... 3 ý trên Câu 59:Trong DN nhân vật trung gian là Bài tập trắc nghiệm Quản trị doanh nghiệp Trần Bảo Loan - 16 - http://www.ebook.edu.vn Câu 90: Tìm ra thực chất của vấn ... lượng Câu 11 0: Đặc điể m cơ bản của cấu trúc tổ chức cho khách hàng: A. Hoạt động tập trung B. Hoạt động phi tập trung C. Hoạt động phân nhánh D. Hoạt động phân tán Câu 11 1: Cấu trúc ... Đang sửa chữa vừa và lớn do bộ phận sửa chữa của doanh nghiệp đảm nhận D. Hình thức tập trung nhiều bộ phận bị hư hỏng tại cùng 1 lúc và doanh nghiệp tiến hành sửa chữa Câu 209: Khi xác định...
Ngày tải lên: 12/12/2013, 20:15
... VAO TP? A. ĐÚNG B. SAI BÀI TẬP DẠNG DỄ Hãy trả lời cho các câu hỏi sau: a. Hãy phân biệt doanh nghiệp sản xuất và doanh nghiệp thương mại? b. Ba yếu tố chính của doanh nghiệp sản xuất là gì? c. ... ĐỒNG NHAU? A. ĐÚNG B. SAI BÀI TẬP DẠNG DỄ MỌI DOANH NGHIỆP SẢN XUẤT ĐỀU CÓ 3 LOẠI SẢN PHẨM TỒN KHO CHÍNH LÀ NVL, SPDD, TP? A. ĐÚNG B.SAI BÀI TẬP DẠNG DỄ NHỮNG DOANH NGHIỆP HÀNG KHÔNG, VỚI TỶ ... B.SAI BÀI TẬP DẠNG DỄ KHI PHÂN TÍCH TÍNH CÁCH Ứng XỬ CỦA CHI PHÍ NÊN CHÚ TRỌNG VÀO TỔNG ĐỊNH PHÍ TÍNH CHO ĐƠN VỊ SP? A.ĐÚNG B.SAI BÀI TẬP DẠNG DỄ CHI PHÍ CƠ HỘI LÀ CHI PHÍ MÀ DOANH NGHIỆP...
Ngày tải lên: 27/06/2014, 09:20
BÀI TẬP LÝ THUYẾT KẾ TOÁN DOANH NGHIỆP docx
... Nợ TK 11 1 / Có TK 311 12 . Nợ TK 11 1 / Có TK 411 13 . Nợ TK 11 1 / Có TK 14 1 14 . Nợ TK 311 / Có TK 11 2 15 . Nợ TK 3 31 / Có TK 311 16 . Nợ TK 15 2 / Có TK 11 BÀI 14 : Tại 1 DN trong kỳ có các nghiệp ... 211 / Có TK 411 4. NợTK 11 1 / Có TK 13 1 5. Nợ TK 632 / Có TK 15 5 6. Nợ TK 642 / Có TK 11 1 7. Nợ TK 14 1 / Có TK 11 1 8. Nợ TK 334 / Có TK 11 1 9. Nợ TK 4 21 / Có TK 411 10 . Nợ TK 4 21/ Có TK 334 11 . ... nghiệp 9 BÀI TẬP LÝ THUYẾT KẾ TOÁN DOANH NGHIỆP (Dành cho SV chuyên ngành Kế toán Doanh nghiệp) Các bài tập sau đơn vị tính : 1. 000 đồng BÀI 1: Tình hình tài sản của một doanh nghiệp vào ngày 1- 1-2008...
Ngày tải lên: 05/07/2014, 15:20
Bài tập lý thuyết kế toán doanh nghiệp ppsx
... 1. 000 đồng) I. Số dư đầu kỳ của các tài khoản ngày 1/ 7/2008 như sau: 1. TK156: 456.800 8.TK 111 : 21. 000 2.TK4 21: 12 5.000 9.TK 211 : 2.234.000 3.TK3 31: 19 6.500 10 .TK 112 : 985.000 4.TK 311 : 86.000 11 .TK 414 : ... 1. 424.000 3.TK155: 354.000 10 .TK3 31: 16 5.500 4.TK 311 : 46.600 11 .TK 411 : X 5.TK3 41: 246.000 12 .TK157: 25.000 6.TK4 41: 43.000 13 .TK 214 : 13 2.600 7TK 11 2: 875.400 II. Trong tháng 10 có một số nghiệp vụ kinh tế ... tháng 10 /2007 có tài liệu sau: (đơn vị tính: 1. 000 đồng) I. Số dư đầu kỳ của các tài khoản ngày 1/ 10/2007 như sau: 1. TK 111 : 18 .000 8.TK152: 564.000 2.TK1 31: 98.900 9.TK 211 : 1. 424.000 3.TK155:...
Ngày tải lên: 05/07/2014, 15:20
Hệ thống câu hỏi trắc nghiệm kế toán doanh nghiệp có đáp án
Ngày tải lên: 30/10/2014, 17:01
Bài giảng điện tử: Kế toán doanh nghiệp 2 (Chương 6)
... 334, 338, 335, 11 1, 11 2 …. 32 1. 5 .1- Quỹ tiền lương: Về phương diện hạch toán, tiền lương được chia làm 2 loại: - Tiền lương chính - Tiền lương phụ 43 1. 5.4- Quỹ Bảo hiểm thất nghiệp Đối tượng ... thưởng có tính chất thường xuyên… 1. 5 .1- Quỹ tiền lương: gồm 48 1. 6- Kế toán tổng hợp tiền lương và các khoản trích theo lương 1. 6 .1- Tài khoản sử dụng: Kế toán tổng hợp tiền lương và các khoản ... thuật (chất lượng) đã quy định và đơn giá tiền lương tính cho 1 đơn vị sản phẩm, công việc và lao vụ đó. 11 1. 3- Nhiệm vụ kế toán tiền lương và các khoản trích theo lương - Tổ chức ghi chép,...
Ngày tải lên: 23/10/2013, 22:15
Bài tập trắc nghiệm pH toàn tập - hay
... 1, 5. C. 1. D. 3 . Câu 11 : Dung dịch NaOH 0,001M có pH là A. 11 . B. 12 . C. 13 . D. 14 . Câu 12 : Hòa tan hoàn toàn 0 ,1 gam NaOH vào nước thu được 250ml dd có pH là A. 2. B. 12 . C. 3. D. 13 . Câu 13 : ... 2. B. 1, 5. C. 1. D. 3 . Câu 11 : Dung dịch NaOH 0,001M có pH là A. 11 . B. 12 . C. 13 . D. 14 . Câu 12 : Hòa tan hoàn toàn 0 ,1 gam NaOH vào nước thu được 250ml dd có pH là A. 2. B. 12 . C. 3. D. 13 . - ... [OH - ] của dd này là A. pH = 2; [OH - ] =10 -10 M. B. pH = 3; [OH - ] =10 -10 M. C. pH = 10 -3 ; [OH - ] =10 -11 M. D. pH = 3; [OH - ] =10 -11 M. Câu 10 : Dẫn 4,48 lít khí HCl (đktc) vào 2 lít...
Ngày tải lên: 26/10/2013, 10:11
BÀI TẬP TRẮC NGHIỆM HKI TOÁN 12(CÓ ĐÁP ÁN)
... số 9 1 của 3 bằng: A. 4 1 − B. -1 C. 4 1 D. 2 1 Câu 10 . Số điểm cực trị của hàm số 13 3 ++= xxy là: A. 1 B. 0 C. 2 D. 3 Câu 11 . Hàm số 1 12 + +− = x x y nghịch biến trên: A. }1{ \ − R ... A, B, C, S có bán kính bằng: 51. A 52. C 53. A 54. C BÀI TẬP TRẮC NGHIỆM HỌC KÌ I TOÁN 12 BAN CƠ BẢN Câu 1. Phương trình 2log 3 = x có nghiệm x bằng: A. 1 B. 9 C. 2 D. 3 Câu 2. Một hình ... bằng: A. 6 V B. 4 V C. 8 V D. 12 V Câu 20. Giá trị 5 4 44 viết dưới dạng lũy thừa là: A. 4 1 4 B. 3 1 4 C. 3 4 4 D. 4 3 4 Câu 21. Hàm số x x y − + = 1 2 đồng biến trên: A. ) ;1( +∞− B. }1{ \R C. R D. )1; ( −∞ ...
Ngày tải lên: 09/11/2013, 10:11
Bài tập trắc nghiệm ôn thi tốt nghiệp môn Sinh 12 potx
... Pitêcantrôp: A)500-600 cm3 B)900-950 cm3 C)850 -12 20 cm3 D )14 00 cm3 Câu 26Chiều cao của người tối cổ Pinantrôp: A )17 0 cm B )12 0 -14 0 cm C )15 5 -16 6 cm D )18 0 cm Câu 27Hộp sọ của Xinantrôp giống Pitêcantrôp ... A)Châu Úc B)Nam Phi C)Java(Inđônêxia) D)Bắc kinh(Trung Quốc) Bài tập trắc nghiệm ôn thi tốt nghiệp môn Sinh 12 địa y chuẩn bị là điểm đáng chú ý nhất của đại…….(cổ sinh, trung ... sống cách đây: A)8 vạn đến 1 triệu năm B)Từ 5-70 vạn C)Khoảng 3 triệu năm D)Từ 5-2 vạn năm Câu 39Chiều cao của người cổ Nêandectan: A )17 0 cm B )12 0 -14 0 cm C )15 5 -16 6 cm Câu 8Vượn và đười...
Ngày tải lên: 19/03/2014, 15:20
BAI TAP TRAC NGHIEM ON THI TOT NGHIEP 2010
... C 2 H 6 , C 3 H 3 , C 4 H 10 , C 6 H 14 B. C 2 H 6 , C 5 H 12 , C 8 H 18 C. C 3 H 8 , C 4 H 10 , C 6 H 14 D. C 2 H 6 , C 5 H 12 , C 4 H 10 , C 6 H 14 E. Tất cả đều sai. Câu 11 : Công thức phân tử C n H 2n-4 ... có 1, 28g Cu. Giá trị của m là: A. 1, 28g B. 9,92g C. 11 ,2g D. 2,28g E. Kết quả khác Câu 16 : Giả thiết nh câu trên (câu 15 ) Nếu hiệu suất điện phân là 10 0% thì thời gian điện phân là: A. 11 58s ... 3 ,15 D. 3,59 E. Kết quả khác Câu 13 : Thời gian điện phân: A. 19 phút 6s B. 9 phót 8s C. 18 phót 16 s D. 19 phót 18 s E. Kết qủa khác Câu 14 : Cho Ba vào các dd sau: X 1 = NaHCO 3 , X 2 = CuSO 4 ,...
Ngày tải lên: 04/07/2014, 14:00
BAI TAP TRAC NGHIEM ON THI TOT NGHIEP
... worse than 10 . Have you finished …… the letter?. A. write B. to write C. writing D. to writing 11 . The …… we study , the more prizes we receive. A. better B. best C. worse D. worst 12 . …… the ... interview. A B C D 10 . Usually towards the end of the interview, the interviewer will ask you if you had any questions. A B C D III/ Choose the answer that best completes each sentence. 11 / My father ... Most D. Most of 13 . You try to study hard to …… pace with your classmates. A. keep B. take C. catch D. hold 14 . He spent a lot of money……his new car. A. to B. for C. on D. by 15 . Why are these...
Ngày tải lên: 07/07/2014, 11:00
Bài tập trắc nghiệm môn Toán cao cấp A2 doc
... '' 22y ' 12 1y 0 a) = + 11 x 1 2 y e (xC C ) b) − = + 11 x 1 2 y e (xC C ) c) = + 11 x 1 1 2 y C e (C cos x C sin x) d) = + 11 x 1 2 y (C C )e Bài tập trắc nghiệm Toán A2–CD – 2009 ... c) 1 1 1 1 0 1 x 0 1 y I dx f(x, y)dy dy f(x, y)dx. − − = = ∫ ∫ ∫ ∫ d) 1 1 x 1 1 y 0 0 0 0 I dx f(x, y)dy dy f(x, y)dx. − − = = ∫ ∫ ∫ ∫ Bài tập trắc nghiệm Toán A2–CD – 2009 Trang 10 a) ... = 11 11 11 11 (22) (22) x y y x z z 3 . Bài tập trắc nghiệm Toán A2–CD – 2009 Trang 3 Câu 28. Cho hàm = + − − 3 3 z x y 12 x 3y . Hãy chọn khẳng định đúng? a) z đạt cực đại tại M(2; 1) ;...
Ngày tải lên: 11/07/2014, 16:20
Bài tập trắc nghiệm, tự luận môn nghiệp vụ ngân hàng thương mại có đáp án
... lời. 38 2 014 Bài tập trắc nghiêm ,bài tập và bài giải MÔN: NGHIỆP VỤ NGÂN HÀNG THƯƠNG MẠI Câu 1: Thế nào là nguồn vốn của NHTM? A: Là toàn bộ nguồn tiền tệ được NHTM tạo lập để cho vay, kinh doanh ... 11 1: Những căn cứ để phân tích hoạt động kinh doanh NH là gì? A. Các cơ chế, chính sách có liên quan đến hoạt động kinh doanh của NH. B. Các số liệu thống kê, kế toán (bảng cân đối kế toán, kết ... dịch. Kết thúc thanh toán được thực hiện trong vòng 2 ngày làm việc kể từ ngày ký kết hợp đồng mua bán giao ngay. D. Là nghiệp vụ mua bán ngoại tệ theo tỷ giá giao ngay. Kết thúc thanh toán trong...
