1. Trang chủ
  2. » Khoa Học Tự Nhiên

Tài liệu Physics exercises_solution: Chapter 41 doc

15 281 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 207,28 KB

Nội dung

41.1: 2 34 34 2 sJ10054.1 sJ104.716 )1()1(                       L llllL .40.20)1(      lll 41.2: a) .2so,2 maxmax  zl Lm b) .45.26)1(  ll c) The angle is arccos , 6 arccos              l z m L L and the angles are, for ,0.90,1.114,7.144,2to2  ll mm .3.35,9.65   The angle corresponding to lm l  will always be larger for larger .l 41.3: .)1(  llL The maximum orbital quantum number :ifSo.1   nl    5.199)200(199199200 49.19)20(191920 41.12)1(12    Lln Lln llLln The maximum angular momentum value gets closer to the Bohr model value the larger the value of . n 41.4: The ),( l ml combinations are (0, 0), (1, 0), )1,1(  , (2, 0), ),1,2(  ),2,2(  (3, 0), 4),(4,and),3,4(),2,4(),1,4(),0,4(),3,3(),2,3(),1,3(        a total of 25. b) Each state has the same energy ( n is the same), eV.544.0 25 eV60.13  41.5: J103.2 m100.1 C)1060.1( 4 1 . 4 1 18 10 219 0 21 0        πεr qq πε U eV.4.14 eVJ1060.1 J103.2 19 18       41.6: a) As in Example 41.3, the probability is                  2/ 0 2 0 2 322 3 22 1 422 4 4|| a a ar s e araar a dr πrψP .0803.0 2 5 1 1   e b) The difference in the probabilities is .243.0)2)(25())25(1()51( 2112   eeee 41.7: a) ))((|)(||)(||| 222  ll imim * AeAeθrRψψψ   ,|)(||)(| 222 θrRA  which is independent of  b)   ππ π AπAdAd 2 0 2 2 0 22 . 2 1 12|)(|  41.8: .)75.0( 22)4( 1 11 2 1 1212 22 4 2 0 EE E EEE n em πε E r n   a) kg1011.9If 31  mm r   2 29 234 49131 22 0 4 CNm10988.8 s)J10055.1(2 C)10kg)(1.602109.109 )4(       πε em r eV.59.13J10177.2 18   For 12  transition, the coefficient is (0.75)(13.59 eV)=10.19 eV. b) If , 2 m m r  using the result from part (a), eV.795.6 2 eV59.132 eV)59.13( )4( 22 0 4                m m πε em r  Similarly, the 12  transition, eV.095.5 2 eV19.10         c) If ,8.185 mm r  using the result from part (a), eV,2525 185.8 eV)59.13( )4( 22 0 4         m m πε em r  and the 12  transition gives  (10.19 eV)(185.8)=1893 eV. 41.9: a) 21931 234 0 2 2 0 1 C)10kg)(1.60210109.9( )sJ10626.6( :      π ε πme hε amm r m10293.5 11 1   a b) .m10059.12 2 10 12   aa m m r c) .m10849.2 185.8 1 m8.185 13 13   aam r 41.10: ),sin()cos(   ll im mime l  and to be periodic with period πmπ l 2,2 must be an integer multiple of l mπ so,2 must be an integer. 41.11:     a a ar s drπre πa dVψaP 0 0 22 3 1 )4( 1 )( .51)( 4422 4 422 44 )( 2 0 3 2 333 3 0 2 222 3 22 3                                         eaP e a e aaa a e araar a drer a aP a arar a o 41.12: a) ,2b),eV102.32T)400.0)(TVe1079.5( 55 B   l mBμE the lowest possible value of . l m c) 41.13: a) 4).3,2,1,,0(91)(2isstatesof#4state-           l mllg b) .J1056.5eV1047.3)T600.0)(TVe1079.5( 2455 B   BμU c) eV1078.2)T600.0)(TVe1079.5(88 45 B44    BμU .J1045.4 23  41.14: a) According to Fig. 41.8 there are three different transitions that are consistent with the selection rules. The initial l m values are 0, ;1  and the final l m value is 0. b) The transition from 0to0  ll mm produces the same wavelength (122 nm) that was seen without the magnetic field. c) The larger wavelength (smaller energy) is produced from the 0to1  ll mm transition. d) The shorter wavelength (greater energy) is produced from the 0to1  ll mm transition. 41.15: a) B B ,1,33 μ U BB μUlnp  .T468.0 T)Ve10(5.79 eV)1071.2( 5 5       B b) Three .1,0  l m 41.16: a) B m e U               22 )00232.2(  Bμ B 2 )00232.2(  .eV1078.2 )T480.0)(TVe10788.5( 2 )00232.2( 5 5     b) Since n = 1, l = 0 so there is no orbital magnetic dipole interaction. But if 0  n there could be since l < n allows for .0  l 41.17: BS m e BU zz 2 )00232.2(  . 