QESMYH2gqouE5NasMz/SfdGnAlUtpAIFhxoHAAAAgMJzcP0zu1/8rYiEqucZwXoSklvB6rbuiz/dfiaPrqDAGKQAAAAAQCHate7XFW0Lypu6yxqXH939R3NsIP5VnRKvtRattMMropSIKK31eNjxTnRimDreVWL7+L6xmKQAJypNTPLusW3nDrXW6Ua0Z2VHpp9T6nAiIlUdy8MN8/a8/PP+rc9zvaEgcB8HAAAAgMKkzbcf+Mbw4d0iUtZ4qsfrV2nYa35RkiZAWQHu4ssHSe1KjXftGODYlftU3cNcdnHcN5N+HMP84aqOsz7affE/+cpqueJAjQMAAAAAprTM8fXI8FGPN1DWfBZfszJFgtVtC6/4fMsp1/PoCvIcNQ4AAAAABSwyPPD2b24WEY83EG44hTLH1KlfcN7CK/65vGUxqUDeosYBAAAAoLANH9y5/ldfFREjWOev7CQhU8cXqpqz6r/NWf13vrI6soE8RI0DAAAAQMEb3Ltp1wsPiEiwqtsINZOQKVXe3LPgyi82LL5MFCtK5BeuSAAAAADFYM+Lvzmy800RCdUt8fqrSMhUa1p6xfwrvxSu7yIVyB/UOAAAAAAUiY0P/tvY0BERCdadpDw+EjLVfKGquRd+qv2sv/QGyskG8gE1DgAAAADFQptv3PtZsT5/tH45nz86ParnnN573c1181fz6ApmHJcgAAAAgOIRGR5461dfFhGvryJcdzIJmTatp9208OqvBarbSAVmEDUOAAAAAEVlcO+mXet+LdbXrFTMJSHTxheqmn/Z52ad/THl9ZMNzAhqHAAAAACKze51DwzseVtEgpVdfP7oNKuec8aiG75bNWcFj65g+nHNAQAAAChC63/9jcjIgIiUNZyuvEESMs06zv549yWfDVTx6AqmFTUOAAAAAMVIm6//7P9Ym+WNK5THp7UWLdqJiBZxfikxLNZ3SrvW4107Bjh25TLEhGEuuzjum0k/7rNyiUnXEqxun3fZP7csfx+ProAaBwAAAACckMjwwFsPfFlEPN5AqGaJUh5RopxY38CiJmL3nNqu1HjXjgGOXbkMMWGYyy6O+2bSj/usXGJcWkRU3YILFlz51ao5Z3BBghoHAAAAAEze4J6Ne17+nYgYwbpA5TwSMiN8oaqOsz8+77Iv+MrqyQamFDUOAAAAAMVs53P3D+7bLCL+8g5fWTsJmSmhmo6eq/61dfkH+CxSTB2uLQAAAABF7q1ffik6ekxEQtUL+ZqVmVW/8MKeq79Z0XoSqcBUoMYBAAAAoNhp87Wf/ZO1GW5Yrjw+UjKDfKHqOef9Q+fqT/HoCnKOGgcAAACA4hcZOrrh9zdb2+HG060PGcUMKm9Z3HP1zY1LrubRFeQQFxMAAACAknBk22v71z8uIh5vIFi3lDJHPmhedu3Ca28JN8wnFcgJahwAAAAASsXWJ344fHi7iBiBWl/5bBKSD3yh6q6LPzvrXX/jDVSQDZwgahwAAAAASsjr9/2LGRkWkUBlpzdQS0LyRHXnWb3vvbVuwUU8uoITwdUDAAAAoJSY0dfv/b/WZqjuJI9RRkryR9vpH+2+7IuB6lmkApNDjQMAAABAaRk9emDrk9+3toN1Jwlfs5JPQjWz51/+1Vnv+qQyAmQD2aLGAQAAAKDk7H/r2cNb/yQiHm8gVLfMatQTsXdPbddaS1xMJl25DDFhmMsujvtm0o/7rFxiXFpEYslJjBHt3G6rnnPW4hvvrppzNo+ugBoHAAAAAExg00O3jQ6+IyJeX7m/sltE1ETsfVPblVISF5NJVy5DTBjmsovjvpn04z4rlxiXFuvLa1JjRDm3J5l9zie7L/2Sr6yByxXUOAAAAAAgPa3fuO//mdEREfGXtxuhRlKSh0I1s3uu+ffW0z7i4dEVZIAaBwAAAIASFR0Z2rTmG9Z2sKZXeVlF56mGnksXXn1Ldee7SAXcUeMAAAAAULqO7Niw+8WfWtvBulNISN7yhapnn/PJ+Zd/nUdX4IIaBwAAAICStmvdmoE9r4iIx+sPVPeQkHwWqpnTe+2tTUuv47NI4YjLAgAAAEBp03rjmlvHju0XESPUyAdz5L/mZTf2XndbRRv33SAZNQ4AAAAApS46MrTx9zeb0VHhgzkKhC9U03n+Zzov+CyPriAeNQ4AAAAAkGP7d+1+8WfWdrDuFB6FKAgVrSf1XHdb3YJLOF+wcB0AAAAAgIjInpcf69+2VkQ8Xn+wZjEJKRStK/669/o7w40LSQWocQAAAACAiIho3ffo3SP9W0TEG6gxwq2kpFD4wjXzLv1Kx7n/QCpKHDUOAAAAABgXHR3Z9IfvmmMDIuKv7PYYYXJSQGrmnksSShw1DgAAAAA4bujgnq1/vCP2+aOL+aAHoIDwdgUAAACABAc3vHi473GxPpijukfH2AE6kdUicTF6IuliknbPsCvHsGz7cZ+VS4xLi0gsOYkxop3bMz86q3PH6dlmnfMPyuArcqhxAAAAAEBp2/Lkz4YPbRARI1DjL+9QSiml7FdVIqtF4mLURNLFJO2eYVeOYdn24z4rlxiXFpFYchJjRDm3Z350VueO07PVzl219P33VXeu5HqmxgEAAAAApUtHIxvXfDsyclhEAhWzPb4KclKgZp/7jwuuuMVX1kgqSgE1DgAAAABwMHL00Nanvjf+wRzVPaIMclKgQrWdvdfd2Xb6xz08ulLsqHEAAAAAgLPDfa8f2LBGxj+YYyEJKWgNPVf2XHNHdecqUlHEqHEAAAAAQFrb1/5yYO+LImIEqn1ls0hIQfOFauec+6muC77o59GVIkWNAwAAAADS0tFI32P/MTq4S/hgjmJR0Xpy73V3N530fr4YuPhwRgEAAADAzejRQ1ueuMP6/NFw3Ul8MEdxaDn5Q4uuv6ei7TRSUUyocQAAAADABI7u2LD/rQetzx8N1SwiIcXBF67tuuDzXRd+2RuoIhvFgRoHAAAAAExs5/O/H9jzgoh4fGX+ijkkpGhUtJ6y5H331i+8kkdXigCnEAAAAAAyoHXfY/eMHNkkIr5wi9dfTUqKSfsZ/633+p+EG7hJp7BR4wAAAACAjESGBrY+/aPI0D4RCdb08MEcRcYXqp136Tdnn/tPBo+uFCxqHAAAAACQqaM7N+57Y/yDOQJV87TWWmsR0VpLbNv6q7t0MUm7Z9iVY1i2/bjPyiXGpUUklpzEGNHO7ZkfndW54/RsmRxa6lg1c1cvft/91Z2reXSFGgcAAAAAFLldLz0yuPdFETEC1b5wi1JKRJRSopS1bf3VXbqYpN0z7MoxLNt+3GflEuPSIhJLTmKMKOf2zI/O6txxerZMDi11LCuyc9VnFl5xa7CmkwueGgcAAAAAFC+t+x794ciRPhEJVHYqI0xKilKotqvnqjtmr/yMxwiSjUJBjQMAAAAAsjM2dLTv0dujI4dFJFjdw8KqiNXOXd177Q9r5q4mFQWBtyIAAAAAZG3wnW27X7rfjI56vP5AZRcJKWK+cO2clZ9ZeOX3/OVNZCPPUeMAAAAAgMnY++oTR7avFREjVO8N1JGQ4haq7Vp0/Y/bVvwNj67kM2ocAAAAADApWm95/EfjH8xRNY+vki0Fjb3X9FzzH5Xtp5OK/ESNAwAAAAAmKTo63PfYndYHc4RqekhIKfCFa7su+FLXhV/j0ZU8RI0DAAAAACZvcO+WPX/+lY6Oeoywv7yDhJSIitblvdf9pPmkD4nyko38QY0DAAAAAE7Inj8/cnTX8yLiCzd7fOUkpHS0nPLRJTfcW9m+glTkCWocAAAAAHBitN78yA9GB3aISKCymw/mKCm+cF33BV+Zs/L/GIEqsjHjqHEAAAAAwImKjg5vXHNLdLTf4/UHq/gq2ZJTO/fdS296oKHnGh5dmVnUOAAAAAAgB4YO7Nz5wn+KiNdf5Q02aFcikq49/qV0YS67OO6bST/us3KJcWkRGd9OihHt3J750VmdO07PlsmhpY6VyZSSJxbbaF/xt4uvv6+scTFvh5nCPVQAAAAAkBv7Xn+qsrWnes67AhVzzNF+bY6KiIhKClNKaS1KKWs7cVk+HmC1a61jASp+9+PbTo0iynrFboz149yJHRw3nCQVC+zZ2jOP7yepczvePpykEbU4t6fmyqomOM9KUrOUnOfUhKdG2YPalYs0kQlHZ09MKSVaJLaLv6x+wWXfPbDp4e1rv2pGhnlTTDPu4wAAAACAHNF6y+N3jxzdLiLBml7yUbJq57572Qcfrp77bh5dmWbUOAAAAAAgZ6Kjw5seusWMHFMen79iLgkpZXNWfXbBlbcHa7gMpg81DgAAAADIpaEDO3c+f4+IGME6j5/v2ihpodruhVffPXvlZz1GkGxMA2ocAAAAAJBj77z2eP/Wp0UkWDWfr5JFTdcFPdf+rHruBaRiqlHjAAAAAIBc07rvsTvHBveKSKCSRxUgvnDdnFX/b8FVd/vLm8nG1KHGAQAAAAC5Fx0d2vD7r2tzzOuvNMItJAQiEqrt7n3v/W1n/B2fRTpFqHEAAAAAwJQYOrBj+9rbRcRf1qa8IRICS+Oi9y6+8ZeV7WeSipyjxgEAAAAAU2XfG08e2fGciASr55MN2Hzhuq6LvtF10b/5y7nHJ5eocQAAAADAFNq45pbI8CHl8fnKZpENxKtoO33RDb9oXvYXPLqSK9Q4AAAAAGAK6Whkw4NfFRFfuMljlJMQJGlZ/rHFNz5Q1riUVJw4ahwAAAAAMLWO7dvyzmu/FpFAVRerMKTyhevmX3777FX/YgSrycaJ4IuaAQAAAGDKbV/74+o5p/vLm/wVs0eP9okorbVToBKR+Jdi247BorVWKnmX8Y6USupHp51d6nAOA9kd29vWRmwg7RKfNBlrfk7tE46ekCq72TEgsVG5JSCT4ZwCYhtxU8ko4c5j1cy9sGbuhTue+dr+t+4XHeVdMwlUEAEAAABgOrz1q8+JiBGs8/qrrNJAKrs8Yf9VTSRpF8d9M+nHJcy9K5cWq2STGiPKuT3zo7M6d5xefJVnEpnMZErJE8sgJ5knfNZZn1p842+DNd28ZahxAAAAAECeGhs8tO3p20XEXzGHtRhc+ML1Pdf8dPaqz3uMINnICu8rAAAAAJgm+974w7H9m5XH56+YTTbgrrbr4pM+/HT13Iv41pXMUeMAAAAAgOmz4XdfFhEjWOvxVZINTGjOqs8vvOoeHl3JEDUOAAAAAJg+keGjfY/+u4gEq7pE8S0QmFiodl7PNT9tO+MfeXRlQtQ4AAAAAGBaHdz4x6O73xSRAE+sIGONi97Xe/2vq+deTCpcUOMAAAAAgOm2+eGbRcTrr/T6q8kGMuQL188574sLrv6pv7yFbDiixgEAAAAA081+YsVfMYdPlERWQrXze2/4bdOyv+bKSaVEzIlitPWdxoUQo0VpERGtRU3UT5YxVsdOQ2o10ZwziNETxpiaR/UAAAAAIFPLPnpwfDWnlNainP+PX9kLTK21Faxcl4paa6VUQrCWpFWqFWOm6cbu3wpLnUlqV479jB3bv/3pfz6y/cnU5acWLaLTLKi107LadIp0Wglra3fTaXluph8x/fp9vE87CzqxNzMWHVWirLWz3aeVMi2mFlPE7OvbwH0cAAAAAAAUHl+4vuuiW7ouuc1f3ko2LNwaUJA8KpLupaT7QXTa0l1W98uQlTX4AAAgAElEQVS4lACn7t4ccxrHSjrMKRhLpblhatL3HGmdMvMTnLOZzXHpXOTHzOBin7AfLTJhfibsR2eTQ5no8BP6UU6Hmf6+reO5zewesZzk0NS6S0SU2uR6ll37sa7wzK5n5fbTKfOfP1kdu+v/Yygl4/+9o1OunPh+3K/8TP8zRLlePynnPc31o6z/aNLjV9kE80mXq2jGPze0StOJdn7vpLt+srp1NP2pdz5iM8sfHWbGv3pc/vcpdtlrPdkfHdq6JDI99Q75T8pVJqfeMT9JhxmLSf39pXXSrx6tPy4iSt2W/anP5lePih/aMVcJ14/je01Luv9SNZ3ehlqc32vZXT8u73p7LO16kbi+5J6TdDlMd+on/aMj3fWjnX4pp7sOna8f5Xr9pLx37LOW4T9dnK8f51u4tU6Zsk5/XGbm78Haeed2nvcJERk+9IY2R+NuDrDeYvb/4R///+n4/9WPOt96MH5HQNL9AvHHkBjvsX8bOt4yYLcrpUytJOU2BKVU/AztditJcTEJV7bTWB7HoZ1nJeMz0Vp7POM7vnxXbaktDyvbzui94Xc7nvny/jfvFR0t9cUy9QIAAAAAmCkHNzw5+M5GEfFXdNoFGh0Tv51O0i6O+2bSj0uYe1cuLVY1IzVGtHN75kdnde44vfj6yCQymcmUkieWQU6ySniGMfEzaT/zfy+6cU1Z4zJqHAAAAACAGbPx918WEY8RMkINVotSx2/lUBNJ2sVx30z6cQlz78qlJf52koQA5dye+dFZnTtOz5bJoaWOlcmUkieWQU6ySniGMUkz8Zc1zL/i7jnnfdkI1lDjAAAAAADMgMjw0S1P3Coi/rJ25fGTEJyI2q5Ll3zg8YbeG0vzW1eocQAAAADADDuw/rFjB7eISKCyk2zgxM06658WXvWzYM28UjtwahwAAAAAMPM2/PYLMv7EShPZwIkL1y3ovfbnc877iscIlc5RU+MAAAAAgJkXGTqy/ZkfiIi/rFl5gyQEOVHbdemyjzxX03VpiTy6Qo0DAAAAAPLCO68+ONy/U3hiBbnWed5XF151r7+8teiPlBoHAAAAAOSLt3/zeRFRHp8RbiEbyKFw3YJFNzzUfsani/vRFWocAAAAAJAvxgYP7nrhpyJiBOuVN0BCkFuNiz+46L1rarreU6wHSI0DAAAAAPLI7hd/HhnuFxF/BU+sIPd84YbO877ec82v/OVtxXd01DgAAAAAIL+8/Zt/ERHl8fnCrWQDUyFct2DJ+x5pPvm/FtlnkVLjAAAAAID8MnRw+/71D4uIEeKJFUyh1lM/ueSmxytnnVs0R0SNAwAAAADyztan7oyOHhWeWMEU84Ubui/+XveldxnBmiI4HGocAAAAAJB/zOjGNV8V6ztWQi06PSvcsd1x272rCdtTY1xaRMa3k2JEO7dnfnRW547Ts2VyaKljZTKl5IllkJOsEp5hjMNMJttVRetZSz7wbH3v+wv90RWDHx0AAAAAkIcG9rx1dM9rFc2LjVB9dPSwjo5Y7UopO8beim8UUdYrdqPWWikVF54aL0qpWFgyu10ppXXiBJQ9kEqNtxbgcTGxAHFuj+/E7iolxu5ExUZxnrbdmDrt1FzF1wvSRCYcnT0xpZRokcRdrJh03aScl+SZOCbfvSv3OVudx3flGN9x9mebl32i75FPDu59sUDfNdzHAQAAAAB5asODXzajoyLir5hNNjANfOGGBVf8dM553zCCtYU4f2ocAAAAAJCndGRk61PfEeuJlXAzCcH0qO2+fOkH/1TTdXnBPbpCjQMAAAAA8tfBDX8c6d8hIkawju9YwXTqXP2vC6/6VbBmfgHNmRoHAAAAAOS19b/5nDbHhCdWMO3CdQt7r/3dnPNu9hihgpgwNQ4AAAAAyGtjxw7vffVXwhMrmCG1XZcv+8irNV1X5P9UqXEAAAAAQL7b+fy9owN7hCdWMHM6z7t54dW/9Ze35fMkqXEAAAAAQN7T5obff8Xa9JXzxApmRriuZ/H7nm474//m7aMr1DgAAAAAoAAMH9pxcONjIqI8hjfUREIwUxoXf3TRDU/VdF2Zh3OjxgEAAAAAhWHLE9+LjPQLT6xgpvnCjZ2rb+m+9Mf+8va8mhg1DgAAAAAoDDo6tuWxb40vMnliBTOtsu2cxe9b23zy34ry5smUDM4KAAAAABSK/m0vH925rqJtufXESmRwt1JKRLTWSZFKqfhGnRpxXEKYc8Tx9uPdWhuxgbRLfNJkrPk5tU84enwPYjc7BiQ2KrcEZDKcU0BsI24qGSU8i7FcYlQshxn2kxqmczGlluX/o77nA9ue+tSR7Y/M+BuE+zgAAAAAoJBseuRbZmRYRIxgnccI2svdJPGNjgHuu2TelUuLyPh2Uowo53bHodPPynl68SWArDLguGO6bCREZpCTrBKeYYzDTKZyOJcYf1lT98V3d1/6EyNYS40DAAAAAJCp6PDAzufusraDFTyxgnxR2XbO0g++0tD7kRl8dIUaBwAAAAAUmHdef2Ro/3oRUR6fL9xMQpA/Zp39+SU3PV/WdOqMjE6NAwAAAAAKjTY3PXqLNiMi4gvWKY+PlCB/+MKNC6745ezzbvEYoWkemhoHAAAAABSekcO7973+gLXtL5tFQpBvaruuWvbRDTVdV03noyvUOAAAAACgIO147j9HBnaLiMcIenyVJAR5qHP1txdevSZUu3B6hqPGAQAAAAAFSUfHtq+9U5tjIuILNZEQ5KdwXW/vdY91rv7ONDy6Qo0DAAAAAApV/5YXj+xYJyLKY3gD9SQEeau2++rFNz5b2331lI5CjQMAAAAACtjWJ78fHRsQEV+ogQ8fRT7zhRs7V3+n59pH/OXtUzQENQ4AAAAAKGBjxw5vf/Yua9sItZAQ5LlwXe+Sm56fdda/eIxwzjunxgEAAAAAhe3AW08O928REa+vzGOUkRDkv8bFf734hj9Vzjo/t90aZBYAAAAACps2N675au81/+oxgr5w63D/BhFRSmmtj4fE/yVl//gw54jj7ce7tTZiA2mX+KTJiIgox/YJR4/vQexmx4DERuWWgEyGcwqIbcRNJaOEZzGWS4yK5TDDflLDdK6n5BjmcPatekSoofuiHx3Z+eS2J//H6MB2ahwAAAAAABGRkcO7D256rH7BJcpjGMH66MhBa21pLzWVUiIqfnmcUC1IXDCnrlStdqWU1gn72u3xncctvJNiEpbWqe3xnSQtkh1mJcpe3jsG2I2p004cUSWt29NEJhydPTGllGiRxF2smHTdpJyX5Jk4Jt+9K/c5W53Hd5Uu3nW48Rm6T8mxK5fhqtpXLrlp3a4XvrL7pW+Kjp7gG4FnVQAAAACgGGx7+q7RwT0i4gs1iPKSEBSQ1lP/19L3v3zij65Q4wAAAACAYqCjY9vX3qHNiIj4Qo0kBIXFF26ad8lP5qy+1QjWTboTahwAAAAAUCQO971wZNc6EfH6K5U3REJQcGq7r136obcaFv3l5O5FosYBAAAAAMVj6+O3RscGRcRf1ko2UKBmnf3lJe9/NVjbk+2O1DgAAAAAoHiMHTu849k7RUR5DI+/moSgQPnCTb3XPT1n9fc9RjjzvahxAAAAAEBR2f/W48P922T8UzkUCUHhqu2+7qSP7qjpvi7DR1eocQAAAABAcdHmxjVfMaPDImKEmsgHCl3n6u/3XPNUsLZ3wkhqHAAAAABQbEYO7zq48XGxPnzU4ychKHThusW91z3TftZX3B9docYBAAAAAEVo29N3jA6+IyJGuIVsoDg0Lv7E4htfqe1+b7oAahwAAAAAUIR0dGz72u9rM+LxBjy+ChKC4uALN3WuvrPn2mf95R2pr1LjAAAAAIDidLjv+aO7XpTx75Hlw0dRPMJ1S5bc9Gb7WV9L+ixSg9QAAAAAQLHa+vh3em9Y5PWVGaGm0WN70kTp41taO0ccb1f2trWhlNWiXeJjMXGUY/uEo8f3IHazY0Bio0p3aJkO5xQQ24ibSlyMzsVYLjEqlsMM+0kN07mekmOYw9nP0XANiz5R3XnNtif/S//2B60WahwAAAAAULTGjh3a+ewdHed80uuv9Awf0DpiL48TqgWJC+bUFabVrpTSOmFfuz3+PpG4hXdSTMLSOrU99WYTe5HsMCtR9vLeMcBuTJ124ogqaSGdJjLh6OyJKaVEiyTuYsWk68Z+IXHmyvFem3RHl3qMrheCsotN7vGuw43P0H1Kjl1NariMYvxlzd2X/PLVH88fHegTnlUBAAAAgOK2/63HRvq3iYivrJVsoLhR4wAAAACAoqbNjWu+ZEZH+PBRFD1qHAAAAABQ5EYO7zrc97SI+IL1ZANFjBoHAAAAABS/rU98NzJyRHkMb6CWbKBYUeMAAAAAgOKno2M7nr1TRHzBOqX49gkUJ2ocAAAAAFASDq5/bOhQn4gYPLGCIkWNAwAAAABKxabff0lEvP4K5Q2SDRQfahwAAAAAUCpGj+7dv/5hETGCDWQDxYcaBwAAAACUkG1P3WpGxzzegMcoJxsoMtQ4AAAAAKCUmJFdz90tIr5ws4giHygmfJouAAAAAJSWd159oGnZdb5QtTdQFxneJ6Ltl7TWjrvEtSt729pQymrRLvGxmDjKsX3C0eN7ELvZMSCxUaU7tEyHcwqIbcRNJS5G52IslxgVy2GG/aSG6VxPyTHM4exPzXBCjQMAAAAAStDGBz/Xc83NRqA6OnpYtJm0YE5dYVrtSimtJT7Gbo+/JSRu4Z0Uk7C0Tm1Pva/EXiQ7zEqUvbx3DLAbU6edOKJKWkiniUw4OntiSinRIom7WDHpurFfSJy5crytJt3RpR6j6wlXdrHJPd51uPEZuk/JsatJDZdFjI1nVQAAAACg5Azt3zi4b72I+MItZANFgxoHAAAAAJSiLY/eLCIeb8BjhMgGigM1DgAAAAAoRSP9Ow9ve1b4HlkUEWocAAAAAFCi+h75hogoj+HxVZINFAFqHAAAAABQosyxob2v3CcivlC9KJaHKHhcxAAAAABQunY+9yMzOiYi3kAd2UCho8YBAAAAACXMjOx+4T9ExOsrVx4/+UBBo8YBAAAAACVt7ysPREcHRMQI8eGjKGzUOAAAAACgtGmz79Gvy/j3yJaRDxQuahwAAAAAUOqObFs3NrhPRLyBWhFFQlCgqHEAAAAAAGTLYzeL9T2y/iqygQJlkAIAAAAAwNFdrw7sfb28aZERqBkZPSo6Ev+q1jq2qexta0Mpq0W7xMdi4ijHdu04t+R9x3sQu9kxILFROXeS+XBOAbGNuKnExehcjOUSo2I5zLCf1DCd6yk5hjmc/akZTqhxAAAAAAAsfY98bfGNtyuPYQRro8P74leY1kJaKaW1WNv2Mjv2p0qNt1amcTEJS+vU9tTHZOxFssO6V5S9vHcMsBtTp504okpaSKeJTDg6e2JKKdEiibtYMem6sV9InLlyfEoo3dGlHqPruVV2sck93nW48Rm6T8mxq0kNl0WMjWdVAAAAAAAiImOD+4/sXCfW98h6AyQEBYcaBwAAAABg3Lanv6vNiIh4A/VkAwWHGgcAAAAAYNzYwP4Db68REY/Xz60cKDjUOAAAAAAAx21fe4cZHRURI9hINlBYqHEAAAAAAI7T0dF3Xr1frO+RNcpICAoINQ4AAAAAQILdL94bHRsQEW+glmyggFDjAAAAAAAk0NHRnc/cLtatHP5qEoJCQY0DAAAAAJDswIbHIsOHRMQI1IgoEoKCQI0DAAAAAJBCm9v++G1r0+uvIh8oCNQ4AAAAAAAODvc9NzqwR0SMYK0og4Qg/3GZAgAAAACcaHPrU7fMu+QLIuIN1ESG3hEREaW1Hn9daxFRymrRCbtq+69Kax2LiaMc27XzRLRTuxK72TEgsVE5d5L5cE4BsY24qcTF6FyM5RKjYjnMsJ/UMJ3rKTmGOZz9qRlOqHEAAAAAANI5uuPPx/avD9cv8PrKoyOHlES1FmtRbS+zY3+q+BVpbOGdFJOwtE5tT/3gD3uR7LDuFWUv7x0D7EalVNK0E0dUSQvpNJEJR2dPTCklWiRxFysmXTf2C4kzV46fe5Lu6FKP0fVMKrvY5B7vOtz4DN2n5NjVpIbLIsbGsyoAAAAAgLS2PvVtbUZExAjWkw3kOWocAAAAAIC0ju3bOHRwo4h4jJDyBEgI8hk1DgAAAACAm40PfcGMjoqIN1BHNpDPqHEAAAAAANyMDezv3/KUiCiv3+MNkhDkLWocAAAAAIAJbH/2TutWDj6VA/mMGgcAAAAAYAJjgwcPbnhIRJTH6zHCJAT5iRoHAAAAAGBiO/50tzk2ICKGv8bxW06BGUeNAwAAAAAwsejIwJ5X7hMR5fF6fRUkBHmIGgcAAAAAICN7Xv5FZPSIiBiBam7lQB6ixgEAAAAAyIiOju5e92Nr2+uvJiHINwYpAAAAAABk6J3Xft245KpAebPhr4iM9GsdVUpprUV0fJjW9l+V1joWE0c5tmvHQZP3He9B7GbHgMRG5dxJ5sM5BcQ24qYSF6NzMZZLjIrlMMN+UsN0rqfkGOZw9qdmOKHGAQAAAADIgjZ3PHv73NWfVh6vL1gTGTlgLWLjH12JW3hL7NXxP+OX1qntqc+/2Itkh4mIspf3jgF2o1JKa+dORI7P3F5Ip4lMODp7Ykop0SKJu1gx6bqxX0icuXJ8/Cfd0aUeo+tpU3axyT3edbjxGbpPybGrSQ2XRYyNZ1UAAAAAAFk43PfMyMBOEfH6ykR5SQjyBzUOAAAAAEA2tLnj2bu0GRURg0/lQD6hxgEAAAAAyE7/1ueGDm0SbuVAnqHGAQAAAADIkja3Pvnv3MqBfEONAwAAAACQtWP7Nhw7uFG4lQP5hBoHAAAAAGAytj55ixkdFRGvv4psIB9Q4wAAAAAATMbQ/k1Hd78kIl6DWzmQF6hxAAAAAAAmaesT9q0clWQDM44aBwAAAABgksYGDxze+kcR8RphbuXAjKPGAQAAAACYvB3P3GGa3MqBvECNAwAAAAAweWODBw6+/QfhVg7kAYMUAAAAAABOxLY/3lrTtcrrC3t9lZGRgyKitY69qLTWSqm4FqvZsV079p+873gPYjc7BiQ2KudOMh/OKSC2ETeVuBidi7FcYlQshxn2kxqmcz0lxzCHsz81wwk1DgAAAADACdLR0b2v3N+6/INeXzg6dkSbkdjCe3wpbv8Zv7RObRdR6RbJDoOKspf3jgF2o1JKa+dORJQ9qL2QThN5fEr2ol0ppZQSLZK4ixWTrhv7hcSZq9TDdzm61GN0PUXKLja5x7sONz5D9yk5djWp4bKIsfGsCgAAAADgRO15+b5o5JjwqRyYUdQ4AAAAAAAnSkdHd7/wQ+FTOTCjqHEAAAAAAHJg76sPREb6RcTwV5ENzAhqHAAAAACAXNDmjj/dJSJeH7dyYGZQ4wAAAAAA5MaB9Q+PDR0QPpUDM4QaBwAAAAAgR7S55fFvCJ/KgRlCjQMAAAAAkDNHtq8b7t8u3MqBmUCNAwAAAACQS1se/1fhVg7MBGocAAAAAIBcGtz7hnUrh8GtHJhe1DgAAAAAADm26Q9fEL5gBdPOIAUAAAAAgNwaPtB3ZNfLla3LDH9lZOSQUkprnRChlNY6pV079pa873gPYjc7BiQ2KudOMh/OKSC2ETeVuBidi7FcYlQshxn2kxqmcz0lxzCHsz81wwk1DgAAAADAVNjy+NeX3Hi31xeOjh0VHbWW4vFLa6slvl1EpVskO6x7RdnLe8cAu1EppbVzJyLKHtReSKeJPD4le9GulFJKiRZJ3MWKSdeN/ULizFXq4bscXeoxup4NZVV5Jox3HW58hu5TcuxqUsNlEWPjWRUAAAAAQO6NDewb3LdeRDxGiGxgelDjAAAAAABMic1/+IKMf/KoIhuYBtQ4AAAAAABTYmxw/+FtfxIRj6+MbGAaUOMAAAAAAEyVbU99S/gSWUwXahwAAAAAgKkyNrh/cN/bIqK8QbKBqUaNAwAAAAAwhfoe/YqIeLmVA1OPGgcAAAAAYAqN9O8YOrhFKa/yBMgGphQ1DgAAAADA1Nr2x++IiNdfQSowpahxAAAAAACm1sDuP48dO6g8PuXxkQ1MHWocAAAAAIApt/2Z74qI119FKjB1DFIAAAAAAJhqhzY/Ya76nx6vX4tHdFSU0lorpbTWcVHacd/EmBgldrNjQGKjcu4k8+GcAmIbcVOJi9G5GMslRsVymGE/qWE611NyDEs5y1M1nFDjAAAAAABMB23ufeXelpPfb/grI6OHraWv/ae9bE+3SHboT5S9vHcMsBuVUlo7dyKi7EHthXSayONTshftSimllGiRxF2smHTd2C8kzlylHr7L0aUeo2v2lVXlmTDedbjxGbpPybGrSQ2XRYyNZ1UAAAAAANNh14v3aDPiMUKivGQDU4EaBwAAAABgWpiRIzvXiYjHGyIZmArUOAAAAAAA02TrU98UEcNf4fhcBnCCqHEAAAAAAKbJ2OD+gXfeEBGPUUY2kHPUOAAAAAAA02fXCz+Q8Vs5gByjxgEAAAAAmD5Hd740emy/iChvkGwgt6hxAAAAAACm1a51/yEiXh+3ciDHqHEAAAAAAKbVwQ2PmNERpbzK4ycbyCFqHAAAAACAaaWjo/ve/I1wKwdyjRoHAAAAAGC67X3lPm2OKY9PeXxkA7lCjQMAAAAAMN3GBvcf3f2yiHh9lWQDuWKQAgAAAADA9Nv5wt0Vracoj0+LR3RURES0Y6TWTu1K7GbHgMRG5dxJ5sM5BcQ24qYSF6NzMZZLjFJKa62UyrCf1DCd6yk5hlnznIoMpKLGAQAAAACYAcf2bRgd3BsobzV8FdGx/vFiQZpFssO6V5S9vHcMsBuVUlo7dyKi7EHthXSayONTshftSimllGiRxF2smHTd2C8kzlylHr7L0aUeo2uylVXlmTDedbjxGbpPybGrSQ2XRYyNZ1UAAAAAADNBm7vX3SMiHiPkuLwHskWNAwAAAAAwMw5ueiI6dlREPEaYbODEUeMAAAAAAMwMHRnZz5fIIneocQAAAAAAZsz+t9aYkSERUd4g2cAJosYBAAAAAJgxI4e3Dx3uE27lQC5Q4wAAAAAAzKRdz96uzTGlvMrjIxs4EXx3bEEyNScOQI5p3UUSAJzAz5CPkwQAuVBDCnAiuI8DAAAAAAAUA24HKEgeFUn3khat4r5ZWot2jpr426fjY7Tkpp+sYsxpHCvpMKdgLGWmCdGiJurHMUbrlJmf4JzNbI5L5yI/ZgYX+4T9aJEJ8zNhPzqbHMpEh5/Qj3I6zKT3qWNu08fER+ckh6Z1B4dSm1zPsms/1hWe2fWs3H46Zf7zJ6tjd/khNj5npZTWOuXKie/H/cpPzY/peP0o1+sn5bynuX6UaG3PR000n3S5imb8c0OrNJ1o5/dOuuvHzOZyTX/qnY/YzPJHh5nxr57014+KXfZaT/ZHh7YuiUxPvUP+k3KVyal3zE/SYcZiUn9/aZ30q8e6g0Op27I/9dn86lHxQzvmKuH6cXyvaTHVRL+S4s6FFuf3WnbXj8u73h5Lu14kri+55yRdDtOd+kn/6Eh3/WinX8rprkPn60e5Xj8p7x37rGX4Txfn62d85g7/JHP/90Z8P2aW78E0P39SZ6Jd/sma1a+e8X6Scxg34vgvRxGtzSz/+Zf++nH6Z5s1Q2+gYvFNP/T6KszIcHTsSNzrWimlnP6NoUVZHWqtPZ7x/79/+a5aFowlvVgmBQAAAACAmRUdOXpw46Mi4jH4dhVMHvdxAAAAAABm3oG3Hqydd6HXCClv2IwMxr+kHW8IiruRzjEgsVFprTOcyYSRdkBsw+GePp3ZeJlEpYux7rVRsZtZJnFoOtdTcgyz7wmSKR5OqHEAAAAAAPLBsX0bhg5uKm9cbPjLx6LHkhbJDuteUfby3jHAblRKae3ciYiyn7KxF9LK9fFbazh7Ykqp8SerUmLSdWO/kDhz5fjsXrqjSz1G1+wqq8ozYbzrcCr2lKJWEz6hnBg2qeGyiLHxrAoAAAAAIC/sffln2oyIiPIGyAYmgRoHAAAAACAv9O94ITo2ICJeo4xsYBKocQAAAAAA8oKOjOx58cdaR5XHUB4fCUG2qHEAAAAAAPLFoc1PmJEhEfFwKweyR40DAAAAAJAvxgb3D+5fLyIer18UK1ZkhysGAAAAAJBHdj17uxkZFhGPESYbyAo1DgAAAABAHjm2f+PI4B4R8VLjQJaocQAAAAAA8ok29778U+tLZPlUDmSFGgcAAAAAIL8c3PT4+JfI+kJkA5mjxgEAAAAAyC86MnJw0