Ngày tải lên: 12/07/2014, 11:21
BÀI TẬP TRẮC NGHIỆM ÔN THI TỐT NGHIỆP VÀ ĐẠI HỌC pot
... phương tốc độ góc của vật BÀI TẬP TRẮC NGHIỆM ÔN THI TỐT NGHIỆP VÀ ĐẠI HỌC HTK- 11 A.T=0,63s;A =10 cm B.T=0,31s;A=5cm C.T=0,63s;A=5cm D.T=0,31s;A =10 cm Câu 12 1 : Dưới tác dụng của lực có ... treo của con lắc là 11 2cm. Tính độ dài l 1 và l 2 của hai con lắc A.l 1 =16 2cm;l 2 =50cm B.l 2 =16 2cm;l 1 = 50cm C. l 1 =14 0cm;l 2 =252cm D.l 2 =14 0cm;l 1 =252cm Câu 12 3 : Một con lắc đơn ... src=" 112 XZJa6ZdWqpu7Pvn6QkunsbHDCH/JTFPPjlNoEmOWpCV4y+x8pA1i/oXttZN1HTWtPS2dJnzeChcn3TR/5oqM2VOslDbpjVUNndXN3Wjzwp4kqZX8uZzHSfvgwLm2rgHUhEouzUiNh634i068ZZuTzbdpuoVbQ5MYk7Nglh8PTsh+cYpSyaUrMmbfODfh+mtjvqOyo4+Mjnhd8H6nmYaPVV11FgRPtz3lTfjRlpmmXpQUd/2sqKzrE/zIf5AEhXZBcoIyb9HszLT4lISo74rsGOQRX3Q4nZ+V1b204xjbAyq59LWfr+bD6Qz9lqKnP0L/LXlxg7ekv+Xtwzgr3/pw3qQ2AQA49eaPvDoJ3tSd4ngmOUH5/EN5/E+FvRVNz2w77MtwMjb9A 31/ YWPeyswkr0j8l/+zD7F4thH9+p5lfpca+XSbmBz+K+X3srei6a+fliOOMxmz1KQ3/vadw9xrsUmbce+K+fxZDz7JyQnKj3673ttRCyZOKF7jrzMylifvzPKKYn0R9//6afmOwzUcnXn2/puzNTN9Edq27aniaAKeVc/88Ga/az4e2ebk8e3q5q7/2n6Um26fKs5el5Pm+9l8rKb9uX99w7ENi/M0T96Z9Z27GXv54+M42Rx4+T6vBF9inwomA7hNlvzkbeJHb48Vfx1PvrAgyH+4mbbvW56nBOXjHE5lEXk8pVb/ajv3UPvN1uLndr61uwr8Hy4my+jaZ3ZwC4sAgMYOY/FzO6ubu4S18uWJxilDy97aXVX09EfcjB6OaONLJf9nV9/hdG55+/Az2w5z8B3fZ+mt3VXFz+30uBZv6k6tfWaHyTIqoInGDiONHExSMfRb7t26i1tYhIzlmW2HX/74ODSAmdT+rP7Vdm5Jrt9s/dmre7e8fVhYZ6qbu4qf28ndBACgok5f9PRHgvlDoJW3dldtfKnEI92+tOPY43//ypdVHrGNb3n78M9e3cu9DXccrln9q+3CNshVLAdOteD/vXCxx/c6WzqNAt7CYebvNNN+/O9feWTacMv7eLRBXsctQQEAntl2+NG/fTnZjG5y5cW9FU3Fz+3knlP8rPo/KzQ06Y38JwoAsPGlkmM17QIaelN3agpIasQ2vvpX2z3Kvv+/+pDv4Gj0ZMzSW7ur+K8FVN6EnYhTo41UN3fx0UPwM95HYYJPf3hu3n2VTe/sOSugiY0vlXjFH77rIqPD6Xz0b1/yp9uKOr3gVYa6Os9t6MsGuVpIBEE5J2o7fK+2scMoYLbPNXd/D5Cde7fuwq1fJu9o84rX+bIFrr682KQ3egQA6Jl9/eMDer3ebrfzf8uKFYfD4e0A+LzuxybooZkso14Ji7D87NW9e4+cMRq9VvJO1FzC+yPAXclut3MMx+F0/vL1fd4OB67+y+99JWBEfIrL5eIzap6P+as8+04pf76DZunzAyf4E+EnX9d6JbjDE3H9sx91dnV5S+pv6k5ZhobxCfSFtBhfh5KTt9VW1OkffWmnXq8XsHk9Hh7e9gfSOX8u16Q3ChjyxpdKKs5eELAEXrE19Om1OOhwcL8rYGtU1OkffPFTh9Pp1So7nM5H/7bbK37Vb7b+9C+7HE6n2WwOfPmmvWeA+OXAqRZIez6Sx0VDv7dkUNPKAG2Oj4/j9bS1tfnIeH2hTHxm6BocTiefixp6y//hX/vh+TKpvKWiTv+b10rQKAKwhLAhTI/9bY+A6rYdbo0RW9fdfpvRaFQqeVnpSaVSnU6n1Wrhp7ctHjp0CH7RarV6vT4oTM7dRHp6ulqt9rYJ1L2qqqr09HSc/rZsOyRs6p/5oPJneW0zZyhzcnL4v/XaF5X3LJSg/rS2tiYmJnrVbk1NjV6vZ5vwv35a7i2jn4CCjl1KkNriohVejYhPCQoKQgtdVFQ0PDwslUrZHoNDAwDk5+czPuYvXIo/soiXN/Y3F+Uv0ev18fHxQUFBHE8a+i0eLzIYy6B17IlX9268KW7lykKvXnxrx55fPHwn2iyrV68ODg72F2kJYKConG4deOOzI5mJEVqt1m63i8Viv2Bgxc/tFEbnsZLR6dIQj/zK4XQKY6QAgN9+WPXgkobi9Wsng3rhBkHFW8bb1dVVVTUBuhAb7VhNu7CtceHS4K/+uqNgXlRWVpZcLufzyl8/Lff2+AcA1BuGfv/fn2QmRsjl8sWLF08el/C9VNQZaHl3V8meCMnExhRwqAEAduz+ep463KtKTjcY6B8bGxt1/W5XEzExMYKntKqqSq+/fACp1Wr8tOXPgtgIm9tgkaN8drxNMvbpUs 016 enpfJgPVGMENHS4puftD3fFykPVavWCBQu8Yr9XB1/kQJgyr1NvXHHdPYsVq+bKNfHMJre6c4M6ne7YsWM8oSbIueAnvtI+ckC2JnypnK7hs7I6NulKJZeuXhhzz2JFbkpkYhQzhX1UaRoYGNTpdK2trTx70thhHLCOo/40Njb6MiKc6UMshMPEav4s5aq58lVz5WzDAQB8dmbAbDbrdLqGhga/YyGwlJSUcD/my0LzFzWeeuMgxwMcU9Rvtv7xHzurqqpOnjzJoUc6nM5f/s8+tr9qZk5fNVd+x6LpbNuwtc9e1XaZtPirxQe/teCk3t/f78fNwqZZJamVG3KS786MenCp6o5F0zNnMZ80X9Wa2 412 nU5XWlrqF/378b9/xcblNuQkc3O5knODcIzcO/fZd0rZzqcktXL1whg43giJiJFO9taadTpdeXm534FVeI7in4Lr0Wq1uHAwYht/7l/fsD2fPiem8atX71g0vXAxs3V/acNQe+9QWVkZH5a4t6KJkV9Bn+iNeYn3LFZs0mbEyEIYyWnAOp6TkxPIwiIA4PCZFgZNcmAMrZ1Wq+3uFnJN3GGy4wTgsRKH08komo+MjPhOSLjYyvhdGG3zP90KF6nhljd31DE+sL3SpO/sFovFfASbZ98pZZyr5ARlcZ7mhY159yxWFOdpGDf+p2etTqdLr9cjiCSg5UVGGag4T3Py9Yfvu1H1k/U3J8eGPf9E8bp0xcnXH6b5aY1h9IaluQAApVLJR2jAV1eAksSH601SE2zwzyZtxke/XbfvT/cuTgj+xcN3vvzLez7d+sBvVsZmppFN91jGT120arXampoawBvuPtEyjPpjs9nOnz/v1VhefvllNBYCK2XEQgoXJ 217 qujP98595zfrMxMjnn+i+L4s1ZG/P/TgUhXN9Fv77Gnp2Vqttr6+3o9kCnk67HNRURGfx/zCvFi12NYeWg7YpM0oeXHDydcf/t2auE+3PvC7NXFH/v7Qj2+OUsnJA6ms2e50urKyskpLS9maeGfPWZrjJCcoX3l85ZG/P7RufvjzTxTPU4e/+7v7frt6xiZtBl3DrjMDy3JX1NTUBAUF8RQ4eizjcPPC2YuJiRHA6xnnf29FE81VChcn7Xh2/c8LEn55zy3XxYQ+dv+6eerw15/+4W9WxjKO6JPTJkjzYrHYR5GRrT/lr238nydvTZEN/eLhOzMTI9793X0nX3+Y7kxrn33AOo52LmNhRKBVculTxdkHXr7v5wUJz/1kLRzv5hWxrzy+koHMDKPKxAW9vb3BwcH+vZvGZXofFWmdTof37YX3GTyUIQ8p+c +12 rTgD157cZ46PCt2+LerZzCK4++fNDqdrpqamqqqKg6WaOi30BZTyQnKkhc36Lbedcu1zgTpaHJs2AyX/ic50Q8uVdE1HPrWortSJsmQxscyYhtnFDsMg2No7XQ6XV9fn4DKe4fGcQLwWAmHs4vvhITji4zffdRX2U63TdqMHc+uf//JnCy1Mzk2LDMx4s8/ztu8IoZR4UdYGLdgs7eiid74hYuTjvz9odcey0uV9o 911 yXHhqVK+zeviM1NiaQVxdrOUQCAzWbbv39/QN1Ni2gCpWWgVx5fufnupdVnz/b29uKLsefLL9elK+gBP/3fn8Nn6uvre3p6Jhtf9Eisk9QE7R+gkku3PVX0yJp0S89FfD/rdDpxiKgw0UHzx69qzZ99/gV88uTJk3w6U9FmRa8AALjvNOmyefNmRnyx/EIHzehfeXzlCxtvGeltMw8Y8Uk4uP+rmUpxVuwwvfp/eW8PetLj6nuFL8JqeeKLk4oyEh6LkO88sibdNWre8+WX+CzFykN/tFRGcJ9+sxUya5vNptPpaGFuxDZOmy0WLk76YMsd0eLRg/u/wocpEgXNcOkfXKqitdUt/70TPlNZWclTG/nLu26ShFfcCpITPf8wWg09Y1sfznMO9xFcpaSkRBwimuHS06Q1bHO+/eEu+OSJEycEm0kx9ueFjXlbH85raWkmZKk9X345w6VfNVfOKG3AZxi5yn9tP0oil2nqHc+uvzP3+vraCV4K6dnYWr15RQyNhD39j/1Op0un0x09etSPJ4fv+CKObyGIztBvoU9KuNCJ0dL4GTFI39NqtSJR0Lu/u++ORdPpVZbEXQ/VjzNnzrB1YPvB8zSo8cGWO+JVMrFYbLPZ8NE9dv+6B5eqCM0NQhtwCMeOHQOBV/R9Znx06PuFzlF8/gsKCgTQRmufG75YUFDArVVyOLvg9XDo897qnH7EFw+caqFPN3hYB9sH065LxfsfIQne8fx9NP9BWFhKSgqHIPGvfWcZeUtwkFOpVMIlQ829/Mt7aN6y74J59a23wkXxi+3NZMmLHxw4R/xS8uKGbM1MvV4PJwhfBvg9J0VGXCHVGEaHbZcpLyYmhpuU8QqFgX90PcIe8Opd+kRXyaU7nl0PY+whYkLEAQC47baidekKWmQ0hl5zWeHr7eXZn/puG+pVa2urgOsqekT//XkFvZ2yNTMbGxuzsrIYX9RqtTkpMmJfVbRZIa0DAHhKwDzxRVg88qNJRRYZ5cWnirMfWZPucrlqa2vpDSIOEd2XpUpOcDPnvdhvR880NzeTAGR1G+OhGywSIeCWaGimUvyTm6No1cI+7oSkxVOvKG0YcjpdqPK2tjbfSYtm1sV5mkfWpPf09KSkpPAnLQCAa9os+MVsNnurKeHYLdGfVx5fCeOfsU1vZmIE0Zkaw+iy3BVsQIih30IgQ5lp6lefWKWQhbW1teEbCtFzhCRY99IDhMg4bHPWdo5CVLW0tNRfLly+44u4PozwRVqFRlujvLwcl4/R6/PU4TT494cPSqGUrNfrGS+mR2zjxN1icZ5m891Lg0WiqqoqenQ6nW6mUlykCae1I1gEo1mTWqoaOtH3tcuuw+8BEGQAy8DAgID63//4c3yKBgcHOR5mdHahyYlDn/dW5/QjvkjLcPCwtlqtNTU1dP/3fPllToqMluQQFlZVVcXoL1Xd3EVsfMhbXC7XiRMn0Hrh/aR5y7DN+co7n6H15W+uNqXyIi0DFS5OilfJHA4HWjl8GXQ6XXR0tEaj+f0jq4l6aw2j6BmOKxuiwkmyX+T5gFfv6o6T962v/Xy1QhbmcDj279+Pv4jeLSsr02g0r/5y3fRICf7im7pT8FCHz/O5eDraNIT3qqury8cR0VT+VHH2gjkzzGZzfX09sejwS2pqql6vz8/P/92m2xTuI3rj/c8nYMvycn/hi5cVGE/8aLLtF4kIFyq5dF1OGgCgsbER4oVETyQSiVqtXqlxkxe/7Z7YIPX19YTET6BfmWnqh1YvdLlcBGmh7/v3709NTV1dkPfruzOJ3p5oGUbP84R7m3snRiFAXqTnnxgODMTtcDjOnj3LSFrR0dF6vT4nJ+d3m26bP8tt3j7YX4WPWlg6U4LLZaapszUzOaYX7twtG28l6Pz1D0vwZ9y4weeVxJC3bswPFonw84mg58TExMGBgb89vooGG774ogQAYLPZamtr/Ygv+kWRRq/Tx0dxnuauW+YCAGpraxHghzcqkUhSU1Mfu3/dfcuvJ87LjismejU1NTRLJNgvpCioRUCPK7aG0pNj8RcrL1rRM3q9PtBupUsxvVEll+I6Z5d5HJ9/YTc5vZZxnAC45UVGZxe/K+q+2y/SnWGU4ZLUSpfLVVlZSTwM9Te5XJ6env77n961cHY0jYXB58vLy2n+88nXF2jeAhmp2WzG9wv8IpfLNRrNH58sVrrHYD+nH0HrW1NT43cLZj/IizSqsfnupQCA6upq+s3o6OjCwsKsrKzExMSYKCVh4nO63YpLgZMaGGLqi8Pp3LbnDE1/cK5sNhvxvEajKSwszMnJSUxMlEVGvPf0HWyHOgAAUjB36bGMd5snkhY2NTX5OCICMEtOUK7LSYOoAOPS5+fnp6SkqNVqqVQqi4z45d3Z+AOtfRMz0Nvb669b6QApRLzcl368PFgkcrlctMmmRqOBt0Xp6en33pbrPkV2p3OC1+AQY3VzFyGP/vknhcEiETx06bXIyckpKChISUmRy+W3584ngMwLnROh5s6ePcuH7xz8diJwt81m8/EQbdIbCTDv2ftvDhaJmpub6eHAQyIrK0utVsvlcllkxFu/ugMf0bDNOWAdR30TIM7SMMkzP7wZifvEnyQSCdq5iunTCDo/c2liXGazGU3UiG2cuJaFyiQ6n4gmsrOz16xZo9FolEplyrVxTxVnE8JTc+/ljrW2tgZsFBhChktOUCIZjhEgQXQLAHhs3VKCbivbuFhiqftRBbO2sPGr7Oxs1NDvH8wj5hZnpN7agk/2KYOb2CpkYTekxDPyWOCNaxp+KW8YHHPThE0mjs4gkYs2yA7wQshwxXkaXIYjHn 