2 where)00232.2( )( 2 )00232.2( BB m e μBmμU Bm m e U s s     So the energy difference                2 1 2 1 )00232.2( B BμU )T45.1)(TVe10788.5)(00232.2( 5  U .eV1068.1 4  And the lower energy level is ).direction ˆ theinpointssince( 2 1 zBm s  41.18: The allowed ),( jl combinations are . 2 5 ,2and 2 3 ,2, 2 3 ,1, 2 1 ,1, 2 1 ,0                               41.19: j quantum numbers are either .4then,27and29ifSo, 2 1 or 2 1  ljll The letter used to describe is4  l “g” 41.20: a)         λ ,cm21 eV)10(5.9 )sm10s)(300eV10136.4( λ 6 815 c f E hc 9 8 104.1 0.21m )sm1000.3(   Hz, a short radio wave. b) As in Example 41.6, the effective field is for,T101.52 2 B   μEB smaller than that found in the example. 41.21: a) Classically 2 5 2 and, mRIIωL  for a uniform sphere. s.rad102.5 4 3 m)10(1.0kg)102(9.11 s)J105(1.054 4 3 2 5 4 3 5 2 30 21731 34 2 2        ω mR ω RmωL   b) .sm102.5)srad10(2.5m)10(1.0 133017   rωv Since this is faster than the speed of light this model is invalid. 41.22: For the outer electrons, there are more inner electrons to screen the nucleus. 41.23: Using Eq. (41.27) for the ionization energy: eV).(13.6 2 2 eff n Z E n   The s5 electron sees 5and771.2 eff  nZ eV.4.18eV)(13.6 5 (2.771) 2 2 5    E 41.24: However the number of electrons is obtained, the results must be consistent with Table (43-3); adding two more electrons to the zinc configuration gives 622 221 pss .43433 210262 pdsps 41.25: The ten lowest energy levels for electrons are in the n = 1 and n = 2 shells. states.6: 2 1 ,1,0,1,2 states.2: 2 1 ,0,0,2 states.2: 2 1 ,0,0,1    sl sl sl mmln mmln mmln 41.26: For the s4 state, .26.2)6.13()339.4(4andeV339.4 eff  ZE Similarly, 79.1 eff Z for the 4p state and 1.05 for the 4d state. The electrons in the states with higher l tend to be further away from the filled subshells and the screening is more complete. 41.27: a) Nitrogen is the seventh element (Z = 7). 2 N has two electrons removed, so there are 5 remaining electrons  electron configuration is .221 22 pss b) eV30.6eV)(13.6 2 4)(7 eV)(13.6 2 2 2 2 eff      n Z E c) Phosphorous is the fifteenth element (Z = 15). 2 P has 13 electrons, so the electron configuration is .33221 2622 pspss d) The least tightly held electron: eV.13.6eV)(13.6 3 12)(15 2 2    E 41.28: a) .26.1so, 4 e6.13 eff 2 eff2  ZZ V E b) Similarly, 2.26. eff Z c) eff Z becomes larger going down the columns in the periodic table. 41.29: a) Again using eV),(13.6 2 2 eff n Z E n   the outermost electron of the L  Be shell (n = 2) sees the inner two electrons shield two protons so 2. eff  Z eV.13.6eV)(13.6 2 2 2 2    2 E b) For ,Ca  outer shell has n = 4, so eV.3.4eV)(13.6 4 2 2 2 4    E 41.30: eV)(10.2)1( 2  ZE kx ,0.28 eV10.2 eV107.46 1 3    Z which corresponds to the element Nickel (Ni). 41.31: a) Hz108.951)Hz)(2010(2.48:20 17215  fZ m.103.35 Hz108.95 sm103.00 λ keV3.71Hz)10(8.95s)eV10(4.14 10 17 8 1715        f c hfE b) Z = 27: m.101.79λ keV6.96 Hz101.68 10 18     E f c) m.105.47λkeV,22.7Hz,105.48:48 1118   EfZ 41.32: See Example 41.3; )),2(2(, 22 2 2 /22 2 2 arrCe dr ψdr eCr ψr arar   and for a maximum, r = a, the distance of the electron from the nucleus in the Bohr model. 41.33: a)    2 4 2 0 1 2 0 2 4 2 0 1 2)4( 1 then),(. 4 1 )(and 2)4( 1  me πε rUEIf r e πε rU me πε E ss a me πε r r e πε 2 24 )4( 1 2 2 0 2 0    b) . 1 isand4)2( / 3 22 2 1 2 2 1 ar a s a s e a π ψ drrψπdVψarP     . 4 2 4 )2( 422 4 )2( 4 )2( 3 334 3 2 322 2 3 2 22 3                                a aae a arP araar e a arP drer a arP a ar a ar .238.013 4   e 41.34: a) For large values of n , the inner electrons will completely shield the nucleus, so 1 ff  e Z and the ionization energy would be 2 eV60.13 n . b) m106.48m)10(0.529(350))350(,eV101.11 350 eV13.60 6102 0 2 350 4 2   ar . c) Similarly for n = 650, 650 5 2 ,eV103.22 (650) eV13.60 r    (0.529(650) 2 m.102.24m)10 510   41.35: a) If normalized, then . 