+NaR5XyKm+AhCBD1DgAAAAAAHln32s/N8eOiYiXx1WQMYMUAAAAAADyzfDh7QP711e1nqo8hihDm2PJEUq0Ht/U9lacxEblGONowkg7ILYRN5W4GJ2LsVxilFJaa6VUhv2khulcT8kxzJrnVGQgFTUOAAAAAEA+2vvij8sber2+sMcImWOR5HWvKHt5b22klgDiagHiGCOiRFTSQjpN5PH1tr1oV0oppUSLJO5ixaTrxn4hcebHZ5LaVbrJxB+jay6VVeWZMN51uPEZuk/JsatJDZdFjI1nVQAAAAAA+ejo7j+bkSER8XiDZAOZoMYBAAAAAMhL2tzz8k+0joqIosyBDFDjwP9v725+HMvO+wC/L6tmRlYsKbYTOIplR0Ccz0ViIPHCSOxlECCbbIMAcTZBEO+yyz+RRTZeBHAWDmAEsBHFEawgsmVbVixL1owsWx8z0sxoer66p7+ruqq7WFUkTxaXdZtVvPcWWU2yiuTzQBBuky/fc+qQXT33B95zAQAAbqiHP/hitfNoz86jzEDGAQAAwA01PD54+PYfRERmL9KGklxCxgEAAMDN9fCNL4yG/Yjo7f6I1aCbjAMAAICb69n9758+vR92HmUGMg4AAAButA++/l9LGYWdR7mMjAMAAIAb7cn736/Wk0kAAB+MSURBVBgNnoadR7mMjAMAAIAbbTQ4/ujPfiPsPMplZBwAAADcdA/f/NLZzqO+ykErARgAAAA33enT+0eP3/lLf+Xv9XZeHp5ERImMUsbPlvpowvkHs7Gm0aWVdcHZwcRUJmrKIsbqqMnMUkpmzthnuqwsekqNZdU8l7EC02QcAAAArIH3vvJf/u6//NXMXm/342X4rETWp/fVwXQEMJEFRGNNREbkhRPplsrn59v1SXtmZmaUiPMvqWra2tRPnJ/585lMt2qbzOTP2Ll4WaU8l9Z3DjeeYfeUGltdabg5amquVQEAAGANPHvw5unRg4jo7f6I1aCRjAMAAIB1UEZ3Xvv1sPMo7WQcAAAArIdHb35xNDwJO4/SQsYBAADAehgNjvff/2pE9HZebty9gi0n4wAAAGBt3P7GfytlFBG9nY9ZDS6QcQAAALA2+o9vnRzeCTuP0kTGAQAAwDr54Gu/GhGZvbTzKOfJOAAAAFgne7e+erbzqK9ycI6MAwAAgLVSRg9e/98R0eu97KyWST4NAAAArJnb3/zvZzuPvmI1qLl4CQAAgDUz7O89ffDGj/7Vv7+z+/Hh4FkpZbrm/IPZWNPo0sq64OwgY+olZbbxZqlqq8nMUkpmzthnuqwsekqNZdU8l7EC02QcAAAArJ/bf/prf/tf/OeIyN5LGcPGCGAiC3j+xwtVEXnhRLql8vn5dn3SnpmZGSXi/EuqmrY29RN1QnFhJtOt2iYz+TN2rlZWKc+l9Z3DjWfYPaXGVlcabo6ammtVAAAAWD8HH746PH0WETs7dh5lTMYBAADAWrr3nd+KiN7Oy5aCiowDAACAtXT3279VHWRPzEGEjAMAAIA1Nezv9/ffj4he72NWg5BxAAAAsL7uffdzEZG93cYNO9k2Mg4AAADW1YPvf6E6yN4rVgMZBwAAAOuqnB49e/TDiOjtuFwFGQcAAADr7N53fjMiMnuRO1Zjy8k4AAAAWGOP3vq9UkYRkfmS1dhyMg4AAADWWBkc9/duRcTO7setxpaTcQAAALDebr/6axaBiNi1BAAAAKy1/fe/XkaD7J07wy2lTPwpz/+xy6WVdcHZQcbUS8ps481S1VaTmaWUzJyxz3RZWfSUGsuqeS5jBabJOAAAAFhvZXB89Pjtj//E37kQAUxkAc//eCEoiMgLJ9Itlc/Pt+uT9szMzCgR519S1bS1qZ+oE4oLM5lu1TaZyZ+xc4WySnkure8cbjzD7ik1trrScHPU1FyrAgAAwNr78BsuV0HGAQAAwPo7vP3N0ejUOmw5GQcAAABrbzQ43nvny9Zhy8k4AAAA2AR3v/ObFmHLyTgAAADYBM/uvWERtpyMAwAAgI1QRtZgy8k4AAAAgE0g4wAAAAA2gYwDAACATZQ71mDbyDgAAADYxNPd3isWYdvsWgIAAAA2T2/nY8PB07M/ZSllxhdeWlkXnB1kTL2kzDbeLFVtNZlZSsnMGftMl5VFT6mxrJrnMlZgmowDAACAzZS9l6IMMrOUqLKA6ZKIvHAi3VL5/Hy7PmnPzMyMEnH+JVVNW5v6iTqhuDCT6VatP+DZU91zrppPtmqr7xxuPMPuKTW2utJwc9TUXKsCAADAZur1XrYI2/WOWwIAAAA284x352MWYbvecUsAAADAxkpbNGwRGQcAAAAbaDQ6DZerbBkZBwAAABuoDPvhcpUtI+MAAABgA91/47fHR7ljNbaEjAMAAIAN9PCNL1SXq2S6XGVbyDgAAADYQP29d0+PHoTLVbaJjAMAAIDN9OB7/2t85HKV7SDjAAAAYDPt3fqKu6tsFRkHAAAAm8nlKttm1xIAAACwqe5/73Of+flfiYgSvSjDWV5SSpmx4OwgY+ol5dIus43VUZOZpZTMnLHPdFlZ9JQay6p5LmMFpsk4AAAA2Fj7t/7fT/2jf5e9l3o7L5dhfzooiMgLJ9JVatBxvl2ftGdmZkaJOP+SqqatTf1EnVBcmMl0q7bJ1E91z7lqPtmqrb5zuPEMu6fU2OpKw81RU3OtCgAAABtr4nKVV6zGxpNxAAAAsMnuv+7uKttCxgEAAMAm23vnK6PhSURk7yWrsdlkHAAAAGyy/t67p0f3w+UqW0DGAQAAwIa7/93PjY9crrLRZBwAAABsuP33vjoaHofLVTadjAMAAIAN19979/ToYbhcZdPJOAAAANh8LlfZBjIOAAAANp/LVbaBjAMAAIDN19+75XKVjbdrCQAAANgGd77565/9pf8UESV6UYZtZaWU7j51wdlBxtRLyqVdZhuroyYzSymZOWOf6bKy6Ck1llXzXMYKTJNxAAAAsBX2bn159E/+Y2/nld7Oy2XYr4KCiLxwIl2lBh3n2/VJe2ZmZpSI8y+patra1E/UCcWFmUy3aptM/VT3nKvmk63a6juHG8+we0qNra403Bw1NdeqAAAAsBWGx0/6e++Fy1U2l4wDAACAbXH/e/9zfOTuKptIxgEAAMC2ePzOH7q7ygaTcQAAALAthsdPjvc/CBnHhpJxAAAAsEXuv/65iMjsNe7xyVqTcQAAALBFHr39pTIahK9ybCIZBwAAAFtkeLx/cngnIrL3stXYMDIOAAAAtsv9Nz4fEdlza5VNI+MAAABguzx44/OljCIictdqbBIZBwAAANtleLx/cng3bMmxcURWAAAAbJ1Hb3/x0z/3y72dlwaDowtPlVK6X1sXnB1kTL2kXNpltrE6ajKzlJKZM/aZLiuLnlJjWTXPZazANBkHAAAAW+fuX/yPT//cL0e1K0cZTZ5IV6lBx/l2fdKemZkZJeL8S6qatjb1E3VCUT3ceC/b8zWtrbrnXDWfbNVW3znceIbdU2psdaXh5qipuVYFAACArTPsPz49ehQRaUuODSLjAAAAYBs9eut3IyJ3bMmxOWQcAAAAbKN73/6NiMjsNV4kwjqScQAAALCNTg7vDU8OIyJ7LlfZEDIOAAAAttT+e18NGccGkXEAAACwpR58/3dCxrFBZBwAAABsqYMP/7SUUURE7liNDSDjAAAAYHv1H98KX+XYFDIOAAAAtld1B9nezsuWYgPIOAAAANheD9/8wvgonSCvPW8hAAAA2+v06b3h6VG4XGUjeAsBAADYak8+fPXHPvuLvd5Lw+FJRJRSuuvrgrODjKmXlEu7nG91hZrMLKVk5ox9psvKoqfUWFbNcxkrME3GAQAAwFZ79Ob/+bHP/mL2diKyOifvPt+uT9ozMzOjRJx/SVXT1qZ+ok4oqoer0RuHa5tM/VT3nKvmk63a6juHG8+we0qNra403Bw1NdeqAAAAsNWevP8nZTSMiOy5g+x6k3EAAACw1UaD/snT+xGR7q6y5mQcAAAAbLvH7/xBRPRsO7rmZBwAAABsu713fn985A6y68ybBwAAwLZ7eu+7o+FpRGT6Kscak3EAAACw9cro6OGbEZEuV1lnMg4AAACIh29/MdxaZc3JOAAAACAO3v9aKaOIiBRzrCsZBwAAAER//90y3pJDxrGuZBwAAAAQUUb7H3w9IsKWHGvLOwcAAAAREY/f/r0f++wvZfZGJSJKW1kp5fxBRinTNWWGEWepaqvJzFJKZs7YZ7qsLHpKjWXVPJexAtNkHAAAABARcfjRt8pomL2d7O1GGbSdb9cn7ZmZmVEiMqdrzj/2XP1EnVBUD0dk23BtE66f6qipm0+2aqvvHG48w+4pNba60nBz1NRcqwIAAAAREadP7w76++EOsmtLxgEAAABj++99JWQca0vGAQAAAGOPfvj7zpfXl/cMAAAAxp7df72MTiMieu4gu35kHAAAADA2PN4/PrgdLldZTzIOAAAAeO7xW78bEZm+x7F+ZBwAAADw3P77Xy1lFBEh5lg3Mg4AAAB47ujR2zEahK9yrCEZBwAAADw3GvQP7383IsKWHOtGxgEAAADnPH77SxGR2YtIq7FGZBwAAABwzsHtV0sZRtiSY8344g0AAACc0997twxPc3cne7ujwemFZ0sp5w8yzh6ZrCkzDDRLVVtNZpZSMnPGPtNlZdFTaiyr5rmMFZgm4wAAAIALZ9Wjw3vf+eRf/8fZ261ChMnz7fqkPTMzM0pEU022XOZSP1EnFNXDjdfFnK9pbdVRUzefbNVW3znceIbdU2psdaXh5qipuVYFAAAALnrw+uecOK8dbxUAAABc9PTut8voNCKiZ0uOtSHjAAAAgItODu+W0TAi0h1k14eMAwAAABo8/MHvRES6tcr6kHEAAABAg71bfzg+SufO68H7BAAAAA2e3X9jvCWHr3KsCRkHAAAANBgc7w/6++FylfUh4wAAAIBmD7//O2Hb0fUh4wAAAIBme+9+2enzGvEmAQAAQLOjR2+X0SAioudylTXg+zYAAADQbDTonxx+9MonPxPRK6VUD04dZJw9Uitl6qEms1S11WRmKSUzZ+wzXVYWPaXGsmqey1iBaTIOAAAAaLV36ys/+Q/+VW/npdHouDrfrk/aMzMzo0RkXjgnr55pVD9RJxTVwxHZeHrf2miiVUdN3XyyVVt953DjGXZPqbHVlYabo6bmWhUAAABo9eAHn584yedGk3EAAABAq/7jd0oZRkS4g+yNJ+MAAACAdmXU338/ItK2ozeejAMAAAC67L/7RxG+x7EG7Dm6lkbFGwcsWCl/0yIAL/A75N9bBGCDPXjj83/tH/6bzF6xFjeb73EAAABAl+P990oZRfgqx00n4wAAAIBL9PduRUTKOG42GQcAAABc4tFb/zciomffgBvN27M2ejkoUfKyGzJfqClRmqsuv7HzZE2JxfSZq2a0wrEu/JhLGCtHLSUl8rI+jTWlTM38Bec8mufnKotYn9EMH/xL+5SIS9fn0j5lnjWMy378c32y6cds/7v8fG1n+/u+kDUcNdVMv8udfapP+Gyf5+z67TT775+5fvaOX2LjOWdmKWXqkzPZp/uTP70+o8bPT3Z+fqbe95bPT0Yp9Xzysvm0rdVw5t8bJVualOa/O22fn9E8H9f2t775Jx7N+atjNPM/Pe2fnzz72Jdy1V8dpfpIzPrWN6z/hbWa5a1vXJ8LP+ZZzfS/X6W0/9Mz71s/zz89OTl041qd+/w0/l0rMcrL/kmaeC9KNP9dm+/z0/G3vh6rdH5IOp/qXpO2NWx71678q6Pt81Oa/lFu+xw2f36y8/Mz9Xenftdm/E+X5s/PeOYN/ 3 GIỚI THIỆU GIỚI THIỆU  hình nhân quả  hình chuỗi thời gian Hai loại hình dự báo chính: 2 NỘI DUNGNỘI DUNG  Giới thiệu xây dựng Hình ARIMA (Auto-Regressive Integrated ... 5 MÔ HÌNH ARIMA HÌNH ARIMA  Tính dừng (Stationary)  Tính mùa vụ (Seasonality)  Nguyên lý Box-Jenkin  Nhận dạng hình ARIMA  Xác định thông số hình ARIMA  Kiểm định về hình ... 12 NHẬN DẠNG HÌNHNHẬN DẠNG HÌNH Tìm các giá trị thích hợp của p, d, q. Với  d là bậc sai phân của chuỗi được khảo sát  p và q sẽ phụ thuộc vào SPAC = f(t) và SAC = f(t)  Chọn hình AR(p)...