711 Vfhller1cEi0Z8eJfW3lj474j+E/uZwOomND3kL1BLpjiHeEiwS/eKupYRgynZABIq8SGC2m7QZEDCjYb/o6OglS5bgN+v3rphPCDToShoA8O23336fJIbWzgHiRM+6PgFptzS3SkxMxOcqXiUjjgSo5tIHj0eIEb3iyylCX+78+dHCYJHIYDDQJ2hiYmJWVhbhVJizYBabjAIAaGlp+T6tvsXqZl8xM2Y6zWolEglkBOiXYJEIt0ACAJhHJzZIfX09UlUJ2f3JO7PCJSF2u50+dBMTE5csWYJHHgkWif78aCHbTrTZbHz4To9lHMlkAACDweDLdOF3alCMyNbMdDgctHgtkUjy8/MJo5Rgkej2ZWn4L5dME4ecgPgAb+pOu7HsK1codH+gXoTv3BUZs/HDsrXPjm4GcGmjqtFADBkqkwaDgdinsAmlUonfrd91y1xCeDrROiE8cZj0+YLB+PIu5AafH3VzLP3p7Zkw896ZM2cI/CY1NRUiKxx0W2MYhbGLi4qKiEkbsY3jghT0hobTW1BQgOM3EokEAIBHdotXyQgvPWThoNVqA0oWx/1LID3cODdhAoWxihF78arnGakTQqc1eBq+oBz3e3hn4GyzEYOP9ov+pUxG5W3j6suwZU1NDQFFZ2dn//SnP8W3vEIW9sLGPEYtEcazw1VWQheFvAXKP0RD0dHRAAAO3gIA6BgYQ8/ 713 /UD/Ii7Yq1Pud6KNgSxtHwlCKMh8IlIcRxOH2mBmBQPxuw4bvzskcK80vYCLwG4ghcn3M95IwQ5yOmizEO5YqMOYSaO/P6xeAK/sxHza0xjC4vmFB9eIYrI0YEAX/6eINUjpQnNBZofkDXRqx+j2XcPu5Eb/X29voIp/O0X8T9o6eswFyuSKhCxuP0imgS3dyNxWIJPrcWy2VUj5DdoSwOuRJBWhqNhrbhi1fJCGkD34n03TcjZjAacS2Oknq1fMRmIcSIX9+zDFeXcdIqKChgDG5CbJaG7lE8PoBXZzyB2QAAHly1EADQ3t5OT++SJUuI+GfBIhHkihMnrn2Czs1mM7TV3lPeRA8Zbii8CYlEQjeBhC0CjUZCf25uru/Xpn63XySOD6RCG41GGGALvVJfX48brXLQ7T8/+je4cl+P2x40dPS5H/+LILhYW1uL24ft378/NzeXbuiuW9xW8PPSs3j3uK2nprLg/iWz45QAgMQ4xYSm1GEMj5Dj4+VJFTfNn0iIDPcCPnw2ZwO8MwQfA4Ftv0hQS2aaGnJs6OOMP8wWNJpAQ1r77Li/KT7tRLBMyFusVqter8f3S3l5+ZIlS4hWaN7S2mfD1zcQrukm5EViWlVyKZxWZL6GNmFaWhqjpTmhduz46ji+bGyA+Xcx/iJxBN56YzIiC/xhqEazCRkEc3z/34cRPbHhhYRE/uKbO/EeemXLhW9IIsEUPN6MRiMCF+HDZWVlNJWzrb7V7vQ9kt9EbYEUf/HIOYZcjkhe1Ol0bGrP/DlutlMhsmicWqARKpHEeZM2I1wSgtAv9LBEIuGQ4Qhpg9iJjBAjware1J1CtyE6nc6r5cPXnRYjNIkx+N094iqLFy/m2Cy4ONs35EZaXhnv0jFBEuOmI5ySODgZudwti2YRYCfNwXA8Aw4ZbSj84aysLDaXnfTkeJLAroANJSUlvl+b+j3+IqFzIhUaP4C1Wq1cLp89ezZbbQSQDJE/qB8WFBQgd0ACgF82fyYAICgoCJpIIhOxjIwMRt9SQtzpsYwj/zyoHU12XigBfGbWjOkAgDilm1dEt2Uct4fjmSADQt2owLBQmBLL7I2LI2cEHwN+DWHm9/iLhAy3SXsDAMDlckGlBT2sVqvZJjBcEkLEwkuaP3EO3nDDDUjIJoJlQt6C68Bwvdg2PsFbLhrtOD17G91scuXF+vZ+tvOD8LpnizlO7MMawyj+Ltul5Hcu/iINxBKYM/pMTk7mqJNgjvBqANEH4ymIu8gBACoujQMsPgVP92o6/iIBaMF1hJsH9QdesHJ4pKYkuDvnRsbis+EjrQda/EUCsgIA4PE7kpKS+LwYIVfgve3s7ARU0AqoitAY/9y5czlC/0NoB9+JyOVZq9Uy2vwR9iQAgObeiRHV1dXx5/V4VwktdEXG7GCRCFIRT65Cs6Mus1scEK+SCRHTW5ynCRaJ7HZ7QUEB3iWOLA7EcRsSqcI7k5iY2KQ30kPGNxQ6nzjuBOgjqunKctD3s1cFX0T1QHyR0DnhyWc0Ggl/pkWLFoWEhLDrnG5A8u5jtQDzp0ZEiPMrlVwK2S/0N0J4DMfxHywSEVfSEMhEneQw45vKgmsd18TIAQAjIyN4eI2WzsGGhgbcn5IXLw0LxV0rei3juNEnmysu7uwCJxwv0FEsMOMv7iy7QJ9uBoOBQMEWLFjAUSeUMlH5aPc3OH4BOarJMooLBpC3uFwuYgtwgGIEb2nts3/xRQnuT33VvV4m5MVqd06amRaPqAd1l1vYChaJEI9TyaWP3JoOYyLAd9kuJb9z8ReJIxCyHpfLhWPOEOvijvexDLsXwK8GYIHSA01Pc+InwpX1m63tRjvNT7kLEX+RALQy09TweEMsAJaMjAzuasMlIQgEUsmlWQtScSbiLfzJARxe9fiLUNfHNW+iXTY5APHZ5ATlJm3G/DmxiYmJ6C2z2exyuUrcnQbgK21tbfigysrKPO5EAooetItQDYwuLOGSkPx0N+0Wz/ViNpv5uKzR8RcJ5R6C0PB84gPDE+wI7bj9h75GNfzjH//gH3yOMDCCBmFEAMjy8nLu6UXSRnKCcun8JILOKy5copuw2+2EiMZ9PgEAfrB8Hv5fvdmF07+P+ZP8Hn+RwPwgsmIwGIiGuM1mFLIwXErWG0fs406kD0MpmeBXkKLsdjtUG5B+yz29+J1scZ5m9coVeCeFhb/2byGGCSUJqVR6jWJCjTleZ0hJSUH4U05ODk8euyh5xkRDg2MwuhNSeBhVYiQJ0VknoL4HAjL+IhHLAp1uTU1NXumrBBZ2psOOjxfKi4QfJOItxBbgyVtUcumPtDcUrFyNx2vkdmCfUnnxVL2BniDcrAcA4BE4+cHyeTBg+r4/3bupKGPOnNk4M2Jcku9c/EUCiL3pym0I/jB0HOauk9bS4NUAbIsNQnhwldsWQl6EkJ/y90NHIyIQl9wFs6DgBVkAepjPZQe02H1hY96eP96TnKCaNWsW3hCyzxOML8Jy1eMvQl0flQOnWogbB453YQKYj367/pE16fEqmUKhwJ8PCgrCresg7+jt7UWGAfDhefPm8VkLN44vnoY3xLia9ywnXdag1wt8saOjQ8BmIS5oUhKiHA4HEc4zISHBY50QvS7O0xz5+0NbH87LWLQAb4h/8LmWTjfoCF77Xrp0Ce85o3UdXu665XqYy+ej365fNv9ags5P17tN1PXXxuDHBmrIY2ZY4kpabxyBFgKQ/gU4hvsXX8TtsQy9JvxULlycBJGV1tZWQoX2WG2uu63YuESBx2tsaGhodV9BSOeEfVhrayv39C5JSyjO02x7qujk6w9vvntpWNAYPqKhoaGrLi8Sw4SqeFVV1YxpoTjEYBkaxvEnnjw2+/qJc/ai0Q61Rw5iwK04FiXF0Q/ghlgBZb/Y3jNAU5fD4cBtaiUSiUc5m8Ck+83WoOBQNF6ogRN+kHDjt7S0ECaSfHgLlKB+tOaGSxdb8PUdGRkJCHnR4XTiGz45QRksEsFpBVgYOY9OFdmamY+sSUewanx8PE5/HZcusbx8GKoAACAASURBVK0uTna+cEBfHuD5LgHEQmMOXN3X6XTXXXcdn2qJaxGxTIXHa2S0b81MIS/9oSE8fIv/oY5aIRCX9JQ4AIDJZMKHzPP+67G1mXv+eM/KzCSow82YMQNvyBd5MaDiLxLlwKkWnG65eVy8SgYn5zKgolDgvW1svUSrIjh4BsFLPrI7YR7Q0D3KGOkQL8lxciJDTHXHCMDcFHiiF24jcjdeDJeEDA8PE6EN+STwDZeEHHj5vs13Lw2XhEB5VyKRoHqGh4d5LhbhVxsuCXG5XMiQAx4eCoWCu5IFc2ZAcR/+l6Dzs829OCOFVuCXLl1yS3jD 414 pXBJCmDiPOkMQ/Xvr6MMh0/tuv2g0j9B0C291UeV8VGjEfybO6TA53snOzk7i4jt6egQAoLu7Gx8FI0hGAJmb 716 6YM4MRiNLX44hfxV8mIiK9Hq9KsJNDu4etOH+4DztjGfHT1B4a5992vTp+PBptB7HFHCkf4JWw8NBQMZf7Ox3E/3hnR6cJdTbuXPn8on8v8DdajMmfiaOX/T19RF27TB+Fq4oSiQSj6wb8hYkQUH8GI1IWKJw/8uLhBk4jPPU399PYLbe1j5t2jS8hoRrruFGj78T9osEEKuIDEeYBHqMZw77m9yvpK2uMI/2rcrpciKbzi/+8DYOjXg81An7RZPFLfaNOkqO 81/ YGZ7O1+GSEFwYgm+henyxCgoo+8UlaW54WL/Z2mZyAEF3KBKJBO9tkDiCVkUeeOABfFA8jSNx8wAAQFv3IHEtQoM9Uqn05iQ3g3o81wsfA1nCfpG4U4OBPCwWizDrQ4V7PNuoqChEDzxJiyB12B/CmHLWrFnepo3B6Xz1rbcOYjADdGsF7tdSarXaI7iI82FUEpI1ALNX9sWHzKPywL8enU7XYjDRdAtvdVHlEIX1WOBFNipnWowwJg6sx2w2V37rJsyFi0MdDgeyKADeR4pA4iw+G1fdUAy/389bNBvpjRESN8qpaujEU2nwlCfiVZFs8CEjvIpjCjB8GF5CQ0PCwsJAwNgv4utIyHCxiggExKDeQn3PW02mbzQExy/a2tpaOo0EHgwhEm+3ANtW5Y8fT7q82DvgJi/Cy+ienh4+nvZcKG5wMDLuSUxMZLw2+s7ZLxLBh2FsPDcDR96mRYR9a1Pn0P79+4l8QTTSlj7TTV5Mzl5L2IlyN0rYLxK+nBC/we93fLGUwu3zfCHTgLJfpH3bf/bq3najHRkXCtsgcrn8xFkyTKnL5XriiSfwQXlEvwh5COF8xK0TfSpYrdaF15AJ01CuF51O5zGOJmG/SHAVqB11d3fjCyT4YI6NjUX0wJM1jdjH6P4QJto8Dw+iREdHXz6fyqvoJvBbGp1OFxsby7NawmqqvXsQYP4fvoAN/rVf7B60ETIcrULzpNtgkQjXc1o6jZD/oHqa3WVThSwMCt/oAa/8nybquWIZwhhHaYoLZXUXDwAYGBiAPcRvpUqr29LT0/lrdLCEid2UyXPN3Wq1msNIDgmvKGoKXiIjZTz1ef74ot/sF4dG8NMNwhkwJBx6jOdaQyQFFX3fED7egoIC/C4F8l4CMRHGW3D7RT6WSFMhLxKwrUwqBgCgEwUiTMLyXhcUFKDsBdOnT58M8A+vRxgAyZ8ELSNuRw7cdUNDQ3jlHu2fiNdx5kjEm7VT4bKlUmmsPJTIeIFyZ/F3ZWXckLiEgbrBx7yMrcTExGi12tTU1MLCQsbAjV7hi7AEQvxFwrcdAPDP4/3n9SNOpysnJ8crGaigoGDNmjXwnIuOjnGHAWQjIyP4ePlD14C6QAkKdTOypJU3qVQqDiFdRw9+a/H2NJrw+HbnKlA76uvrQwskl8sFH8wymQySVn5+Pm4QyVEImzCk0uA9F4ZOzZ49W6vVrlmzJsXddwcyUogK4JEmhemTNa29crnc23gIHhVg3+0Xm/R9hAxHqNDl5eX8UVtCz3nooYdQPTDuHcE/iShmwnKJTZs2raenZ/Xq1SAAApcQVnfQtgTBNyLrBNpXUae32d0iOvG0UoiLdOLwIdK+aD1kxDaOhFd8afCp46nP88cX/WW/iNufwM4TlMk/NTNEUlBp6xqAhIfb13Lrz8J4S09Pj9FoXLNmDeAdMmnS5UXzsJtcAuOC4mY9MplMcBtE9gK/g38EbCsAgORPgng6B0SCIyMj3honIcaK/7exw4iAvcvNjY0xQmjzot268eX5QW9dWeHzB8pO0HAIAddzxL/gg7tAAVqYskGMGparHn8RAKBdyuDSu+vMwF8O9bz4xie133qHyKLdQUd2HBoawsfrVTBheYSEDV1jwxcBAPGhbkJVj2X8/Y8/B95g52zbTR0ld7lceIptlUoleAlkMhkMosZfgCYM0uNUkeBKHACcvwvTi+A6Et5jkJHCAxhF7uC/F6RhoeQxHxeHn0+C86z6N/5iSPAEi4CqLFKh4Sd/SJXWc3Al0GpnYL9wer21BaIPqZiYmKsLK2JSoAGfTyipIPOD+9e5GYZd6rXAK3uUj5hPE8WrJrLPnW4woPOd1kP0fWbigCAFqfBwPyrqfo+/iAqMazE6Ooo/5tHUFS+EbziEzKH+tix3BX2S4lipYCwsJiaGW4KaynJ5nxM+HPjU63Q6rVbrY/gGxvLC+98oIsMBiNDrO9TqBL2+o7y7HgCuvDeE7SDRSTZxEz3gMSQQBwnCGggBCxZo7Yea8IXpzIiLg+QFa9u+t4IRQnvywTt2nXkHP9RvWJp7+ngp7AA3x3z55Zc3bNgAn5yr0QBwnvHwQyPyZYn9ReWIH+l0uqKiIjb/BvwxRhM9f5VwScgmbcabulPE78M2564zA7vOHNmkHbll0SwCH/KqQJxveHi4qKiopKQEDsorjJaxdZxQGWfvsfvXfXn+nR7LRD7A0YhrgUsPX+HGztPT0/V6PWri5Y+PMyroHjfsJJHWpR73XHzTI1wuV0FBAZoQX+zrmRXCyHBiWryyAofmVqjsq2z6WZEGpwcBstGpesOWtw/r9R0AgM+q3oOfajXXHQJ+qceoG+yrnAj+BU02BwcHjx07hh6YNm2aYD3HZBlF1/3mUSeDGoBZifnOsgKh4FEFoPEi8j0FAFRXHHEDsRo6k6KiENBQXl7OB27vaDyH4xSSsHB8Qa1WKyItPJ4oI0uRSCR+UdT/te/skXPtRqNxZOQy395Tt5MbUcNNBml9FU9qCq7EtUAmgMjKjr/+Brcz2kdwiqD+tnvPV8TDLpdr9+7dYMr9L6cCX+SGanQ6XURExCRoUfp9lU37KptqDKPok/sfYTvIEz70o/1iU9cQrbIA3iEqPaosXcYh3H6RNiWB63Jw/1eE18tf3nW7YOLwesHtF2vd8SqIuOAoOo6+XMUSUPaLsBAJUYjypu5U8XM7Nzy/c29F04htXHArJpMJx5O8ol4CnWrtNKnVam7TWPinZe5eLzDXC3qRIyQEcf9C+JcAd+jaK1tMv5S2LvIKHt0M+H6/waZXEATpFUKMe4/BEhkZKZgeYOk3WyGzxf9xc10igyKB4hDyGbwzMZlMOMzjyz3aiH0sMjIS1jMnjSGqIoq8CKY8F+hkFDzYIbhivIjbaK67/bbZcRPyNzRhRH/NysriE8fgB+vdrHr6LaP4BOJ6CH7pQXgjXZYhRCK/2C82dhj3VTZVNhsRWVY2G7kpk0icwY0vXlbph4fxBwRffEFRBNmH5C9fTvMWvCG/66KBJS8SIeV8uY+emjJl8RdplQWCB74gEDhqgtsvcqwL4fUCXVnRix5tmy7nqrE7CMSFeCAqKioQFjeg4i+ic/Gp4myPHPCZbYdveuKdt3ZXwTQw3IVRXcbH64uBL34by01aqbES4k/NvRMBID2e/RzzPzY2hj8Aw3AEDt/wZXphIaJTQZgBb8hHETk8PNxf9OBjwe0X8d+hj47FYhHsK0mnm0NhpwiDAXjrF5jZnwWX1k4G40XCKytvUSIOu5gGBvG/8vGiPbj/Kzx41rnmbjh1tNkJutODUfZ80eenmDIZ6WpoaAiPvOhVzfR1vEwmg+M9dPAg/jsEYidVFw0seREfnk6n88WIbSqpxJcH/FK575AJHh8BGVsQOxMAECsPVSvDGQ91PrleLhOxcYRt6QMKRQ/M+It33TKXSKPCATeu/tX26uYuj/IlvRb4eH28YUfEyYEvAgDEISICvT747cQljk6n4z7+GSuH1+u4JZ9cLr/qRjno8PDL9AIqZA+EGfxIlqN2B04PvgQc8Ze0zageoMtTH1EcdCqzKSGIFP0ijgdCqWqYuNxHxouEV9a8OW6etl0Do7jmwyfQklarTVSJcT0HTh2sBN0h4M4uRHSnq6Wo+wjx4ATjOxqiUCgY8QtpWCjuLvz9oEyA7BfxoCrflTLuGJ88AzX+hfBu8ZEzsh02jGXlwhnbDrfih3pybBji17gNiu8SBipEUD2OQiew+f6VJ+/MMllG+WyffrN140slb/+HdiFTggSexasFJazfvCLOG2dHVLRNbC6Y62W69DK7aGtr4x8EgEMIIKndNs5hKoeXcHEoHddDQBmj/Mkmu3h7bKjkUtwIxzQ0IpfLfc8f7WPhHyAdAOAtisNwSrGjFePj498zllJa3Ya+QxHN5XIRmhXMHYLK+dY+HDno7u7m48aREhtWY7is3pxuMDyqXYj+hK6n8OS3MMFdgBePSLYvUQXowsFRp563TJ286N+DampKd1fXoUOHrno3bFTIGx9LZGQkzycXznKzJiEO9Y6ODt8PdXo/FD39Ec93T735o++9vBgsEm19OO/BVQsf+9seRuNaojz8J 91/ PXBjfpbGI7TG6Irobd8EvztdGjInfnqzYeJqrLpjJCdFhuTF5ORkAdVyZ+Ytq257ZtthPvUULk7a+nBegNMGEZlIWMlIjSe0EZlMhuRFATFx/VLq6+sZXaYIgAc+4EeblvT09F1nDrM1BK7qBb2/Cm4tCkW0kZER3JMPAKCQheGKRGl128M3q+nZ4C4xsonTv7HDKAkLw6cUwg148lvo7O9RPODwR5yCAgPj86RMr9z2uUv+8uWvHP6IgzIDUIISUFhPFHzjBawRMc+sVn6Mv8i2VdCffIedkZDnsbkblywm7kNHI65Ff+VO4MYWTcButweg5XigxV8kSpJaueeP97zy+Mprojy7hf363ROdxiGP5izImVew/TiHxaRH0tJqtZvWLHKDPa7ketFqtTabjSOlCgf9QO/ggL238i9Ph1gpmijak4BPoU1a8fxMPANP+rdAUy02+0UwCW5n4eHhHAH5BEQfDNhC3N5AHBFlZ8XHiCeIr6jTT5s23atU3TqdTiF1Ty1oGpbL5UQ8fzxwCrovoo1EA8R+kaBMjrH7izIVCgWj/SLdEM9kqgFeLmsYyQlKwnYK35mTFKTglcdXJsYpGCearZScG2ztsxPrgb6zuSD5Mf4iAGEcW8UvBUkS3E6scI3WLrtux+GJ3fum7tRvV89AL3Jg72zRSsfHx/ft2we+m/aLUxZ/kS7BIlG2Zmb21h98+O+DHx5tx+PR0OXhP3z6k5zoS5cuzZ8/n02AaOsagMMRzH+JJJ8AgNDQUJ6kpdPpcm8hATyU6wVAi3hRlKfNEsGxE/2o3PtSJo9aCLdiOlIJn0Kw5XBx6ObNm/H0S95y5sw09TM/vBmecPnLl6NPBJOgoxf93msZ 315 pwqGU08dLcSH4P3f/g1HxgN3z3cgSegHyAY2EhUQOnELE74RGFyheG/wRjpHI/TNgC8JDZXmkMfgYDlKea+6eHReXk5ODIujFxMQgbBuP46HRaAA4zrbigse+SZtx643JuOyF0ydBpfCXv7yrK20YIigTzQMMHMsxA37xQYHxrTjwRfgZIAEU/YMvojynqBCpYCej7cQ4RbxK9sO7b58uDeH4hP/g9wixiA3JmLL80dyojO/Tgqdm4m4uPT09Sa0kctM199q4c73g+MT8uamTMV2ThC8GSP5o7vKDtctfuGfhjmfXa+JZDex6LOPn9SNZWVncBhVwOCifh+92YCguCR9KDhYFbdJm4A/AXC+wMKoiHplGAJLWFFALW6QSIXiGLAzfvwK6rYgMj1fJTh8vnS4NwT/hv9PHS+E//PdoWQiN4iAheArwRcDb4zAQLNp9KXjwGmTPgCdxQAIx4UXebXbL8uJRRoePEVlepk+fjofNwp23chfMgl8cDgf3igsu18TI41WyrouNODWyUSn8VEaECMAX/aso8sQXvx+F9T6aCKU22fo9xydHPmWeWa0mL0W1edjmd+aIgwce8UUAwP2FC4lDHc/1QteAx1+09uu5B8sRbI/PpBFFMDcXEH/x/Y8/P3i6dW9FE/c/X4IjspX09PQYWcg9N874zcpYwtEYlX0XzF98UQLcIxoS+SFxfFGn0/nFDownacFPqO7jYu77H3+O9mNnZyd/pgHvVf0VYEKv7yBIS3BtU8zifC9bt271vU5a08bjKXLr4RCDZIu/eKnH7KPaxpi2EdaTsyyLYL/+Fcd5FkO/xSNjEcZbcFtVFNwXH2Nc3GVvOcKb7VhNh1fR/uBjRJYXXJ/s7e3F0xKmzrycignFLxSgz/Nknl7RJwdlstGVYMokAv4jfBFQ8Reto2PgexQTFJUQjmVDLHiylW/E9fh853iX+8zwBS1H7xIhbKqbu9csSfSlcsI+KVYRESySwXNXq9Wef+MTxp2Jb62cK5ofOtRhrhf+047vqEWzo/AHuB20vV1fwdzcK3tq2OIl09grh4951g5f3BAu8b8ft1wuX7FiRVBQkLq8PL3Z8P5J47DNzZoQZv2eqRTD3mZnZyuVStq5AVy57/C9SzggwZHfBT1gtVrjVbLMNDV+rzoaca12TfplcCIuDoA6nqSF36v6eG/FWA8ftJLRpdpfnYHlpvkz2Zzl/dXQli1bNmzY4CNn5tbSucXcQwcPTpeGsP0V2VEITmFApG3EO9NSe5pmv4Td3hSIjOeau/k4ZnnLW4hgTG1dA3srmgYHB5v1I/AgOP/GJ3PmzGkZaGIUNDdkxeDTnp+fzzEV8DEqy0sYPpnnmyYUwpkxl4VXi8VSVlYmTJ/nU2idk5s++VMmoiv0gLcxtOmA/2z4YpPeOE8d/v3DF0NoVeYyOo3ZtE5qkiV8NhsaGvLz8xEJ0t+PGo7WGNoui1YzZuB4FePy9w4MIytdv8RfDBcHexyFV4WwTwoWifjYL6KtlZ6eHi4JKc7T4FaMf3lXh1xZ+Uw7I6dmGxHt9Qlzi0FRlbbbI+LbCePmgRl/kbtAg5WsrKz0dHvmwubnt5/ETW8BAK19tplKMeztsWPHVq9ezahIoPFyOxfzwWmQ74VH0oLnDQBgk/YGXF58U3cqxtEhEgUB9jsvVPmCObGMwhPbAsWpIgnqwpODodgfjPXo9XqPcglh8jUF1IK7L8CGHA4H/3yhhAABJwfaL/rImQlNGy093J7wv1KpFH7pMg6/cvhzHMUZ6u+sr69HAuurZe8Zsa4SioeP9ovxKpnL5eLv9PrdLRcu9hAiIMP2OXOa7XVl3LXIHh2iJxzMFk5XdKQbYNRtGsanse6Sida1oDElYbHqxyUggCqcMunvrtOtu84cwymzvbEWmspotdrPPv+CRqPx3vpyxYEMOqE+Lw8L/h5TJiqX76NhnhIcTYWZaqfYuCclJUXKWfDE9iHBIR4vPjr7h4APVlOIJlAN0yPExKHuy+ULcWEBm/PKfhH+uHbZdfgzyJWVsVHc/mlZ1mI3JaG1x+N0bX04j/j37u/uW5euePd39xF55OjbBB/xRa/sFwMn/5JYLJ4/N23H8/fdmOoeNa3Lic9PdXU1rrY1dhgJ+0VvIzcx4jTeWuJqEmOIW/KoOQvZZpi4S6ITAXOT1oI5MwjSev2p9ZC01qW7hR2A+Y5xehBgDQl9C/zL4mRSMaGvEk14lVx+xD7GvX99xBfRd8RgESXA7/BLWDiJy6L0sNAYYFHyDFzKIRQPb/uG2/BdnocraRtRsLDLFIVF6/weHMknajt8ef1sYyc+GzA2PjcBiERBeFSdc83deGaX8tqLNEbQ19fHNtV+WQJcu6iqqsIpk/4upky6UQA4nU4nDhERaLSPvUWpbsCVxGwoXytUoRll0++h/SLB5pr0RjzJh1cD9tZoY/KMC31vAiXrQzUEu5NFY4eRuHyhM7Jw4Qfu0Ylhc97aLwIAaK+XjoExtgnB7Rfras/hfzrdYEChK/hPF3/r0qm0X+SJaoyOjFrdyyTttGCR6NVfrL0rdyLrdL/ZOmxzoPnR6/VRslAaXsLzBfty7kKg3Sv7RdhtIlP21ncPss0wt9Fzv9nqlUk+USENaeP0wIdQYZIuDirlH86QjcsRMeqgvip4CxAIMQzJie9f+mZQgJYuGKEEV+zJcDUeABAULPaXII50FVQbnsUOIt/CNNLJMFxm3FNtbW1w0T0u/ekGgy9tHavpkMvlaDY8WmfBz1lYlpdLPWYYzU2r1drHnYPWMZzwYLHZbFNmvyhM52cjPCTtCaZMxgi7SJ+nZVO/oEiBKC/SoTiJ+Is8OemIbRxmy+WfBcRfLpOXs+5EhnuFqQjoJHFlhjNH4CkjC8lNRsfo8wBNAn98EVBeL6UNFj4jSk9PxwXNxg4jSmANP/msO9v00r/7y36RD77Is4SFhx26UqRSKf8I8CbLqICNPd89kdeYw4XP0uyEaBpe8pH/EucuT9LCHyDkRRgWnoOboxoIF84mvRGvnE+WW/zwYMMXaX7FcxKg9TpeCc/8Nw6n86Yn3nn54+M0lyP4z5Fz7SggqwCInUCI41SRAIAHH3wQ1ZaTk+MLvuiLfRXuj7gk1W2h+waHfKkcR3EyUuOJ5vAsdgCAkJAQYXDAC+9/8+jfvvSYotOXcujgwUOHDp0/f/7QoUM6ne7QoUMc3RuxjdPpQL0q+yqbbDYbT+UEPZagmJjPM02dkOHrdDqT1UErWtCBkts/2o/2i8IsGfAZwA/rfrMVhqRFD3gV7p4wDkEyNNLniYAYoaGhwhRFNt4SQPIi4Wx15Fw7kT+aZ9olmD7oTd2poqc/2vL2YT5j9pfLJKwBZtskYGGvOBeHxRX8JGw99X1mwTwXTxWKtiWePzo0NIQnhEZ4vbT22YdtDo/TVVVVRYRSatIb8cFyhGXGwB49NDqZNWsW8Xtqaqpf8vNOXvxFIjiIx+c/+bq28D8+yNj0jxWb3yvDMnfxLPDIZyOtlm/dAuGea+6Ojo7Gx8s/6KvD6cQpGZ67yE+IP74IAFDIwvDoawCA6o4R4Ml+UafTEcJTTWsPfhjwCa1sNBohaRGyqdVqJUiLD+sg/F3ONHUqFAq8Ep7RnmFgyx2Ha4qe/ujRv33ZpJ845gn+g4s+AgJKQ/sQVKDPwQsvvODjgeoXfBHVo9Vqr41X4T/WtvXhlXvF1fGExYjZDg0NoU5eo3CTF/ssNnxE/BGHU/WGijr9xpdKNjy/c2/FpKTDhT6zuL7H0T08857gAg0Q0WzwCap/jSIUx2uhyqTVanFLdHXUZXM1GM2HG1/0seA73Xd8cYG7ytraOYA/xud0QwX3Fkec3GQyMeKL+yqbiOBlPCUoKJUy8pYAkheDRSIcZzpVb4CUjQaMkmdzFzx90L7KJiL66CThixxcj4aFfW/i+llRtMyHHvCKBAmLCrgt09PTUW2RkTKe+CL0enFbWhVzxjbc/ik9PZ3YUV+fafMqLgOcUliUSiXxe0JCwtWyX3zgzlXP3pv9wsY89G9jXuILG/PuWDQd/1y/1ruDs7q5G51ntKGVxxI93U0xG7CJ8KZvv9UtKEPJ8XqxWIzzI/5BX3HOSJ+73kYS3aS9wR29HnI6XR7tFwnh6XSDgXjAo36vVCoRdRFdRaTllf0iLvjSt5k8oz3jbK2iTk9ofQSkMTBsE9AELAdOtRDyrt1ux+lBsJGu7/giqken08kkwQTd4plCvKoQqt+oQMP64eFhVM+MaaHcCjBPbQrt4sYOY8nxeq86OX9OLM5YXtiY9+y92Xcsmk78O/HNYUK/5RCdK+oMOBAOq73/5mvoavF/uSlu+uclk1sURg4TRvQYYRJq6Leo1WqdTtfQPYo6gzYym32IHxMlEPaLPtK2OlpGHNaIUeh0Oj5XHIyyDeLkQ0NDCF9MiQ1zpzEX3hOebeHKEs1bAkVeBADkLZqNd9rQa8Knnmfy7M+P1hH7yuVyORwOnqvrF/tF/NYJGgjyb4LAnJEshddA3N2XVrfhzNEriBtHgJITlHBbcsSbBJwmeoTXy+v/LmdsFLd/qqqqQoG1YNlZdqHy1Gngv6BxV8t+8fTx0uU3JK7MTEL/liSrxrrr5qnD8c+D+7/yarC4eI2jR8JKYlLq/v378Q4snB2N84tp06bj9ov8w2ESjAYqORaLxVv7xSujnkFc5jb32vjYL+LCU2OHsbm1HX9gYGDAd9Lib78IsLDDsFzscZsQ3NifoxDiRepMlcvlQhufUMCqW/rwJuhcahy8CD884EyOjo7i9CD4Qsa/9ouzE6Jx8qio04vDpMIqJ+gWmjSYTCZUmyrCTTY9eq7dW/2W1qYWJcV51cl4lQxnLCszk5bfkPj0j++apw7HP9fdfhtwt2/j0GrOYMFrMlLjYbWz5ON0tfjnlh/d4QZSdo/ynA38MVyJau00KRQKrVbb2m/HryZohVCAPs8fX/SX/SJMqEjIJ+gBr8D+UvfbJGgO3tvbi9Z3WrgbZXYNjAoAqgj6J07nAJIXM9Pi3fZhjQFfAG5nK3SVQFhgxCoigoKC9uzZU1VVxSYreGuExE0lBH3joUD4cC7CIRE5eOLvogA9qAlpRCR6gD8HJy7rkbyOqtJqtZGREYw7kxGuJ7xeLKOObvOYx+lKSYgi9JsOkx1/gFvc578uYPLtF3kuNFvacT4Ugvv89putyIQR+sp4ZEAE8YSEhMCUyqgDmSluDK7daMPHSyC4/DU3yDdR97RaCSSB3AAAIABJREFULQ10EWFQiL9uXO2WTvrgtxZu+0VG4elc+yD+gI/yogDWkZ4S587l9HglKHU7NzRFJPpLSYgaGRkRi8VVVVVms5loQneiAe8tf32SiK6yOisJSvw87zcnG1/E7RetViuezhgAMGgPEZbWmfFURj65Op1uVsIMgs6hCI4e4GOz8fWZNlqb0ul0ZWVlRqNRWKpftmCBfOR7gqigbRytv9GfR0sP4A5ANYZR4hm2Yxd/DBeXT9R2TJs2bcfOf6N4schQD2V2+Q7ZLypkYbgm09hhDJGEC3BxIxYIKm/wZJywX0xKcKPksxdxLKC8vFwA354ZM91qtep0OshbAkheJIKT4f3W6XR8Yr8RFhiZaWoUTVCv1x86dOhk+Um21fVW2OKoh7AvRJAhH7bIdoGO3oXW64Q 