4 4 8 1 2 32 4 14 0 2 43 2 3 2 2 0 3 2 0 2 2 0 2 2 dre a r a r r a dre a r r πa π I drr ψπdVψ ar ar ss                          But recall      0 1 . ! n axn n dxex  So        5 2 4 3 )24( 1 )6( 4 )2(4 8 1 3 a a a a a a I   .normalizedisand124248 8 1 2 333 3 s ψaaa a I  b) We carry out the same calculation as part (a) except now the upper limit on the integral is 4a, not infinity. So .44 8 1 4 0 2 43 2 3 dre a r a r r a I ar a            Now the necessary integral formulas are:          )2424124( )663( )22( 54322344 332233 3222 araarararedrer araararedrer araaredrer arar arar arar All the integrals are evaluated at the limits 0  r and .4a After carefully plugging in the limits and collecting like terms we have: )]824568104()24248[( 8 1 43 3   ea a I ).4(Prob176.0)3608( 8 1 4 areI   41.36: a) Since the given .||real,is)( 2222 ψrψrrψ  The probability density will be an extreme when .022)( 2222                dr d ψ rψrψ dr ψ ψ rrψψr dr d This occurs at ,0  r a minimum, and when ,0  ψ also a minimum. A maximum must correspond to .0 dr d ψ rψ Within a multiplicative constant, ,)22( 1 ,)2()( 22 arar ear a dr dψ earrψ   and the condition for a maximum is .046or),22()()2( 22  ararararar The solutions to the quadratic are ).53(  ar The ratio of the probability densities at these radii is 3.68, with the larger density at .2at0)).53( arψbar  Parts (a) and (b) are consistent with Fig.(41.4); note the two relative maxima, one on each side of the minimum of zero at .2ar  41.37: a) .arccos        L L θ z L This is smaller for LL z and as large as possible. Thus 1and1  nlmnl l . )1( 1 arccos 1)(1)(and)1(             nn n θ nnllLnmL L lz  b) The largest angle implies )1(,1  nlmnl l   .)11(arccos )1( )1( arccos n nn n θ L             41.38: a) .)1(so)1( 2222222222  lyxlzyx mllLLmllLLLL  b) This is the magnitude of the component of angular momentum perpendicular to the z -axis. c) The maximum value is ,)( L1ll   when .0 l m That is, if the electron is known to have no z -component of angular momentum, the angular momentum must be perpendicular to the z -axis. The minimum is l when .lm l  41.39: ar er a rP 24 5 24 1 )(         ar e a r r a dr dP 2 4 3 5 )4( 24 1          ,4;04when0 4 3 ar a r r dr dP  In the Bohr model, ,4so 2 2 aranr n  which agrees. 41.40: The time required to transit the horizontal 50 cm region is ms.952.0 sm525 m500.0    x v x t The force required to deflect each spin component by 0.50 mm is N.1098.1 )s10952.0( )m1050.0(2 molatoms10022.6 molkg1079.02 22 23 3 232 zz                   t z mmaF According to Eq. 41.22, the value of z μ is .mA1028.9|| 224   z μ Thus, the required magnetic-field gradient is m.T3.21 TJ1028.9 N1098.1 24 22       z zz μ F dz dB 41.41: Decay from a d3 to p2 state in hydrogen means that     l mnn and23 .0,10,1,2  l m However selection rules limit the possibilities for decay. The emitted photon carries off one unit of angular momentum so l must change by 1 and hence l m must change by 0 or .1  The shift in the transition energy from the zero field value is just )( 2 )( 2323 B llll mm m Be B μmmU   where 3 l m is the l md3 value and 2 l m is the l mp2 value. Thus there are only three different energy shifts. They and the transitions that have them, labeled by , m are: 12,01,10: 2 11,00,11:0 10,01,12: 2    m Be m Be   [...]...  n      2   n 0 2   n 0   n 0  n 0 41. 53: The potential U ( x)   ( N  1)( N ) N   2w     w [ N 2  N  N ] 2 2  k  wN 2  N 2 m Here we used the hint from Problem 41. 51 to do the first sum, realizing that the first value of n is zero and the last value of n is N – 1, giving us a total of N energy levels filled 41. 