1. Trang chủ
  2. » Khoa Học Tự Nhiên

Tài liệu Physics exercises_solution: Chapter 40 doc

23 213 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 23
Dung lượng 275,71 KB

Nội dung

40.1: a) 2 234 2 2 1 2 22 m)kg)(1.520.0(8 s)J1063.6( 88    mL h E mL hn E n J.1022.1 67 1   E b) sm101.1 kg0.20 J)102.1(22 2 1 33 67 2      m E vmvE s.104.1 sm101.1 m5.1 33 33     v d t c) J.103.7J)1022.1(3 8 3 )14( 8 6767 2 2 2 2 12   mL h mL h EE d) No. The spacing between energy levels is so small that the energy appears continuous and the balls particle-like (as opposed to wave-like). 40.2: 1 8mE h L  m.104.6 )eVJ10eV)(1.60210kg)(5.0108(1.673 s)J10626.6( 15 19627 34        40.3: )(8 3 8 3 )14( 8 12 2 2 2 2 12 EEm hL mL h mL h EE   )eVJ10eV)(1.60kg)(3.0108(9.11 3 s)J1063.6( 1931 34     nm.0.61m101.6 10   L 40.4: a) The energy of the given photon is J.1063.1 m)10(122 m/s)10(3.00 s)J1063.6( λ 18 9 3 34        c hhfE The energy levels of a particle in a box are given by Eq. 40.9 J)10kg)(1.631011.9(8 )12(s)J1063.6( 8 )( )( 8 2031 22234222 22 2 2         Em mnh Lmn mL h E m.1033.3 10  b) The ground state energy for an electron in a box of the calculated dimensions is eV3.40J1043.5 19 m)10kg)(3.331011.9(8 )sJ1063.6( 8 21031 234 2 2       mL h E (one-third of the original photon energy), which does not correspond to the eV6.13  ground state energy of the hydrogen atom. Note that the energy levels for a particle in a box are proportional to 2 n , whereas the energy levels for the hydrogen atom are proportional to 2 1 n  . 40.5: J105.2)smkg)(0.0101000.5( 723 2 1 2 2 1   mvE b) 1 2 2 1 8 so 8 mE h L mL h E  m106.6givesJ105.2 307 1   LE 40.6: a) The wave function for 1  n vanishes only at 0  x and Lx  in the range .0 Lx   b) In the range for , x the sine term is a maximum only at the middle of the box, .2/Lx  c) The answers to parts (a) and (b) are consistent with the figure. 40.7: The first excited state or )2(  n wave function is . 2 sin 2 )( 2        L πx L x ψ So . 2 sin 2 )( 2 2 2        L πx L x ψ a) If the probability amplitude is zero, then 0 2 sin 2        L πx 2,1,0, 2 2  m Lm xm π L πx So probability is zero for ., 2 ,0 L L x  b) The probability is largest if .1 2 sin        L πx . 4 )12( 2 )12( 2 L mx π m L πx  So probability is largest for . 4 3 and 4 LL x  c) These answers are consistent with the zeros and maxima of Fig. 40.5. 40.8: a) The third excited state is ,4  n so 2 2 2 8 )14( mL h E  eV.361J1078.5 m)10kg)(0.1251011.9(8 s)J10626.6(15 17 2931 234        b) J105.78 m/s)10s)(3.0J1063.6( λ 17 834        E hc nm.44.3λ  40.9: Recall . 2 λ mE h p h  a) m106.0m)100.3(22 8/2 λ 8 1010 22 1 2 2 1   L mLmh h mL h E m/skg101.1 m106.0 s)J1063.6( λ 24 10 34 1 1        h p b) m100.3λ 8 4 10 2 2 2 2   L mL h E m/s.kg102.22 λ 24 1 2 2   p h p c) m100.2 3 2 λ 8 9 10 3 2 2 3   L mL h E m/s.kg103.33 24 13   pp 40.10: , 2 2 2 ψk dx ψd  and for ψ to be a solution of Eq. . 