51+ CYGK+cJwl+eaIR/+8ti2ZBAAlVpdPpxGIJ485kg+sJr5eqdjdmgZtQTESUlIQQvtW7TxvwB7iDY/NfFzD59os8F5ot6KuAg7Ohow8emdBjpqmpySslIUmtxLmATqfLcJcX91ZdwsfLE50y9FtwzS05QQmvMvGGVCoVxyTTU7EiYw7+3x7L+I6vjnuc3mWYZyUA4A3dWfwBOkOMYNLiyToIF+mdZRcgT0cVepQVCJtCeFs3NDQEPdzLysr0TecJfVI+XSkAEdxT3kRL/N3d3Tg9CN5Q3qpJHPXA12+c63ZYHjrfhVfO8zJuxDbOeCrjPrmRkZEEaD04FoyPgk9bh8+4XfQnxing2W82m5VK5YEDB3p6evw1pXzkewLvhLZxbPob8V2b7eaOBn3R0DNs9lF4JbiF1YFTLZGRkYaBCaDh2pjLKi6K58VGMAFiv0h0htBkai5Z8Ad4GtoRux7K0IODg/j6xkW7XTy+qTulUKpQQ729vR55C424KWRhkAz0er1cLi8rK7u6GS8n5MVgkQgXgxo7jCLxBL3abDaPYhBhbQO1Fpxeh4amwuWHiCVJqOncQClBFvPnxBKjhubAxK3WJ0ea3XYsD9TE4XTuLLvgzrOmAwAMBrcrzvCwMK/GTni9VLS50RZjzl/gbooAAKhu7YdM5zKK1t8PvhdFoVCoeRTuSgiHlYo6Q3R0tOAuScNCCZxP7LLhCvGhqjZ8LQjyYCuvfV5Jry9Blshvl+/sUV4vdABtj3hqv2Wk3Tixocxms4/otYBC2BeOBrlh3h6ljU++dtu20Hkc16nMZvMdy9xwytJv3c5sPjjBiG2cMFZRyMJcLhchboaHhwfI5kpPdrue+rr6Eu5vx+d6CgCgc7/oh5AqwX8UCsVN7krI6aZ+r1aQ0KYgleLBTW02m7dKckhICMAsufHvGzZs8MhbiFtIlEwFL9HR0XTltKQ+MB7G/7zDVRG0I4JDQgyDE/Ji1JWY3l6Z5gdOIeTFdw9+i/+XZxKEN3WnCcGA5sYRERFE7JT2AadXlEk4UNKpMcxmM0+/mUmXF2kxqK7bzl8McjideIoRBJhNvbRBQAgfHjzP /10 6Ahbj8hBYS1VzD84cOzo8h12tae0hjJOCRSKaBEP5BfiYOD8orxf3vcGs4hBpgsEVB1iveD2gAugHWklMTEznUbgrIVj54TMteBAWj+jRUU8uMna7nWBwR1vHvFLbDP0Wwscf7kQCMvFWXgSU1wtRxuxjLG9l4P8 91+ kmIPLkDzAQhl8KIW3UGqz8eTohxqG5JfbIyiVu8uLRuj6n0+XVkAnJ6fZlaXTf5HI5f/8nvwNChJ0JfU1hCZvpLVC0bc8ZWgaF+bJRowqFgojT9N7BC2h6tVqtR5WPuNiBDBOZSCJe4dVsQCaA8xD0ffv27R55C+H4iDvyo15lZWXRlQPKnr5rRIK/yycKIxE3oNs0bA2eBr/HyEIO7N+HDgI2gvHKXmgqKRNQF6dGy+jM6yeyVPAxQTFZRnHYWyWXQjUY5jTBKRNqOBPafk0P/oDHjf+vfWdpfYkYkVcOc5MrLxKWN/vOdtvHJ1JQxMTE8EfmVHJpklrpcDjwCGFETm58LvwVfxEBdRgCpF99662Ax82IyTJK651QXiRst2ms5fyAHGeO3Mizw+n8r+1HacqwWq0FBQW4/SJ9HnhMYUJ4veBl3rz5SEfEa4hXyQheX9owhDYVGypJz95LO455PFcE4nCTFn/Ra5CSMogJnhbPv0XCPAXBb4jAxGIxIS+ebh1AdqhardYjek2Ai8kJSqhBEdyNXguPmYroXC/uSEYXvaNpbeR06wDOr7m5CiqP//0rbtLizzqWpLnhMZ8db0PKnkdD7Q8OnGPUTnt7e1FnJBLJgiQ39yDTsP3URSualvb2do9biZScUuIAAF1dXQDzn4iLixNMxn63X0RCLQbJnMLD0XtEVT/5upZQocMlIS6Xa/ny5Xhz4eHh8SoZQYc1PU68Pxzsl77YgficyWTyi2eesIIrIegWnmdwewLCP1VviI6OdjPRY8oLRSw9DmUdPdeOxKNZKvF 111 2HlGE2m4qAtV8EAASLRITK+pvX9zgx52WPa/3yx26GN/BKwW63E/apUqmUcK+pqNN3myc81rl5Cw17w9r2798fOHmoRQTvI9ic7twg4GewSQhAcE77+/vxQba2tHKvrl/sF4mLdQDAPz49BHhYXhM 311 CEgvIl6qRMJmPEWvZVNp3Xj6CecN8b/vXTckbKaGlpQc7RbLPhMYUJnesF34rIA5So4ae3ZxIPP/HKbnSOevQbdTidW7Yd4l4XEJDxFwUU3KEKAPD8u1/jLXK4MB+racfXHQIbKEAu/FQoFIQHEgBg15kBiKDodLqWlhaOvh2raScAMGjSajabiUTt3LPHOId0rhe8tLa2MfJrWhvZ+FIJupXmw6/f2l1FuJjQpMWfdShkYUR/PjszgCrkuJ8yWUbf1J2ioSm44qgzUVFR9ER9VWvesfPfSHLi9nPfsu0QLjlB3dvlcrW1teHnU1RUlI/atb/iL0JNg7BVBQDsrTWjyqGwy3FYEtrmXbdcD6j4dghSJab381M9y3JXoP5wwK6fldURWTogiok4to+RvwQUwqYZ2cbx9/smTCxCwiLdotBTSfPopcf90nCwM0EhxhEWNlgnYOMvMqqsPZZxXH/jvg/cW9HEeKUANyNw93+neUvJ+SEIV3lEXmg9H+K+CELSarUSpqW8avIioLwgawyjjVdc9LOystjuwj75upYQgOAKtbS04IuXODtxMvBFmj6Ii/Vth1uHbQ70GKPJVJPe+Ny/vsF/+fU9y1CX0LvQTgUAsGDODIIydp0ZQDyrtraW40QnLu4LFydBymhtbdVeKWyzwSdFMuH1gm+/3t5ePD8EqiHr+gRCZR+2OV//pm9Z7gqtVpuSksKhsjfpjat/tZ3xRAdXL3/05KGMxIVmW4+l3qpCCbvZXJhNltGfvbqXBjZQgFz0GS4JIRTiHst4T/DljCYcTMdkGSVoWCWXQrSyvb2dSNQubPY45EW73UaEVyS2khvHOG1Cm4WDXzuczi1vHyakNIK0BOSPJjZIa589NDYNcCbpZtSI7lk+D604GjWchHtXzCce/qYj1CORMArHT96ZBSUn6EqPzicBFgV+xBdRPUjij1fJaAvXv7z9KfxeX1/PxkNMltEH/+sL4rBcMGcGVGxw/2LkpEWb0Dz5l09Qf9jcwug7EIhims1mtO46nW6Kr/wIJ0uIWA8ODvLHO4koBN0WpxtM09rqEYTDrxZx8egaRShEWHCliD5AAzb+IpvKiutv9fX1bFbU1c1dz2w7TFAmVN7q6+tx/AJZ+xDIi8E0+sd/7Jzg5Cx+VGx6fmtrKx5fLz4+PrDkRe3SVOKXL84Nvv3hLthdJFMTDI7YhMkJyniVzG639/b24ovHuCqTkT+a1nQ/OzOA6IM2I6hu7ip+bieh00O7ByI8Hi7x0Kfg2i0ftBvtOp3OZrMxjqW6uYsQGpAmDSEf3ZXCxrP4pEgmvF6I7ceYHyJYJILHEiEyrt3ywV/e/lSn0zGKKSO28bd2VxFThyaQXp2pjL84eSgjcaEJANhxuOaDCuNnn38B26XpnFHagKAy5OYEgE2LZW/qTpU1WDjCBJoso/RCPHlnVrBI5HA4IN9BDTGe3Hxmj7bE4COF0MrVsM25YvN75/UjkF8z9sfQb7l36y7GfEswBoKA+ItsG+SZbYfRzRE9vQ6n8/G/f0WIcYWLk+JVMuLeEEVgDZeEEObqFXX6DyqMX3xRwoGqvrW7ihCOkcR//vx5fLw1NTW+GC/6N/4i4oq0hev2SlNF6zBHtHlGukWsFY9vBzCbCkbZtKJ1ePWtt2q1Wo1GQ+/B6uauFZvfY+S9eNoSHy/6BRQi7D/M2oCMBflo2oQhWc0lN2yS0RaTWHqUwYUo8rDgoqIiq9WKlCK5XB4cHCxMn+ePL/o9fzR9WP/z5FC70Q4fo0cECWbjS+RZA+uBlIyPF9nV0MjLrjMDqCFG85tPvq6lpQLIoxITExF+pNVqA05epB0mhm3ON77p+6pm0OmckKm5tX84p1C4RMsWHR3NuCp+j78IuQmxZq199pcP9DR2jzqdLnSjZ7KMVjd3ffJ1LU0W63OuDxaJkN4JKyc8YRfMmUHwrGGb85/H+7uC1N3msdraWsSzHE5nk9748sfH6YagJm21WuHcIuJIS0vjgNC44Xo2rxf8efqQWJExm77IHrY5t1eayrsjvj52CkeXTZbRt3ZX3fTEO2zYzz9/fZvL5Tp37lwAxl/0sShkYfT0tvbZ/7C3u6zBsrxgVXNzM5Knm/TGvRVNjNIGBJVxbq7VaiMiItiaKG0YKu+OaDfa6+q+xaUNQ7/lk69r6UMXiRp1dXXETmQ8ubnjL6Lyg+XzBMw/za8hJ/2qWdRtHjt3voZArLe8fbjo6Y8YM+pmpqkfWr0Q3V0IYB00ggsAeOObvvLuCPu4s76+Hid1RmERAPDY7YsBAGit0YUp8n/afPdSmgu9eaSvsXt0We6KyspKJCU7nM7q5i5GXgolfoAZ0kD6nzlzpi80PBn2i4wsEWI5D/zne+1G+969+3AxzmQZZaRbBC5CCyiELxIq9DM/vJluSPvUu29/uEun00Gax/EbNt6LDNHQ54wZM6byDMbD/qOsDTjU4pG2CWnv8JmLHm0fiaUPl4TQpskREpFIFFRSUjI6OorMCuk4XCCw7RfZVNZ+s/Wfx/s3/3k7VBRxjtqkN761u4ommMw09YI5MxwOB44ilZSU4DycEXn55/H+B/7zPWjOS0CMNNwGACjO04RLQnp6ehB+BK5YK11deTGE/umxtZnEhSkAoKLNWtFm1cSHNRl1t2RnNFwyVjd3M6r+hACEli02NpZjdWHR6/W+RKDF5aH1OdfTzHd7pQkAECHpue5Yz+kGLnsaCPCgcHqwk/QQtm7Mp3VW2G6ExFjZsT83c+6J2g56PlH586OFLpersrKSmA3GbQmo+ItsIuPaZdfRjVZVVc1Th9PTjgj9z48WFj39EV3bvsqmfQD8ae+7SWqlUh7OdvWMyraniuKUkSdPnkRcD3VemMjo3/iLvpfH1mYeONVCo6qlDUM3PfEOACDzusZmg4l+gJA2jEbjsWMTzKKmpgYhKE/emUU3gXbc18271y9fUtfev7PsAlsrz95/c7BI1NPTg0OYAIDZs2d7nGSdTpefn8/4WNb1CQLmf8GcGYWLk2iOUVGnr6gDb3zTB8CJwsVJp+oNHJMG2curT6waHBhobW3FL9q8ZR0PrV5ITx2kc 018 