Ngày tải lên: 02/04/2014, 21:59

26 1,4K 5
Tài liệu Tiểu luận " MÔ HÌNH EOQ TRONG QUẢN TRỊ DỰ TRỮ " doc

Tài liệu Tiểu luận " MÔ HÌNH EOQ TRONG QUẢN TRỊ DỰ TRỮ " doc

... đơn vị / năm thay vì một tỷ lệ, một hình khác có sẵn cho máy tính của EOQ (cột F - Tôi trong hình 3-1) Lưu ý rằng đơn giá là không cần thiết trong hình này thay thế 3,2 EOQ với backorders ... tính từ một hình dự báo. Các căn bậc của MSE của lỗi dự báo từ một trong những hình làm mịn trong Chương 2 là một độ lệch chuẩn gần đúng nhu cầu leadtime nếu leadtime là một trong những ... tính của EOQ (cột F - Tôi trong hình 3- 1) Lưu ý rằng đơn giá là không cần thiết trong hình này thay thế 3,2 EOQ với backorders (EOQBACK) Backorders được phổ biến trong hàng tồn kho được...

Ngày tải lên: 26/01/2014, 11:20

15 6K 22
Tài liệu Một vài kết quả về những quan hệ trong mô hình cơ sở dữ liệu. pptx

Tài liệu Một vài kết quả về những quan hệ trong mô hình cơ sở dữ liệu. pptx

... Armstrong relations and inferring func- tional dependencies in the relational datamodel, Computers and Mathematics with Applications 26(4) (1993) 43-55. [101 Demetrovics J., Thi V. D., Armtrong ... relation, functional dependencies and strong dependencies, Comput. and AI 14 (3) (1995) 279-298. [111 Man n ila H., Raiha K. J., Design by example: an application of Armstrong relations, J. Comput. Syst. ... 17, S.1 (2001), 31-34 SOME RESULTS ABOUT RELATIONS IN THE RELATIONAL DATAMODEL VU DUC TEl Abstract. We introduce the concepts of minimal family of a relation. First, we show the algorithm finding...

Ngày tải lên: 27/02/2014, 06:20

4 487 0
Báo cáo " MÔ HÌNH CƠ SỞ DỮ LIỆU MỜ TRONG HỆ THỐNG THÔNG TIN ĐỊA LÝ (GIS) " pot

Báo cáo " MÔ HÌNH CƠ SỞ DỮ LIỆU MỜ TRONG HỆ THỐNG THÔNG TIN ĐỊA LÝ (GIS) " pot

... tượng không gian dựa vào hình dữ liệu đang sử dụng trong các hệ thống thông tin địa lý. Mô hình dữ liệu không gian được sử dụng trong bài viết này là hình raster. Trong đó, tại mỗi phần ... đồng thời có thể khai thác được các phép phân tích không gian trong GIS. hình 1:n Hình 2: hình cơ sở dữ liệu mờ trong GIS 1:n 1:n ĐỐI TƯỢNG KHÔNG GIAN - R1 Shape_SO FID BIẾN NGÔN ... dựa trên hình cơ sở dữ liệu mờ đã tả trong mục 3.1 và các phép chọn, chiếu, kết nối, kết nối không gian. Bên cạnh đó còn khai thác các khả năng của hệ thống thông tin địa lý trong việc...

Ngày tải lên: 11/03/2014, 06:20

8 813 2
BÁO CÁO " XÂY DỰNG MÔ HÌNH ARIMA CHO DỰ BÁO KHÁCH DU LỊCH QUỐC TẾ ĐẾN VIỆT NAM " doc

BÁO CÁO " XÂY DỰNG MÔ HÌNH ARIMA CHO DỰ BÁO KHÁCH DU LỊCH QUỐC TẾ ĐẾN VIỆT NAM " doc

... hiệu quả các tiềm năng du lịch, tạo dấu ấn tốt trong lòng du khách, khắc phục những rủi ro trong kinh doanh dịch vụ du lịch, mục đích của bài viết này là xây dựng một hình ARIMA phù hợp để ... vì ngành du lịch là ngành chịu nhiều rủi ro. Tuy vậy, mô hình ARIMA có thể dùng để dự báo, song chưa phải là tối ưu, bởi vì sự phụ thuộc tronghình được giả định là tuyến tính. Trong thời ... Box-Jenkins để xây dựng hình ARIMA cho dự báo lượng khách quốc tế đến Việt Nam dựa trên số liệu công bố hàng tháng của Tổng cục Du lịch Việt Nam. Kết quả cho thấy trong số các hình ước lượng thử...

Ngày tải lên: 24/03/2014, 23:21

7 955 9
Tiên đề hóa các phụ thuộc đa trị mờ trong mô hình cơ sở dữ liệu mờ. potx

Tiên đề hóa các phụ thuộc đa trị mờ trong mô hình cơ sở dữ liệu mờ. potx

... mer. Cac tac gia dil. du& apos;a ra mot t%p lu%t suy d[n xac dang v a day dil de' co the' d[n ra them cac phu thuoc t ir met t%p cac phu thuec da trj mer dil. du- oc biet. Chung toi so rhg ... toi so rhg mot ket qui quan tro ng m a cac tac gia bai bao dung de' chirng minh tinh xac dang va tinh day dii cda cac lu%t suy d[n dil. duo-c ph at bie'u chira chinh xac (Bo' de 3.1 ... [1)). Chirng minh tinh xac dang cd a [1) con chu'a day dii va doi ch6 du& apos;o'ng nhu- khong ch~t che ve logic. Trong bai bao nay chung toi chinh xac hoa lai Ht qui noi tren va de xuat...

Ngày tải lên: 04/04/2014, 04:20

7 427 0
Một số giải pháp cơ bản nhằm khai thác bản sắc văn hóa trong du lịch VN.doc

Một số giải pháp cơ bản nhằm khai thác bản sắc văn hóa trong du lịch VN.doc

... văn hoá trong kinh doanh du lịch ở Việt Nam nh thế nào ? Muốn phát triển du lịch ở nớc ta phải đa ra những sản phẩm hàng hoá và dịch vụ du lịch đặc trng riêng. Làm sao khi nói đến du lịch Việt ... Nam: Nguồn tài nguyên du lịch là điều kiện quyết định để phát triển du lịch. Đối với Việt Nam, một nớc du lịch cha phát triển điều này lại càng quan trọng. Trong các nguồn tài nguyên du lịch Việt Nam, ... với du lịch Việt Nam vấn đề khai thác bản sắc văn hoá dân tộc trong sự phát triển du lịch, trong mấy năm gần đây rất đợc Đảng và Nhà nớc quan tâm. Mong muốn của du khách khi thực hiện chuyến du...

Ngày tải lên: 28/08/2012, 10:37

21 1K 5
Những vấn đề cơ bản trong du lịch

Những vấn đề cơ bản trong du lịch

... khác nhau: - Du lịch thiên nhiên - Du lịch dựa vào thiên nhiên - Du lịch môi trường - Du lịch đăc thù - Du lịch xanh - Du lịch thám hiểm - Du lịch bản xứ - Du lịch có trách ... tế + Du lịch nội điạ 2.3.2 Căn cứ vào nhu cầu đi du lịch của du khách + Du lịch chữa bệnh + Du lịch nghỉ ngơi giải trí + Du lịch thể thao + Du lịch công vụ + Du lịch tôn ... giáo + Du lịch khám phá + Du lịch thăm hỏi + Du lịch quá cảnh 2.3.3 Căn cứ vào phương tiện giao thông + Du lịch bằng xe đạp + Du lịch tàu hỏa + Du lịch tàu biển + Du lịch ô...

Ngày tải lên: 30/08/2012, 23:14

55 4,9K 10
Một số giải pháp mở rộng thị trường du lịch nội địa của Công ty cổ phần đầu tư và phát triển du lịch VINACONEX(VINACONEX – ITC).doc

Một số giải pháp mở rộng thị trường du lịch nội địa của Công ty cổ phần đầu tư và phát triển du lịch VINACONEX(VINACONEX – ITC).doc

... Kim Tuyến - Lớp Kinh tế phát triển 47A _ QN 36 Sản phẩm du lịch Khách du lịch Công ty du lịch Đại lý du lịch bán buôn Đại lý du lịch bán lẻ Đại lý chi nhánh điểm bán 1 2 3 4 5 6 7 nhiều ... của du lịch thế giới hiện nay,khách du lịch tự do phát triển và khách du lịch đi theo tour trọn gói giảm dần. Theo các nhà khảo sát điều tra,khách du lịch tự do chiếm tới 60% tổng khách du lịch. Với ... thị trường du lịch.  Đặc điểm chung của thị trường du lịch. Đặc điểm của thị trường du lịch là nơi chứa tổng cung và tổng cầu. Trên thị trường hoạt động trao đổi du lịch diễn ra trong một không...

Ngày tải lên: 03/09/2012, 10:28

68 2,8K 29

Bạn có muốn tìm thêm với từ khóa:

w