28 ),3.40( 22 2 2  m E h mπ Ek  b) The wave function must vanish at the rigid walls; the given function will vanish at 0  x for any ,k but to vanish at nπkLLx   , for integer . n 40.11: a) . 8 :Eq.(40.3) 2 2 2 2 Eψ dx ψd . m π h  kxAkkxAk dx d kxA dx d ψ dx d cos)sin()cos( 2 2 2 2 2  . 28 8 coscos 8 2 2 2 22 2 22  mE h mE π k m π hk E kxEAkx m π hAk   b) This is not an acceptable wave function for a box with rigid walls since we need ,0)()0(   Lψψ but this )(xψ has maxima there. It doesn’t satisfy the boundary condition. 40.12: UCψ dx ψd C m ψU dx ψd m      2 22 2 22 2 2  , 2 2 22 ψEECψCEψ Uψ dx ψd m C           and so ψ  is a solution to (40.1)Eq. with the same energy. 40.13: a) EψUψ dx ψd m   2 22 2 :Eq.(40.1)  Left-hand side: kxAUkxA dx d m sin)sin( 2 0 2 22    kxAUkxA m k sinsin 2 0 22   . 2 0 22 ψU m k           But EUU m k  00 22 2  for constant .k But 0 22 2 U m k   should equal  E no solution. b) If , 0 UE  then EU m k  0 22 2  is consistent and so kxAψ sin  is a solution of )1.40.(Eq for this case. 40.14: According to Eq.40.17, the wavelength of the electron inside of the square well is given by . )3(2 λ 2 0 in Um hmE k   By an analysis similar to that used to derive Eq.40.17, we can show that outside the box . )2(2)(2 λ 00 out Um h UEm h    Thus, the ratio of the wavelengths is . 2 3 )2(2 )3(2 λ λ 0 0 in out  Um Um 40.15: J103.20eV00.2; 2 625.0625.0 19 1 2 22 1    E mL π EE  m1043.3 J)10kg)(3.2010109.9(2 625.0 10 2/1 1931               πL 40.16: Since   EU 6 0 we can use the result   EE 625.0 1 from Section 40.3, so   EEU 375.5 10 and the maximum wavelength of the photon would be h cmL mLh hc EU hc )375.5( 8 )8)(375.5( λ 2 22 10    m.1038.1 s)J1063(5.375)(6. m/s)1000.3(m)10kg)(1.501011.9(8 6 34 82931        40.17: Since ,6 0   EU we can use the results from Section 40.3, 09 .5,625.0 31    EEE and 21527 2342 2 22 m)10kg)(4.01067.1(2 s.)J10054.1( 2       π mL π E  J.1005.2 12   E The transition energy is J.109.15J)1005.2)(625.009.5( 1212 13   EE The wavelength of the photon absorbed is then m.1017.2 J109.15 m/s)10s)(3.00J1063.6( λ 14 12 834 13          EE hc 40.18: Since ,6 0   EU we can use the results from Section 40.3. m1099.4 )sm10kg)(3.00108(9.11 m)10s)(4.55J1063.6)(805.1( 8 λ)805.1( So . 8 805.1 )625.043.2( λ .625.0and43.2 . 8 10 831 734 2 2 12 12 2 2              mc h L mL h E hc EEE EEEE mL h E  40.19: x mE Bx m A ψ  2 cos E2 sin:Eq.(40.16)  .Eq.(40.15))( 2 2 cos 22 sin 2 2 222 2                  ψ mE x mEmE Bx mEmE A dx ψd   40.20: ),( xx DeCe dx dψ     ψDeCe dx ψd xx 22 2 2 )(     for all constants C and .D Hence ψ is a solution to Eq. (40.1) for ,)](2[or, 2 2/1 00 2 2   EUmEU m   and  is real for . 