WL3p0Nr8JU1645Fz7YxcrjhPA8FFpELDUePQlEIW9trPVxc/txN/sccyvr3StL3yvRhZSL0xZMn8OQdOtbDxh8LFSSszkxwOx6FDh3D6l0gkPt6ZarVatEy++6LilMPIEmsMozWGUQD6D3z77zuWL9b3Wj4/WseoDECWCBc0KysL7yQBIcerZMV5GmLqeizjb3zTl5ygVDecu8MpdYlCTtR2MG5VAMDzD+VBrkjMhrB43cIKkcXnhpR4NJ+oVx6lBOicjuaz32xdlrv+aOkBBBPsOnOYgwBgyUiNJ0h92fzZAAwDAAYHB2Ead8DpoEbXKQxfRAvtY/xFojPPP5RHbEbIsUsbhlRy6aFGzxx168Z8qH4XFBSgyouKimAgRlRWZib9a99ZgrzhFshMU49E9s6zui72WNh4CzxfXC7X2bNn4f6CbU02DiIEX4TE91RxNuPTNYbRD493Pvwn3Us7jrENFW5CBCyhTzaFeJLyR3MYWg3bnNzC4lPF2RD70ev13MC+Qhb2wsY8tlY+P3npZ6/u5RAWN2kz4lWyoKAgs9mM3+9otVpGLBbws18ELF4v8HmO/LPxKhnbcJDi5VFYfKo4e8GcGd98801WVhb4Ptovwj1CK5FuYtC3eg65B0obAIBjx47hvcVdmINFopd+vJythqP1Az9/bd+bulNsrRQuTsrWzAQAnDx5ktiJbAEjec4e7W/IuBPpGp754c0c7tVQXOMWFlVy6f/8fE37xYu4yaAA+0U4imfvv5mNy+04dqn4uZ3PbDvMyOVUcumTd2a5XC64STkMQ5PUSrYN1WMZ/8fe2o0vlbDxB5VcCiG0yspKaLmIxjt37lwfCdjHMPX4u8TrClkY2/EBACir6//Zq3tf2nGMTVh8qjgb2jLV1tbiNe/fv5++jHvyzixGimrsMJY2DD3x2kHIfhmJqnBxUpJa2dDQQOi0DQ0NPkYp8qoQTpbQCApGsfCIHeAFCpqofHO6jkDsPCp1N1FGXBHjl32/Ghsb0fORkZGTqqj7br/I1pkktZIt2Fy/2eqRo77y+EqFLMxoNCLbnssSZ2kprbxBnYfhXKjTv7Tj2A//8AUbbwEAvLAxL0wcfPLkSZvNhu8v/slgp1ReBADcdctcDisljlKcp5kTrygvLycsF2tqatgEoMmwX4Rsa9tTQgwpkhOU63LSGhoaiEsKNteklZlJbMcnd4HXanRDjAZwjMg/93aivV7g87j9OF2D4OEgCTh3bjR0AqXvvAQHZw4o+0U0UcL2iEoufWxtpt1uJ0xjaQJbMGcGt/jOQcPPPZSLcgURKZLZjkP+swc9BLl3Il1DuCSEQwLmM6gPt9ze2nihpqaGzrcmIFlWtmYmHRGXT3nt56tFQUEnT54kxssoiK/MTBLWyj9/fVuYOJjmpfv27fPdjGmS7BfR8SGYJa7LSTObzWKxGOV0gfpAQUEBTbfBItGOZ9dzKyEcsnhDQ0NKSgpuHwb4BeTzYzlR6+bsBUNLEk6W0EaFuxBRu3uGXNywAr30RFRLAMBd2uVw/tFaMMbhAt8F+0WkYAhj2pu0GdmamT09PYRzG7gSqp0o8SqZMPEjM029MjPp5MmTCG2BRS6X808GO9XyIoRevZ3ZzDT1plsXHDhwgAaW2K7AwCTEX8SPWwFs688/zg8Wierr64m0Sxw8+pE16d42lJyg/KU27eiRI6ghnP+yydb88UXAZNRP2y8y1iBgOLD89ce5KTILDWhdPp6zsznGxQdfhOXqxl/Ey6tPrPJ2j6jk0h3Prg+XhJSWluKmsVqtlhE0WpmZxIHWsDXx4gPZdRcuEOAl/JwzZ47v6CxHzCbuGhbMmSGMjd6Zk/bsnfNOHDnM6IKt0WiE3c8+91Cutyv4VHH2zOjLthbE9LKJGs89lOutyPj3x5bHq2QESA/L+Pi47wDYJNkvovLQ6oUciQOYj4/r1P95b1bdhQtlZWWEPiCRSNjuiBWysH/++javREaVXPrhltsvXWypr68n7MO8DdPteyEyRMQqIgAAZWVlaPhlZWV82CYRtftQVQvwxn4RNY2X6oojBL7AFlMv8O0XkYLx558UervlH7k1/bbMhPLyckYVMTubmT8vmDPjlcdXeitBvbwpn1ARYWHzZwgUeVEhC3v1iVX8z6o0taww0VH69WEIouJzmpiYyHER6ff4i4JFn2nS0AeXqk6XH6UJzqMr+yNr0vkTx8JrZcXzxRcu1EJQBG+urKyM23qGP75Ie73gz3PX8MiadK8Ud3l4yH+sTBjoqKdHBD81Go0v6lFAxV/Euc+rT6ziLwrMipE9vTa58sQ30IMeXwjG6zaE1pS8uIHnWixJVv1oqazm7CnC7RpcMfDlOHu8QmeJ4Mw8+TVko16R1jSp+LHlM6+XDTQ1NjCSllqtFnzMB4tE//PzW/mDuHmamOlj+n379sFwAYRXARuFB4tEWx/O48lLr4mK+I+VCf0Xa2mQHg529erVvpPuZMRfJIa8+e6l254q4rnQOWmqV3+2qvzEcSKqPNQPFy5cyCEix6tk/36hmKcQME0aWpwZdeLIYSjc4/HLJBLJFJ/KRL7g5AQl7tsEe4UnvOAoRNTuJr0RZi3njy8Gi0S4EqiSS9fdfhvxPNReJlVRn4z4i8Sx+OoTq/hLBT9YGhcf1IkDfnjl3D3M1szkz7rVyvCtG/MPHTyATzKiT555Da6avAgJ6K5b5vJh7qvmyt9/doNIFESzIa1Wy70JJ8l+ERd9Sl7c4JGbFC5OevRm5WP3r2Nkplqt1qO4k62ZeeDl+zhwFwBAhET0yuMrb5sXedttRYwN5eTkcIMH/PFFQOV68Wi/SGBIe/54j0eQIEYW8srjK392S9Tdt68m+C/6TE1N9VFxDzT7RUIUKHlxg0ep8YWNeT/MiMjJXoLHX0WfjNdt+GGw54/3cDcRIRHteHb9ylTx+jvWstEw9/7yavbowFv8pRBIWh5ZdoRE9MLGvCdylQ/euZJtRHK5fP78+T4u4srMpJIXN3DvXADAK4+vvGlWMG5KyD+iMpT7PfLSTdqMBzJlaCvRnwsWLPAL3U5G/EVG3cCjJBchEf345qjcOeI9X34JmAwrT58+7fGw5CkEJEaJH71ZGRU2RuCj8PvChQsFX4AIKw0dbsHhZ8cpAWZZAXvFFrGP8QhzE0aBlIYJuJU6mGgelozUeNyfDD7JZkIX4PEXaaYNARHuLR8jC9m8IiZJybpl0tPTxZ4S9vJUZjJnSR/KmgZdlIgtgEJ0BUIJ4uML5nA6WwymXQdO1LUbawyj+ITeMFO68JpwcQir3JmdnY0kLYfT2W0axgHwYJEIn5309HTuI81kGR25kqY2XByqkIXxf/1YTfvXp5uqG9pb+yZmXxMfFhUZkhglmalkXXiJRJKfn8+TlTicztbOgd1lp4/V6lFDiVHia5Xi+Gmhc6IlIhGrWLBkyRKCM47Yxk1DIzjxWa1W5CypVqs9nlJ48oC+ro6LLW42tnxqaNIbvzpaffrbS6399mGbEy39LJV4bnw4x7zBkpqaKsAkCO+2IjLc5bDjLqL5+flSqZR7ctBjU7aXDP2WNz451N5jxicKLv2NsyM49gh/AjP0W6rq9bsOnT7XMYwvRIJCPDcujIO0JBJJbm4uwd3wSRYwe/jrDoej6sQ3RAc8Cp0jtvFDp5uOVp7rGhjFGYsmPuwahZibsbANSnBh5HKJUeLrYsOuVYmjI0M4phfnch6HXH+pd9eBk3UdA4g/wPFeqxLHykO5NFLerXhkm/Aogj6kHpeJ5ttdnZ1qtZrPu4hUTta0nWrsPXquBW4NlVwaF+ksXrV0WF+77vbb8M7gn+Xl5RkZGYwmYmzM6uszbbiLq0ounaMERflZva3nf3j37XQTl0W3hoYptlyk2bsiMhwG0/FqddhqC3GNxUQpdTrd8oJVO/+tQ8l4YxURttFRqVRKN4HXgI7XoqKikpIS4kmCP4dLQlBtRUVFw8PDPBkvXY9XYyeGHKuIqD57Nj09nWcN8LA+cfbbbztHkfeJtb8j94aUH2hv7ms+e9ttRWyU6S3BVDd37dhXeaC6E4eTFSGjP9DefOnbquL1a9kaAoFUgvjHDrDb7aWlpQUFBe9//LlULBKHiIgwBPR3WgDiUAiEYUJEwAWPCGVDQ0N9ff2y3BWHD+6DpxHcDxyjyMnJ8dY6yuVyQQunG5bmxqtkyB+eY7r4y1X+mi4Y2Ysn5g/nzel0LV52y+njpRzThX/3qAAI6DkHP4ISD2p9iuVFuO5BQUE6nc7pdJlHHfB88jhXZrPZKwKDO1Fzw42MC0HTM3+5Cu+Vt8GPampqICCBOsOTPuFwbDbb8oJVe/Z8CXelR9KKjo5mux3zSWp0OI4ePWo2m5flrkARSfy1c/FSXl7e3d0zMubccOft3PwHfjcajX40eCfQF285iV6vx7EfnhsNRo8atjlCg4O4NQFY5HL5smXLBGB+kBTt484xhytC4vn1SaIlwQAbbpfli8RArHJhYSFkAoRmyNYE8ZhEIoHguscnfWG8+PD5H08+zh483Qas4/KwYA61EMdZFi1a5K0Zscvl+uabb8xmM/8tIIy3TF4J/v3vf8/30eDg2bNn19bWjg6bg0VBwD0RAv1do9EkJCR4RdORkZHeSmao3YaGhri4OI+vq1Sq4eHh2vNng6+QxYYNG9hGIZFIMjIyBLDpoKAgtVptMpma6i/gPWRs6OLFi8uWLePp82i1WtE1wfDwsLepCLq6uqDlHOyAXC7nWYNKpVIoFP39fZfamjkWHZ+6rKwstqCb3hZ81Bs2bJg9e3ZoKAMSMzY21trainrC9tgkql9BQS6Xy2QyjYxYw0JF3BvkslatUHhLYMHBwddcc03FiaPI3xyvkKDn6OjoZcuW8ZkHfJIbGhq8nb2wsLCLFy/inUlNTeXPWMRicfmJ42hXck9ddHT0kiVLJiPuiUgkuvbaa8fGxs6dPc2HzjUaTVKSEPdntVo9MDAwZhvh4D9ImomJieGIYyKgpKamovoFSCQWi6WzsxNcsTYZGxvjQyrh4eHR0dFdho5gURBEaFAH6O8ajWbhwoUikUjA6GJiYhQKhcnYLwJOjw2p1erFixcHzpEcFxcHO6bVagVweLwMDw9bLBY00qioKOhqPTY2ptFoPO7T0NBQfLoGBwfZOgMZL2rIF8aLhg8AyM3N9fb1zs5OmPAadoYnC1LdQzrjAAAgAElEQVSpVEFBQcNmU1BQUFFREdqSNMFAkSApKUkA8wkKCpo1a1ZqamprcyPPLSCMt0xeCfF2wBqNZvbs2ZWVlRwBLCQSybJly6YY2uFf0tPTr7vuunPnznHn/05MTJw7d67gMykoKCgrK0uv19fW1rIlpfW9FW9LWlrayZMnhb0bExOTn5/f3NxMpPmhVz85OXnmzJlTbAwUICUoKGjJkiW9vb11dXXcQV6io6NTUlKEgUZisTg/P7+uro4xOSxaiLlz5/oL3+WDBsnlcgFxbeCkJSYmxsbGcjMWNGkKhWLytgzkcjExMWfPnuXYuVAjEhw3G9KJwWDgNtLyI0IfCEWpVBYWFrLld0aEtHjxYh+PD8isqqurPZ4FgTy9PurbsbGxONg2MDDgrdtEdHQ0OiX9pfwHZklJSZkxY8aZM2e4dbwFCxb4fq7l5+ejDB2TwVsm8XQTFsve5XJZLBaLxWIymYaGhnp7e+VyuUqliomJmT59ur8siia7GI3GkZERNAS4PSIjIxUKRXR0tL9Ggeaqu7u7r6/PZrNFR0crlcqIiAg/tjKVxeFwDA4ODg4OmkwmOCKJRBIVFQUAmDVr1qSe5d+tYjQaYVZMi8UCxSA4UWLx/7J3d79t3ffhxxmakk1RlERKsp5sy3Li+Kl+gB1kNhIgzbAaaAIMzjAEawbsprdtc5G/YLvvRdZe7GYXu2gyFB1mDGgGLC2QbvGQLXMTK3ZtN7YlWZZkS4qOTJpkLdL074KDf5liHUuyKFLi63W1WbTIHorK299zvp/TvGfPnjX5B9XCwsL8/Pz8/Pzc3NzMzEzl+/f09MTj8Y34RnzzF0slIJLJZGtr644dO9bzX6EPHjz46quvpqenJycnK+G4devW/v7+tf0t9/VPU+W/7gMDA62trR0dHZ2dnZv4H12Vy4d+85vfvPLKK//2b/92+vTpyp9ULupY8yeq3A2rck3Y09xIjE3s4cOHFy9eTKfTAwMDlZ/Jys/nmv/AVH7IK9/2k08+OXnyZOXppqen62Qr9Fr2IgAADSLqEAAAoBcBANCLAADoRQAA9CIAAHoRAAC9CACAXgQAQC8CAKAXAQBALwIAoBcBANCLAADoRQAA9CIAAHoRAAC9CACAXgQAQC8CAIBeBABALwIAoBcBANCLAADoRQAA9CIAAHoRAAC9CACAXgQAAL0IAIBeBABALwIAoBcBANCLAADoRQAA9CIAAHoRAAC9CAAAehEAAL0IAIBeBABALwIAoBcBANCLAADoRQAA9CIAAHoRAAC9CAAAehEAAL0IAIBeBABALwIAoBcBANCLAADoRQAA9CIAAHoRAAD0IgAAehEAAL0IAIBeBABALwIAoBcBANCLAADoRQAA9CIAAOhFAAD0IgAAehEAAL0IAIBeBABALwIAoBcBANCLAADoRQAA0IsAAOhFAAD0IgAAehEAAL0IAIBeBABALwIAoBcBANCLAACgFwEA0IsAAOhFAAD0IgAAehEAAL0IAIBeBABALwIAoBcBANCLAACgFwEA0IsAAOhFAAD0IgAAehEAAL0IAIBeBABALwIAoBcBAEAvAgCgFwEA0IsAAOhFAAD0IgAAehEAAL0IAIBeBABALwIAgF4EAEAvAgCgFwEA0IsAAOhFAAD0IgAAehEAAL0IAIBeBAAAvQgAgF4EAEAvAgCgFwEA0IsAAOhFAAD0IgAAehEAAL0IAIBedAgAANCLAADoRQAA9CIAAHoRAAC9CACAXgQAQC8CAKAXAQDQiwAAoBcBANCLAADoRQAA9CIAAHoRAAC9CACAXgQAQC8CAKAXAQBALwIAoBcBANCLAADoRQAA9CIAAHoRAAC9CACAXgQAQC8CAIBeBABALwIAoBcBANCLAADoRQAA9CIAAHoRAAC9CACAXgQAAL0IAIBeBABALwIAoBcBANCLAADoRQAA9CIAAHoRAAC9CACAXgQAAL0IAIBeBABALwIAoBcBANCLAADoRQAA9CIAAHoRAAC9CAAAehEAAL0IAIBeBABALwIAoBcBANCLAADoRQAA9CIAAHoRAAD0IgAAehEAAL0IAIBeBABALwIAoBcBANCLAADoRQAA9CIAAOhFAAD0IgAAehEAAL0IAIBeBABALwIAoBcBANCLAADoRQAA0IsAAOhFAAD0IgAAehEAAL0IAIBeBABALwIAoBcBANCLAADoRQAA0IsAAOhFAAD0IgAAehEAAL0IAIBeBABALwIAoBcBANCLAACgFwEA0IsAAOhFAAD0IgAAehEAAL0IAIBeBABALwIAoBcBAEAvAgCgFwEA0IsAAOhFAAD0IgAAehEAAL0IAIBeBABALwIAgF4EAEAvAgCgFwEA0IsAAOhFAAD0IgAAehEAAL0IAIBeBABALzoEAADoRQAA9CIAAHoRAAC9CACAXgQAQC8CAKAXAQDQiwAA6EUAANCLAADoRQAA9CIAAHoRAAC9CACAXgQAQC8CAKAXAQDQiwAAoBcBANCLAADoRQAA9CIAAHoRAAC9CACAXgQAQC8CAKAXAQBALwIAoBcBANCLAADoRQAA9CIAAHoRAIDqGR0dffvtt/UiAACPUSqVTp06VY3v/MzDhw8dXwCAje7tt9/+6KOPzp8/H4vF9CIAAP/HBx988Prrr4+MjOzevXvNv7nz0QAAG9vMzMz3v//9n/3sZ9WIxYj1RQCAje473/lOJBL58MMPq/T9Yw4xAMDG9dOf/vTixYvXrl2r3lNYXwQA2KhGR0eHhoY+/vjjl156qXrP4vpFAIANqTJA50c/+lFVY1EvAgBsVO+8804kEvnxj39c7SdyPhoAYOOp6gCdRawvAgBsMJUBOj/5yU/WIRYj1hcBADacag/QWcQ8HQCAjaQyQGd4eHjdntH6IgDAhlEZoPPLX/7ytdde04sAAPwfpVJp586db7755rvvvruez2u/CwDAxrBuA3QWsb4IALABrOcAnUWsLwIA1LtcLreeA3QW9+Lf/M3fPLNy586d887BUzp69OgqPn25XM6hA2g0Z86c+da3vvWDH/ygJs/ufDQAQF1777333nnnneHh4e7ubr0IAMD/UZMBOnoRAGBjKJVKJ06c+Pa3v73OA3T0IgDAxvD222///Oc/Hx8fj8VqeU8+vQgAUI/OnTv38ssv12SAziLm6QAA1J1cLvfnf/7ntRqgs4j1RQCAuvOd73wnEol8+OGH9fBiYt4PAIC68t57 