54: a) The radius is inversely proportional to Z,... configuration would be 1s 4 2s 4 2p 3 41. 46: a) Z 2 (13.6 eV)  (7) 2 (13.6 eV)  666 eV b) The negative of the result of part (a), 666 eV c) The radius of the ground state orbit is inversely proportional to the a nuclear charge, and  (0.529  10 10 m) 7  7.56  10 12 m Z hc hc d) λ   , where E 0 is the energy found in part (b), and λ  2.49 nm E E0 ( 112  212 ) 41. 47: a) The photon energy equals... photon wavelength increases due to the magnetic field 41. 48: The effective field is that which gives rise to the observed difference in the energy level transition, E hc  λ1  λ 2  2πmc  λ1  λ 2       B μ B  λ1λ 2  μB e  λ 1λ 2       λ  λ Substitution of numerical values gives B  3.64  10 3 T, much smaller than that for sodium 41. 49: a) The minimum wavelength means the largest...  4.72  1011 m c (3.00  108 m s) The maximum wavelength is λ   f (2.48  1015 Hz)(45  1) 2  λ  6.25  10 11 m e 2πmc hc B B 41. 50: a) E  (2.00232) μB BS Z  m λ λe 2π 9.11  10 31 kg (3.00  108 m s) b) B   0.307 T (0.0350 m)(1.60  10 19 C)   41. 51: a) To calculate the total number of states for the n th principle quantum number shell we must multiply all the possibilities The... (9.274 10  e ( 4.48210 3 c) B  5.00 T  n1 2 n1 2 n1 2 n1 2 n1 2 n1 2 J T)B (1.3811023 J K) (300 K) T 1 ) B a) B  5.00  10 5 T  b) B  0.500 T  24  0.9999998  0.9978  0.978 41. 44 Using Eq 41. 4 L  mvr  l (l  1), and the Bohr radius from Eq 38.15, we obtain the following value for v l (l  1)  2 (6.63  10 34 J  s)  v  7.74  10 5 m s 2π (9.11  10 31 kg) (4) (5.29  10.. .41. 42: a) The energy shift from zero field is U 0  ml  B B For ml  2, U 0  (2) (5.79  10 5 e V T ) (1.40 T)  1.62  10 4 eV For ml  1, U 0  (1)  (5.79  10 5 e V T) (1.40 T)  8.11  10... sodium 41. 49: a) The minimum wavelength means the largest transition energy If we assume that the electron makes a transition from a high shell, then using the screening approximation outlined in Section 41. 5, the transition energy is approximately the ionization energy of hydrogen Then E  E1  ( Z  1) 2 (13.6 eV) For vanadium, Z = 23  E  6.58  103 eV  1.05  10 15 J hc (6.63  10 34 J  s)(3.00... “moving” proton at the electrons position can be calculated from Eq 28.1 μ | q | v sin  (1.60  10 19 C) (7.74  105 m s) sin(90)  (10 7 A T  m A) B 0  0.277 T 4π (4) 2 (5.29  10 11 m) 2 r2 41. 45: m s can take on 4 different values: ms   3 ,  1 ,  1 ,  3 Each nlml state can 2 2 2 2 have 4 electrons, each with one of the four different m s values a) For a filled n  1 shell, the electron...  1)ml values So the total number of states is n 1 n 1 n 1 l 0 l 0 l 0 N  2 (2l  1)  2 1  4 l 4(n  1)(n)  2n   2n  2 n 2  2n 2 2 N  2n b) The n = 5 shell (O-shell) has 50 states 41. 52: a) Apply Coulomb’s law to the orbiting electron and set it equal to the centripetal force There is an attractive force with charge +2e a distance r away and a repulsive force a distance 2r away...  1.62  10 4 eV  8.11  10 5 eV  8.09  10 5 eV from part (a) Then, | λ | 2.81  10 11 m  0.0281 nm The wavelength corresponds to a larger energy change, and so the wavelength is smaller n 41. 43: From Section 38.6: 1  e ( E1  E0 ) kT We need to know the difference in energy n0 1 1 between the ms   and ms   states U   μ z B  2.00232 μB ms B 2 2 So U 1  U  1  2.00232 μB B 2  . this model is invalid. 41. 22: For the outer electrons, there are more inner electrons to screen the nucleus. 41. 23: Using Eq. (41. 27) for the ionization. larger for larger .l 41. 3: .)1(  llL The maximum orbital quantum number :ifSo.1   nl    5.199)200(199199200 49.19)20(191920 41. 12)1(12    Lln Lln llLln The

Ngày đăng: 24/01/2014, 07:20

TỪ KHÓA LIÊN QUAN

w