0 UE  40.21: L.e U E U E T EUm  )(22 00 0 116           eV11.0 eV0.6 0  U E and J.108.0eV5 19 0  UE a) m1080.0 9 L m)1080.0( sJ10055.1 J)10kg)(8.01011.9(22 9 34 1931 eV11.0 ev0.6 1 eV11.0 eV0.6 16                         eT .104.4 8  b) m1040.0 9 L .102.4 4 T 40.22: (Also see Problem 40.25). The transmission coefficient is  LEUm e U E U E T )(22 00 0 116           with andm,1060.0eV,0.5 9  LE kg109.11m 31  a) .105.5eV0.7 4 0   TU b) 5 0 101.8eV0.9   TU c) .101.1eV0.13 7 0   TU 40.23: KmKhph λso,2λ  is constant 12211 λ;λλ KK  and 1 K are for 01 2where UKLx  and 2 λ and 2 K are for 002 where0 UUEKLx  2 1 2 λ λ 0 0 1 2 2 1  U U K K 40.24: Using Eq. 40.21 56.2 eV15.0 eV0.12 1 eV15.0 eV0.12 16116 00                    U E U E G nm.26.0 0.025 2.56 ln )m109.8(2 1 )ln( 2 1 m109.8 2s)J1063.6( J/eV)10eV)(1.6012.0kg)(15.01011.9(2 )(2 18 2 19 34 1931 0                      TGLGeT π EUm L     40.25: a) Probability of tunneling is L GeT  2  where 74.2 41 32 1 41 32 16116 00                         U E U E G and sJ10054.1 J/eV).10eV)(1.6032kg)(41eV1011.9(2 )(2 34 931 0         EUm  .102.174.274.2So .m1054.1 37.7m)105.2)(m1054.1(2 110 10110      eeT e b) For a proton,  . 1011.9 1067.1 31 27       e p m m zero. toequalpurposespracticalallfor andisThe.10 74.274.2 m1059.6 143 330m)105.2)(m1059.6(2 111 10111 smallT eeT           40.26: , )(2 and116with 0 00 2  EUm U E U E GGeT L               .116Giving )(22 00 0 L e U E U E T EUm            a) If   EUmLU 0 27156 0 andkg1064.6m,100.2eV,100.30 .090.0eV),100.29eV(100.1 66  TE b) If .014.0eV)100.20(eV100.10 66 0  TEEU 40.27: The ground state energy of a simple harmonic oscillator is, with ,0  n eV.1038.1 J1022.22Also eV106.91J1011.1 kg0.250 N/m110 2 s)J10055.1( 2 1 2 1 14 33 01 1533 0 34 0             EωEE E m k ωE nn   Such tiny energies are unimportant for the motion of the block so quantum effects are not important. 40.28: Let aisand,24(and2soand,2 22 2 2 ψδ)ψδx dx ψd ψx dx dψ δ km     ω./mkδ m E   2 1 2 1 ifEq.(40.21)ofsolution 2    40.29: The photon’s energy is . λ hc E   The transition energy is m k ωωEEE           2 1 2 3 01 24 26282 2 22 m)10(5.25 kg)104.9()sm1000.3(4 λ 4 λ 2          πmcπ k m kc π   .mN2.1   k 40.30: According to Eq.40.26, the energy released during the transition between two adjacent levels is twice the ground state energy eV.2.112 023  EωEE  For a photon of energy E nm.111 J/eV)10eV)(1.60(11.2 )sm10s)(3.00J.1063.6( λ 19 834       E hc f c hfE 40.31: a) ωnE  )( 2 1   For J10544.1,1 21  mkωEn  m129)(λsoλ μEhchcE  b) meV4.82J)10544.1( 21 2 1 2 1 0   ωE  40.32: a) .368.0expexp )0( )( 12 2 2                      e k ω kmA km ψ Aψ  This is more or less what is shown in Fig. (40.19). b) .1083.14exp)2(exp )0( )2( 242 2 2                      e k ω kmA km ψ Aψ  This figure cannot be read this precisely, but the qualitative decrease in amplitude with distance is clear. 