712 8eHF4eLhOXo/1RQCAOlIPA3T0IgBAnaqTATp6EQCgTtXJAB29CABQj+pngM4i5ukAANReXQ3QWcT6IgBA7dXVAJ1FzNMBAKixehugs4j1RQCAWqrDATp6EQCgXlQG6Bw6dOi9996r2xfpfDQAQM38/Oc/n56ePn/+fD2/SOuLAAA1k8vlIpFIIpHQiwAAbFTmLwIAoBcBANCLAADoRQAA9CIAAHoRAAC9CACAXgQAQC8CAKAXAQBALwIAoBcBANCLAADoRQAA9CIAAHoRAAC9CACAXgQAQC8CAIBeBABALwIAoBcBANCLAADoRQAA9CIAAHoRAAC9CACAXgQAAL0IAIBeBABALwIAoBcBANCLAADoRQAA9CIAAHoRAAC9CAAAehEAAL0IAIBeBABALwIAoBcBANCLAADoRQAA9CIAAHoRAAC9CAAAehEAAL0IAIBeBABALwIAoBcBANCLAADoRQAA9CIAAHoRAAD0IgAAehEAAL0IAIBeBABALwIAoBcBANCLAADoRQAA9CIAAOhFAAD0IgAAehEAAL0IAIBeBABALwIAoBcBANCLAADoRQAA0IsAAOhFAAD0IgAAehEAAL0IAIBeBABALwIAoBcBANCLAACgFwEA0IsAAOhFAAD0IgAAehEAAL0IAIBeBABALwIAoBcBANCLAACgFwEA0IsAAOhFAAD0IgAAehEAAL0IAIBeBABALwIAoBcBAEAvAgCgFwEA0IsAAOhFAAD0IgAAehEAAL0IAIBeBABALwIAgF4EAEAvAgCgFwEA0IsAAOhFAAD0IgAAehEAAL0IAIBeBAAAvQgAgF4EAEAvAgCgFwEA0IsAAOhFAAD0IgAAehEAAL0IAAB6EQAAvQgAgF4EAEAvAgCgFwEA0IsAAOhFAAD0IgAAehEAAL0IAAB6EQAAvQgAgF4EAEAvAgCgFwEA0IsAAOhFAAD0IgAAehEAAPQiAAB6EQAAvQgAgF4EAEAvAgCgFwEA0IsAAOhFAAD0IgAA6EUAAPQiAAB6EQAAvQgAgF4EAEAvAgCgFwEA0IsAAOhFAADQiwAA6EUAAPQiAAB6EQAAvQgAgF4EAEAvAgCgFwEA0IsAAOhFAADQiwAA6EUAAPQiAAB6EQAAvQgAgF4EAEAvAgCgFwEA0IsAAKAXAQDQiwAA6EUAAPQiAAB6EQAAvQgAgF4EAEAvAgCgFwEAQC8CAKAXAQDQiwAA6EUAAPQiAAB6EQAAvQgAgF4EAEAvAgCAXgQAQC8CAKAXAQDQiwAA6EUAAPQiAAB6EQAAvQgAgF4EAAC9CACAXgQAQC8CAKAXAQDQiwAA6EUAAPQiAAB6EQAAvQgAgF4EAAC9CACAXgQAQC8CAKAXAQDQiwAA6EUAAPQiAAB6EQAAvQgAAHoRAAC9CACAXgQAQC8CAKAXAQDQiwAA6EUAAPQiAAB6EQAA9CIAAHoRAAC9CACAXgQAQC8CAKAXAQDQiwAA6EUAAPQiAADoRQAA9CIAAHoRAAC9CACAXgQAQC8CAKAXAQDQiwAA6EUAANCLAADoRQAA9CIAAHoRAAC9CACAXgQAQC8CAKAXAQDQiwAA6EUAANCLAADoRQAA9CIAAHoRAAC9CACAXgQAQC8CAKAXAQDQiwAAoBcBANCLAADoRQAA9CIAAHoRAAC9CACAXgQAQC8CAKAXAQBALwIAoBcBANCLAADoRQAA9CIAAHoRAAC9CACAXgQAQC8CAIBeBABALwIAoBcBANCLAADoRQAA9CIAAHoRAAC9CACAXgQAQC8CAIBeBABALwIAoBcBANCLAADoRQAA9CIAAHoRAAC9CACAXgQAAL0IAIBeBABALwIAoBcBANCLAADoRQAA9CIAAHoRAAC9CAAAehEAAL0IAIBeBABALwIAoBcBANCLAADoRQAA9CIAAHoRAAD0IgAAehEAAL0IAIBeBABALwIAoBcBANCLAADoRQAA9CIAAOhFAAD0IgAAehEAAL0IAIBeBABALwIAoBcBANCLAADoRQAA9CIAAOhFAAD0IgAAehEAAL0IAIBeBABALwIAoBcBANCLAADoRQAA0IsAAOhFAAD0IgAAehEAAL0IAIBeBABALwIAoBcBANCLAACgFwEA0IsAAOhFAAD0IgAAehEAAL0IAIBeBABALwIAoBcBAEAvAgCgFwEA0IsAAOhFAAD0IgAAehEAAL0IAIBeBABALwIAgF4EAEAvAgCgFwEA0IsAAOhFAAD0IgAAehEAAL0IAMDm9cUXX+RyOb0IAMDjY/HIkSP5fF4vAgCwWKlUOn369F//9V93d3c/8/DhQ0cEAICve+utty5dunT+/PlYLBZzOAAA+LoPPvjg/fffHxkZqbSi89EAAPx/MzMzr7/++s9+9rPdu3dX/sT5aAAA/lepVPrud78biUQ+/PDDR3/ofDSwMWSz2X/5l39pb29f/l9pbm5Op9Nbt269detWNV5SW1tbe3v7Ey/s6e/vb2tr8w4CG8Lf/d3fXbx48dq1a1//Q70IVL3zJiYmRkZG8vn88ePHh4aGVv2tBgcH+/v7V/EX9+3bV73/geVy+f79+0t99d69e5WyXPX3LxaL169fHxwcjMfjfpyAqvriiy9++MMffvzxx4lEQi8CVVQul4MgmJ6eHh0dzefz6XQ6nU7v3bu3XC7fvn37aXqxPkWj0aqW3K1bt6ampm7dupXJZPr7+wcHB3t6eqJRV58Da6wyQOdHP/rRSy+9tOhLehFYM7Ozs//xH/+xZcuWdDqdSqUWrepFo9GpqSlHaaVGR0cHBgYqZ70XFhZu3rz56aefPnjw4MCBAxYdgTX0V3/1V9u3b//xj3/8zS/pRWDNPPPMM93d3SGnjGOxWLlctja2IkEQDA4OVv7v5ubm7u7u7u7ucrmcy+XOnTuXyWSOHz/+aA8jwOosGqCjF4FqSaVSlcv1lpJOp4Mg6OzsdKyWqVAoPPbax2g0mkwmk8lkEATGXABP6ZsDdBb/znGMgLUSjUbz+Xx4UM7MzDhQyzc2Ntbd3R3ygCAIent7HSjgabz11lt/8id/8tZbby35690xAtZQKpUqlUpLfXXr1q0jIyOO0vKNjIws2qW4SCaTcQkj8DR++tOfXrx48ezZsyGPcT4aWEu7d+/OZDLJZPLx/0KNRguFgqO0fPl8PuRyz4WFhdUNGAKoGB0dfewAHb0IVFFXV9fo6OhSvRiJRNra2gqFwiqWxGKxWDabvXr16pq8zqmpqW9/+9tLfTUIgrXq2nw+v2vXrtX93Ww2m06nQx5w9+7dR1thAFaqVCqdOnXqsQN09CJQRclkMpfLhT9gfn5+Fb0Yj8crt6haE//6r/8aXpOvvPLKWj3Xtm3bVvcXr1+/Ht6LQRAcP37cTx2wOu+8885SA3T0IlBdxWIx5Kutra137tzp6+ur//Ct+WsYGRk5evRoyAPy+XxTU5MfOWAVPvjgg7/9279daoDOIive7/L2228/s3Lnzp3zxkBVlcvlbDb729/+dhWf0PAoWamhoaGQk7nxeNyWl2W+oVu2bAl5gIsXgVWbmZn5/ve/HzJAZ5EVry++++677777rgMNNVcsFjOZzMzMzNTUVBAEsVgsnU4nk8mrV6/GYrGxsbEXXnihJotkPT09N2/eDDnjbElsOYIgcPEiUCVvvfXWt771rZABOk/bi0Cd+MUvfrFz585UKrVz585vdkNbW9vs7GxNerGjo+PSpUshUwMTiUQ2m62HE771bHx8PJVKhQflOl+8WCgUPvroo3w+39LSsn///t7eXqN8YCOqDNC5du3a8v+KXoSNqre3d/v27Utdd5JMJu/cuTM0NLT+Lywej2cymZAHpNPpWrXsBnLjxo1jx46F19u6rdSWy+X//u//vnPnzr59+5qbm8vl8tzc3PXr1zOZTH9//969e1OplNs8woawzAE6ehE2id27d8/NzS21BBWLxSYnJ2v12uLxeMh9ouPx+OjoaE1a9pFV71leH8VisaWlJTwW1+0AjoyM/Pa3v33uuecOHz5c+ZNoNJpKpSo/ewsLC5cvX56ammptbbXoCHVu+QN09CJsEpVJhyGnLGOxWEi0VdXQ0ND9+/eX6oZYLBYEQc2PXj2/ubOzs088GX3gwIFqv4xMJvPLX/5y586dR48eXeoHqbm5ub+/v7+/f9Gi48GDBx9752ughpY/QEcvwibxxEmH6XQ6CILOzs71f239/f3Dw8Mh60wtLS21atmK+/fvr+hczDobGxvr6OgIeUDI0vKaKBaL//mf/5nL5U6cOLGcWRuRry06Liws/M///M+2bdvCz6cD62xFA3QWf8AdPti4wuetpFKpmZmZmryw1tbWubm58AfUdokx/OXV3OTkZHNzc8gDHjx4UKXaLpfLV65cOXv2bFdX1/79+1f035VSqXTjxo2RkZE//dM/FYtQV1Y6QGcR64uwgfX19YXcW2/r1q1ffvnl/v3 71/ +FRaPRUqn0xJatydpnxcLCQt2+rYVCIfxMbvUuXvzqq69+85vfbN++/cSJEyutzNu3b09PT7/yyis1fFuBpax0gI5ehM0jfNJhNBrN5/M1bNlSqbTU6lQNW7b+3b59O/xc8/T09Ep77omKxeKvfvWrpqamI0eOrHTlcmZm5vr166+++urLL7/s7YM6tIoBOov/g+IgwsbV1dUVfla3vb095FYrVdXb25vNZpf81RONPnjwwDv4WKOjo+HDhubm5tZwK0m5XL5w4cLZs2d37dq1Z8+eFcViEASfffZZe3v7X/zFX9T/PR6hYX+l/PCHP/zFL37xNBdt60XYwJqamsJXEFOp1Pz8fK1aNnwK47Zt22rVsnWucreekLwLH7WzIlNTU//4j/9YKpVOnDixojk4hULhiy++KBaLb7zxxv79+w1fhPq06gE6izgfDRtbKpUK2WicSCTGxsZqsvDzxO3byWRyfn7erL5vdlj42mEul1uTixczmcy5c+e2bdv24osvrqj2SqXStWvXotHoa6+95taOUOfeeeedSCSyigE6ehE2lb6+vlwut9Tpy+bm5qmpqVq9tvDt2+3t7bVq2Xo2NjYWcivFSCQyNzf3wgsvPM1TLLpZy4r+4ujoaLFYfPnll81WhPr3NAN0FnEGATa2gYGBkMsEK9FWLpdr1bIhZ5xr27J1a2RkJPwao7m5uae5leLIyMg///M/x+Pxw4cPLz8Wy+Xy5OTk8PDwoUOHvvvd74pFqH+VATo/+clPVjdARy/CppJIJMJHCabT6fDzwtXT09Nz7969kAc4m/lN+Xw+5OxwqVRKp9Or+86ZTOb999+fmJg4evToioozCIILFy50d3f/2Z/9mfVg2CgqA3R+8IMfrMl3cz4aNrYnbjROJpMTExM1mVzT1dVV6YyQ2M1ms0+zWlYltXpJ2Ww2PAez2ewqlgpWcbOWikKh8Pnnn584ceKNN96wowU2kMoAneHh4TX7b41jChtdX19fyPTpRCIxMjJSkxf2xO3b6XR6YmKiDg9prW4VeOvWrfBeDIKgt7d3+d9w1TdrqWx/zmazb775pu3PsLFUBuj8/d//ffjF0CtifRE2vJ6enrm5uaWuRYtGozUcWxOPx0O2b8fj8VqtfYbbunVrTZ73ypUrR48eDXlAJpNZ/o7y2dnZf//3fx8YGFjRcO9SqXTz5s1isXj69Gm 712 HDeTRA57XXXlvDb6sXYcPr7e29fv16yB1BOjo6isViTS4WHBoaCtm+HYvFansX6ZDSWv8nLZfL4TvKS6VS+H1fHikUCh999NFKb9ZSuaff+Pj466+/bkcLbFxvvvnm0w/Q0Yuw2cTj8bt374Y8IJFIzM7O1mSnwsDAwIULF0IuB2xpaalVy4b4wx/+sP5PGgTB 01+ 8WC6Xv/jii9HR0eeee25Fq4OTk5PT09OnTp1yTz/Y0GKx2Lvvvrvm39YlKbAZhN/wo7W19c6dOzV5YU/cvt3a2hp+G5jGMT4+Hr58+MSLF6empt5///1SqXT48OHlx2Llnn5dXV1nzpyx/RnQi7BpDQ0NhVykGI/Ha7XlJZfLlUqlkAekUqmZmRnvYCQSmZycDI+8kIsXM5nM2bNnr1y58kd/9EfLPGcdiUQKhcL58+djsZh7+gHhnI+GzaC7u/vy5cshtbFuJ3yz2ezs7OydO3empqaampoSicSzzz4b8vh4PH 716 tU63PKyzorFYniuLSws9Pf3f/PPH92s5eDBg8vf/lwqlS5fvtzR0XHmzBlTMAG9CA2hra0tfDJ29SYdFgqF+fn5SiA+ePAgkUi0tbV1dHRs3759md8hfOZOg5idnQ1fF7x79+7g4OCiP7x69erFixefe+65w4cPL78UK9ufX331VZtaAL0IDWSZkw7XZBmvWCxmMpnp6enR0dF8Pt/e3p5MJltbW/ft27e6b9je3l4oFBp8dMvY2FhHR0fIA4IgOH78+KP/N5PJ/PrXv+7u7j569OgyzyNXtj9PT0+/8sornZ2dPjWAXoSGk0qlSqXSUmckn2bSYblcDoJgZmZmZGSkUCi0tLS0tramUqlVB+I3X3kQBA3ei5OTk+Ersvl8vnLiuFgsfvzxx4VC4dChQ8s/AR0EwZUrV1566SXbnwG9CI1rcHAw5IxzLBZb/mnfcrmcy+UmJiampqaCIEgkEolEIpVK7d27txpbIhKJxM2bNx97cV6DKBaL4YuLlYsXy+Xy73//+/Pnzx87dmz5eV0ulz/77LPDhw9/73vfs6MF0IvQ0Lq7u8fGxkKuUNyyZUvIpMNH+1QmJydjsVg6nU4mkwMDA9+8Zm7NNTc3T01NNfJ7d+vWrfb29pAH3L17NxqNnj17dmBg4NSpUyv65tFoNBqNPv/882IR0IvQ6JLJZC6XC3lAZdLhowvXCoVCEAQ3b958tJG5ra0tnU4vf5/KGgq/r8mmNzo6OjAwEPKA2dnZrVu3ruhmLV+3Y8eOO3fumK0I6EUgUiwWQ76aSqU+/fTT3t7eqampyj6VVCq1oo3M1ZNOp6u0fXtDCIIgfB33wIEDT/P9Ozs7P/nkkzfeeMNnBNCL0OiGhoYWFhaam5sf+9V4PJ5KpZqamtZqn8pyLCws5HK5IAhyuVzIzJdkMrlW27c3nEKhUO25NtFoNJlM2oQOrP7XiEMAm0ZPT0/4jaS7u7urXQzlcrlQKExOTl68ePHzzz+fn59Pp9MvvfRST0/PwsLCUn8rHo837CWMt2/fXv4dWZaSzWbPnTtXLpeXekBfX9+FCxd8RoDVsb4Im0dHR8elS5e6u7vX+XkXFhbu3r2bzWYrN6wbGho6cuRIa2vr1y+26+npmZubW2rtMxaLBUHQmO/alStX9u7d+zQH/+rVqz09PUePHv3qq6+Wevfj8fiVK1fK5bJdL4BehIYWj8czmcw6PFFl4E42m52bm3vw4EFfX9/g4GBHR0fI4mVvb+/o6GjIQlpLS0vI9u1NLJ/Pr67hHt2p5fTp0/F4vFwu/9M//VPIvxbsegH0IvC/yVilNaRCoXDv3r0gCPL5fCqV6uvr27NnTyKRWOZzxePxubm5kF0di7ZvN4hsNptOp1fR69+8U0s0Gu3q6gq5gNWuF0AvApFIJDI0NHT//v01uUixVCoVCoW5ublcLlcsFoeGhnbt2nX8+PFVLwG2tLSEfDWVSo2PjzdaL05MTKy0F4MgGB0dPX78+Dfv1HLkyJHh4eGlotyuF0AvApFIJNLf3z88PLzqIHqmkkYAABHGSURBVKgMZbx3 716 pVEokEn19fS+88MJajbnp6+sLiZV4PH7z5s1jx4 411 Pt1+fLlkG3j33x3fve73z3//PNvvPHGY5d1Ozs7p6amQhZxu7u7L1y4cPLkSZ8UQC9C42ptbZ2bm1v+vfVKpVJln8rc3FxLS0tfX9+BAwfa2tqqcR3hzp07L1++HNKyy79j4eZQLpe3bNmynBP6pVLp2rVr8Xj8zJkz4W/NwYMHQyZZJpPJa9eu2fUC6EVoaNFotFQqhTfK/fv3K4uIlSsRd+/e/fzzz6/DrOy2trZ79+6FPKC9vb2hzpYGQfDEk9Hlcnl8fPzu3bt//Md/vJwxjfv27Tt37lzIu9nT02PXC6AXodH19/eHbHool8vDw8OnT59OpVLrvMjU1NQUvoKYSqVu3749NDS0Di9mFbtM1tz4+Hj45MWZmZmJiYlTp04tP+/i8Xg2mw1ZQdy+fft//dd/nTlzxicFWMFihEMAm0xPT0/IjaRjsdjWrVs7OztrckYylUqFLH8mEok7d+6s0+++OjghOzIyErKYurCwkM/nz5w5s9K1wGPHjoWMbY/FYtu2bSsUCj4pgF6ExtXV1RU+hbGlpSXkRiBVVdnystRXm5ub5+bm1uFllMvl8LP266BYLIafeZ+dnT1y5MgqunZwcPDGjRvh78LVq1d9UgC9CI0rmUyGV1dra2utbqYyMDCQzWZDHlAqldahZUPWX9fN7Oxs+Mnoubm51d0nsDKIMSSIk8lkeFAC6EXY/J446XBmZqY+WzadTtdDzK2DsbGx9vb2kAc8ePBg1SfNjxw5MjExEfKA7du3N+wNuwG9CEQiTzrtu3Xr1pGRkVq9tgcPHoQHZXjobBqTk5NL7UmKRCKFQuFp9v10dnaGLyFv3779888/90kB9CI0rp07d4ZMrolGozWcdNjX17ewsLDUVxOJRCOsexWLxfA14CAIdu7c+TRP0d/fH3LqPxaLPfPMM8Vi0YcF0IvQoNra2sKXlyqTDmvy2gYHB0N270aj0VpdW7mebt261d3dHfKAVV+8+MjRo0fDrzro6+u7dOmSDwugF6FBPXHSYTKZnJ+fr8lr6+joCN/y0tLSsunXvUZHR0NGapfL5ae5eLEiHo/PzMyEbB6y6wXQi9Dowicdtre3j42N1eSFxePxkPXFyisPf8AmEARBLLbk7RJyudyBAwee/llOnjwZfiTtegH0IjS0J046rGEohA+AbG1tvXXr1iZ+awqFQvid/ebm5gYGBp7+iXbs2BF+JO16AfQiNLQnTjrcsmVLrV7b0NDQ/fv3l/pqPB7f3Itet2/ffuLkxTW5nXdTU1NbW1vIMnMsFltYWLDrBdCL0KCWM+kwPCirp7u7O3xTSw23b1fs2LGjet/8ypUrIZMXy+Vy+NbpFdm/f//09HT4/1K7XgC9CI2rbicdplKpkHE/tW3Ziqouvubz+ZC9LLlc7mkmLy7S19cX3oupVOry5cs+LIBehAYVPumwhqd9nzgAsq2tbXZ2tlbHrVwuP+Xe5BDZbDadToc8YK0uXnykv78/fHZSb2+vXS+AXoQGFT7pMBaL1XDSYfj27UQicefOnVq9tpBrK5/exMREeC8GQbAmFy8+cvTo0fAcHBgYuHLlis8LoBehEdXzpMPdu3eHvLbm5ubJyclN+abcuHEjkUgs9dVSqfSUY7q/KR6PZzKZkA3psVgsk8nY9QLoRWhET5x02NramslkavLaurq6wp86FouFJM4GVS6XS6VSyMnubDa7e/fuNX/eQ4cOhf8k7Nix4/r16z4ygF6ERhQ+6TCVSo2Pj9fkhSWTyVwuF/KAdDod/oCNKAiCJ56M7u3tXfPn3bNnT/ggxlQq9bvf/c7nBdCL0IjqedJh+AnQGm7frp7x8fHw082ZTCYej6/58zY1NTU3N4dcMFpJxq+++spHBtCL0HDqedLh0NBQyL7dRCIxMjKyyd6OkZGRkBysxsWLjxw7dix8sM7AwMDw8LCPDKAXoeGkUqknnvYNH7ZSPT09PSFTGKPRaK1eWJU8cRB3lS5efHS0w7ec2/UC6EVo1E94NBrei21tbbdv367Ja+vq6grfvt3R0bGZ8uXOnTsdHR0hD5iZmanefWWi0ejAwEDIPM6IXS+AXoSGVbeTDpuamsK3SCcSiRpO7V5zY2NjIbcBjEQi+Xy+qampei/g4MGDdr0AehF4jHqedBiPx0O2b7e2ttZwaveaGx0dnZ2dXeok+8LCQn9/f1VfQFtb2xPHJ9n1AjxWzCGAza2rq2t0dDRkI0Vl0mH17oAXYmhoKJfLPbqdSalUKhQK2Ww2l8vlcrl4PH7s2LEqPfXY2Nj8/HxbW9vX/4fH4/Ft27bdu3cvfCFwdd58880gCMbHx3//+99v2bIlnU4nk8lEIlF5AXfv3h0cHKz2AT948GAQBCE/DH19fcPDw6+++qoPDqAXoYEsc9Lh2t6DbpkGBgZ+9atfdXd3z8/PLywspFKpvr6+PXv2PKqo6h2Tv/zLv4xEIsVi8Q9/+MOjP79///7s7Gx7e3s1lvqi0WhnZ2dnZ+exY8fK5XIul5uYmPjyyy/z+Xw6nZ6dnT1+/Hi1D/izzz77 61/ /OqQXm5ubZ2dni8ViVc+MA3oRqDvh7VWZdLh///71f2GJROLYsWNdXV01qdVIJNLU1PT1MEomk11dXevzjiSTyf3791cOezabnZycXIdEa2pqevjwYalUisWW/OW/Z8+eGzdu7Nu3zwcH+P+/tRwC2PT6+/vrc9JhNBodGhqqVSzWj2QyuW59duzYsfCRnO3t7ZcuXfKpAfQiNJZGm3RI+A/DtWvXwiO+ra3NrhdAL0Jj6erqeuIURoOaG+WXfjT67LPPPnEQ45dffulYAXoRGkhTU9P8/HzIA5LJ5GaadEi4vXv33rx5M+QBzc3N4+PjIaOOAL0IbEINNemQcJ2dnSHXJ1Ts2bNnbGzMsQL0IjSQyqTDkJqs1ZYXamLPnj3hN2Nsb2//7LPPHChAL0IDGRgYCO8D8/YayqFDh6ampsL+2xCNLud+MIBeBDaPRCIxNzf32C8VCoWZmZl8Ph8elGwmTU1NhUIh/ArFHTt2uJ00UGFeNzTGPw2j0S1btkQikXK5fP/+/SAIFhYWgiBoaWnp6+vbtWvXkSNH4vG4A9U4Tp48efPmze7u7qUeUNn18uKLL9bkXpFAXXnm4cOHjgI0gk8++WRycjIejw8NDXV3d7e1tTkH3cjK5fI//MM/7N27N5VKLfVPhSAI0un00NCQwwV6US8CNGgyBkEwPj4+OTkZjUZTqVR7e3tzc/PXH/Dpp59+73vfc6xAL+pFgEZXLBZnZ2fHxsYmJydbWlpSqVQqlYrFYjdu3HjxxRfb2tocItCLAPCYdiyVSrt27Tp58qTDAnoRAB6jcm9xe6FAL+pFAACWZEoCAAB6EQAAvQgAgF4EAEAvAgCgFwEA0IsAAOhFAAD0IgAAehEAAPQiAAB6EQAAvQgAgF4EAEAvAgCgFwEA0IsAAOhFAAD0IgAA6EUAAPQiAAB6EQAAvQgAgF4EAEAvAgCgFwEA0IsAAOhFAADQiwAA6EUAAPQiAAB6EQAAvQgAgF4EAEAvAgCgFwEA0IsAAKAXAQDQiwAA6EUAAPQiAAB6EQAAvQgAgF4EAEAvAgCgFwEA0IsAAKAXAQDQiwAA6EUAAPQiAAB6EQAAvQgAgF4EAEAvAgCgFwEAQC8CAKAXAQDQiwAA6EUAAPQiAAB6EQAAvQgAgF4EAEAvAgCAXgQAQC8CAKAXAQDQiwAA6EUAAPQiAAB6EQAAvQgAgF4EAAC9CACAXgQAQC8CAKAXAQDQiwAA6EUAAPQiAAB6EQAAvQgAAHoRAAC9CACAXgQAQC8CAKAXAQDQiwAA6EUAAPQiAAB6EQAAvQgAAHoRAAC9CACAXgQAQC8CAKAXAQDQiwAA6EUAAPQiAAB6EQAA9CIAAHoRAAC9CACAXgQAQC8CAKAXAQDQiwAA6EUAAPQiAADoRQAA9CIAAHoRAAC9CACAXgQAQC8CAKAXAQDQiwAA6EUAANCLAADoRQAA9CIAAHoRAAC9CACAXgQAQC8CAKAXAQDQiwAAoBcBANCLAADoRQAA9CIAAHoRAAC9CACAXgQAQC8CAKAXAQDQiwAAoBcBANCLAADoRQAA9CIAAHoRAAC9CACAXgQAQC8CAKAXAQBALwIAoBcBANCLAADoRQAA9CIAAHoRAAC9CACAXgQAQC8CAIBeBABALwIAoBcBANCLAADoRQAA9CIAAHoRAAC9CACAXgQAAL0IAIBeBABALwIAoBcBANCLAADoRQAA9CIAAHoRAAC9CACAXgQAAL0IAIBeBABALwIAoBcBANCLAADoRQAA9CIAAHoRAAC9CAAAehEAAL0IAIBeBABALwIAoBcBANCLAADoRQAA9CIAAHoRAAD0IgAAehEAAL0IAIBeBABALwIAoBcBANCLAADoRQAA9CIAAOhFAAD0IgAAehEAAL0IAIBeBABALwIAoBcBANCLAADoRQAA0IsAAOhFAAD0IgAAehEAAL0IAIBeBABALwIAoBcBANCLAADoRQAA0IsAAOhFAAD0IgAAehEAAL0IAIBeBABALwIAoBcBANCLAACgFwEA0IsAAOhFAAD0IgAAehEAAL0IAIBeBABALwIAoBcBAEAvAgCgFwEA0IsAAOhFAAD0IgAAehEAAL0IAIBeBABALwIAgF4EAEAvAgCgFwEA0IsAAOhFAAD0IgAAehEAAL0IAIBeBAAAvQgAgF4EAEAvAgCgFwEA0IsAAOhFAAD0IgAAehEAAL0IAIBeBAAAvQgAgF4EAEAvAgCgFwEA0IsAAOhFAAD0IgAAehEAAL0IAAB6EQAAvQgAgF4EAEAvAgCgFwEA0IsAAOhFAAD0IgAAehEAAPQiAAB6EQAAvQgAgF4EAEAvAgCgFwEA0IsAAOhFAAD0IgAA6EUAAPQiAAB6EQAAvQgAgF4EAEAvAgCgFwEA0IsAAOhFAAD0IgAA6EUAAPQiAAB6EQAAvQgAgF4EAEAvAgCgFwEA0IsAAOhFAADQiwAA6EUAAPQiAAB6EQAAvQgAgF4EAEAvAgCgFwEA0IsAAKAXAQDQiwAA6EUAAPQi/6+9u9VpLAzCAMwmvQXqSOgNHE/QCKglFVgsoQLJNSBIEb2BGl...
Ngày tải lên: 22/07/2014, 10:20
bài tập trắc nghiệm kiểm toán đại cương (kiểm toán căn bản) pptx
... phí trong năm nay Câu 17 . Nghiệp vụ này ảnh hưởng đến tài khoản nào a. 14 2 ,11 1,6 41, 642 b. 14 2,6 41, 111 ,4 21, 3334 c. 14 2,6 41, 4 21, 3334 d. tất cả các câu trên điều sai Câu 18 Nghiệp vụ này ảnh hưởng ... (6 41) ,lợi nhuận sau thuế (4 21) , thuế thu nhập doanh nghiệp (8 21) c. chi phí bán hàng (6 41) ,lợi nhuận sau thuế (4 21) , thuế thu nhập doanh nghiệp (8 21) d. tất cả các câu trên đều sai Câu 19 . Nghiệp ... kiểm toán. TL : Sai 8 a. tiền mặt (11 1) , chí phí trả trước ngắn hạn (14 2) chi phí bán hang (6 41) ,lợi nhuận sau thuế (4 21) , thuế thu nhập doanh nghiệp (8 21) b. chí phí trả trước ngắn hạn (14 2)...
Ngày tải lên: 25/07/2014, 13:21