40.33: For an excited level of the harmonic oscillator 2 2 1 2 1 AkωnE n           . )12( k ωn A     This is the uncertainty in the position. Also max 2 2 1 2 1 mvωnE n          .)12()12( )12( )12( )( )12( max max              n k m ωn ωmn k ωn mvApx m ωn v ,)12(So      npx which agrees for the ground state .with)0(      pxn The uncertainty is seen to increase with n. 40.34: a)         4/ 0 4/ 0 2 2 cos1 2 12 sin 2 LL dx L πx L dx L πx L , 2 1 4 1 2 sin 2 1 4 0 π L πxL x L L          about 0.0908. b) Repeating with limits of 2and4 LL gives , 2 1 4 12 sin 2 1 2 4          L L L πx π L x L about 0.0409. c) The particle is much likely to be nearer the middle of the box than the edge. d) The results sum to exactly 21 , which means that the particle is as likely to be between 2and0 Lx  as it is to be between .and2 LxLx  e) These results are represented in Fig. (40.5b). 40.35: a)         4/3 4/ 22 1 4/3 4/ sin 2 || L L L L dx L πx L dx ψP .818.0 1 2 1 2sin 2 11 sin 2 Let 43 4 4/3 4/ 2           π zz π zdzP L π dxdz L πx z π π    b)         4/3 4/ 2 4/3 4/ 2 2 2 sin 2 || L L L L dx L πx L dx ψP 2 1 2sin 2 1 2 1 sin 1 23 2 2/3 2/ 2          π π π π zz π dzz π P c) This is consistent with Fig. 40.5(b) since more of 1 ψ is between than 4 3 and 4 ψ LL x  and the proportions appear correct. 40.36: Using the normalized wave function ,LπxLψ )sin(2 1  the probabilities and2)2(sin)2(b),4sin)2()aare|| 222 LdxdxπLLdx)dxπ(Ldxψ  .)43(sin)2(c) 2 LdxπL  40.37:        L πx L x ψ 2 sin 2 )( 2 dx L πx L dx ψ        2 sin 2 || 22 2 a) L dx dx π L dx ψ L x 2 2 sin 2 |:| 4 22 2         b)   0sin 2 |:| 2 22 2  dxπ L dxψ L x c) L dx dx π L dx ψ L x 2 2 3 sin 2 |:| 4 3 22 2         40.38: a) . 1212)1( 222 22 n n n n n nn R n      This is never larger than it is for .3and,1   Rn b) R approaches zero; in the classical limit, there is no quantization, and the spacing of successive levels is vanishingly small compared to the energy levels. [...]... s) 40. 39: a) The transition energy E  E2  E1  λ hc 8mcL2 8(9.11  10 31   E 3h  λ  1.92  10 5 m 8(9.11  10 31 kg)(3.00  108 m s)(4.18  10 9 m) 2 b) λ   1.15  10 5 m 2 2 34 (3  2 )(6.63  10 J  s) dψ π 2 dψ dψ  cos(πx L) , and as x  L,  0 b)   2π 2 L3 dx L L dx dx Clearly not In Eq (40. 1), any point where U (x) is singular necessitates a discontinuity in dψ dx 40. 40:... 2 m 2  2  b) Similar to the second graph in Fig 40. 18 40. 52: With u ( x)  x 2 , a  mω , | ψ |2 is of the form C *Cu(x)e -au(x) , which has a maximum mω 2 2 x  1, x    m b) ψ and hence ψ vanish at x  0, and as x    at au  1, or  2 ψ  0 the result of part (a) is  A 3 , found from n  1 in Eq (40. 26), and this is consistent with Fig (40. 19) The figure also shows a minimum at x  0 and... detected 40. 50: a) E  1 2 mv  (n  (1 2))ω  (n  (1 2))hf , and solving for n, 2 1 2 mv 1 (1 2)(0.020 kg)(0.360 m s) 2 1 n 2     1.3  1030  34 2 (6.63  10 J  s)(1.50 Hz) 2 hf b) The difference between energies is ω  hf  (6.63  10 34 J  s)(1.50 Hz)  9.95  10 34 J This energy is too small to be detected with current technology  2 d 2ψ 1 2  k x ψ  Eψ 40. 51: a) Eq (40. 21) : 2m...  E     2     2mE k2  2  1 1 1   kL  2   1     since   2     d 2ψ  k 2ψ , and using this in dx 2 Eq (40. 1) with U  U 0  E gives k 2  2m( E  U 0 ) 2 , or k  i 2m(U 0  E )   i 40. 48: For a wave function ψ with wave number k , 40. 49: The angular frequency ω  2π 2π   12.6 rad s Ground state harmonic 0.500 s T oscillator energy is given by 1 1 E0  ω  (1.054... state First excited state energy E100  E001  E010   40. 54: Let 1  k1 m , ω2  k 2 m , ψ nx ( x) be a solution of Eq (40. 21) with Enx  1   nx   ω1 , ψ nx ( y ) be a similar solution, and ψ nz ( z ) be a solution of Eq.(42 - 25) but 2  1  with z as the independent variable instead of x, and energy Enz   nz  ω2 (a) As in 2  Problem 40. 53, look for a solution of the form ψ ( x, y, z... energy n2h2 En  levels as given in Eq (40. 9), where 8mL2 d) Part (a)’s wave functions are odd, and part (b)’s are even  En  40. 56: a) As with the particle in a box, ψ ( x)  A sin kx, where A is a constant and k 2  2mE 2 Unlike the particle in a box, however, k and hence E do not have simple forms b) For x  L, the wave function must have the form of Eq (40. 18) For the wave function to remain...  U ( x)) 2 dx h Note that if E  U (x) we are inside the well and A  0 From the above equation, this 40. 44: b)  d 2ψ ( x ) implies has the opposite sign of ψ (x) dx 2 If E  U (x), we are outside the well and A  0 From the above equation, this implies d 2ψ ( x ) has the same sign as ψ (x) dx 2 40. 45: a) We set the solutions for inside and outside the well equal to each other at the well boundaries,... L L3 dx 8π 2 8π 2 dψ 2  2πx   cos  for x  L, since cos 2π  1  L3 dx L3  L  e) The slope of the wave function is greatest for ψ 2 (n  2) close to the walls of the box, as shown in Fig 40. 5 d)    40. 42: p  pfinal  pinitial  nπ hn p  k   L 2L  hn ˆ i and the final momentum, At x  0 the initial momentum at the wall is pinitial   2L   hn ˆ hn ˆ  hn ˆ  hn ˆ i So p   i ... J  s) dψ π 2 dψ dψ  cos(πx L) , and as x  L,  0 b)   2π 2 L3 dx L L dx dx Clearly not In Eq (40. 1), any point where U (x) is singular necessitates a discontinuity in dψ dx 40. 40: a) ψ  0, so 40. 41: a) ψ1  dψ  1  dx 2  πx  sin   L  L 2π 2  1  πx  1      L3  2  L   2 2 π  πx   cos   L L L dψ1 2π 2  for x  0 L3 dx dψ 2 2 2πx sin   b) ψ 2  L L dx      2... where k   b) Requiring continuous derivatives at the boundaries yields dψ x  0:  kA cos(k  0)  kB sin(k  0)  kA  Ce k 0  kA  C dx x  L : kA cos kL  kB sin kL  De L x  L : A sin 40. 46: T  Ge 2L with G  16 E U0  E  1   U  and    0   2m(U 0  E ) 1 L  2 T  ln   If E  5.5 eV, U 0  10.0 eV, m  9.11  10 31 kg, and T  0.0010 G Then κ  2(9.11  10 31 . EU m k  0 22 2  is consistent and so kxAψ sin  is a solution of )1 .40. (Eq for this case. 40. 14: According to Eq .40. 17, the wavelength of the electron inside of the square. 40. 3. m1099.4 )sm10kg)(3.00108(9.11 m)10s)(4.55J1063.6)(805.1( 8 λ)805.1( So . 8 805.1 )625.043.2( λ .625.0and43.2 . 8 10 831 734 2 2 12 12 2 2              mc h L mL h E hc EEE EEEE mL h E  40. 19: x mE Bx m A ψ  2 cos E2 sin:Eq. (40. 16)  .Eq. (40. 15))( 2 2 cos 22 sin 2 2 222 2                  ψ mE x mEmE Bx mEmE A dx ψd   40. 20: ),( xx DeCe dx dψ     ψDeCe dx ψd xx

Ngày đăng: 24/01/2014, 07:20

TỪ KHÓA LIÊN QUAN

w