1. Trang chủ
  2. » Cao đẳng - Đại học

Slide điện tử từ trường lecture 2 diodes

37 17 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 37
Dung lượng 1,17 MB

Nội dung

Lecture 02 Diodes 圖片來自;www.personeel.glr.nl/koster/elektro/diodes.JP Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt topics • • • • Semiconductor physics Diode forward characteristic Diode reverse characteristic Special diodes Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Solid-state material • Insulator (SiO2) – Strong covalent bonds, no free electron −8 −1 σ < 10 ( Ω − cm ) – Conductivity 1eV ≡ 1.6 ×10 −19 Joule – Energy gap Eg ≥ 3eV eV: eletron voltage • Semi-conductor (Si, Ge) – Conductivity 10 −8 < σ < 103 (Ω − cm) −1 – Energy gap < Eg < 3eV • Conductor (Cu, Ag) – Weak covalent bonds, many free electrons – Conductivity σ > 103 (Ω − cm) −1 – Energy gap Eg = 0eV Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Energy gap Energy level high energy Infinite many atoms Low energy conduction band Energy-level gap valance band http://oldsite.vislab.usyd.edu.au/photonics/devices/semicdev/doping2.html One atom Level : high energy Level : low energy electrons conduction band conduction band conduction band Energy gap overlap valance band Energy-level gap valance band Energy-level gap valance band Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Famous Semi-conductors • Element semi-conductor – Si • Cheap • Energy gap > Ge ặ small leakage current ã Stable oxide Ge • First transistor • Small energy gap • Unstable oxide • Compound semi-conductor – GaAs Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Intrinsic semiconductor (silicon) At very low temperature ion http://oldsite.vislab.usyd.edu.au/photonics/devices/semicdev/doping2.html Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Intrinsic semiconductor at room temperature Mass-action law: n = p = ni ⇒ np = ni2 − KTG ni = BT e E For silicon semi-conductor Material parameter B = 5.4 ×1031 EG = 1.12eV Boltzmann’s constant k = 8.62 × 10 −5 eV K At room temperature Free electrons and holes generated by thermal ionization, so the concentration is same n = p = ni T ≈ 300 K ni ≈ 1.45 ×1010 carriers Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com cm3 https://fb.com/tailieudientucntt Hole and electrons moving drift Drift velocity v = μE Resistivity R=ρ l E= E : electric field strength (V/cm) μ : mobility of hole/electron (cm2/V-sec) l A Charge density ρ ≡ nq ( Ω − cm ) conductivity A e e J = σE J n = qnμ n E J drift = q ( pμ p + nμ n ) E e Nq Nqv = T L I Nqv J= ⇒J= A AL N n≡ ⇒ J = nqv LA I≡ σ ≡ nq μ J p = qpμ p E f q For intrinsic silicon : cm μ p = 480 V ⋅s cm μ n = 1350 Electron density V ⋅s Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt diffusion For intrinsic silicon : q = 1.6 × 10 C cm D p = 12 J : current density s q : electron charge cm Dn = 34 D : diffusivity of hole/electron s −19 dp J p = −qD p dx dn J n = qDn dx p n electron diffusion hole diffusion Jp Jn x x The conventional current direction is the positive charge flow direction 10 Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt PN Junction reverse bias IS > ID IS − ID = I q J = q N = qN DWn A N AND qJ = q AWdep N A + ND Wdep = Wn + W p = Cj = Junction capacitance dq J Cj = dVR ⇒ Cj = VR =VQ εs A VR = C jo = A 2ε s 1 ( + )(V0 + VR ) q N A ND C jo varactor + VVRo qε s N A N D ( ) N A + N D V0 Wdep 23 Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt 圖片來自;www.rvweb.fr/ /electricite/partie3_4.php 24 Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Minority carriers distribution in forward bias (the story about reverse saturation current) electrons p1 = p2 e V21 VT page18 → p n ( xn ) = p n e V VT holes pn ( x) = pn + [ pn ( xn ) − pn ]e Q J p = − qDP ⇒ Jp = q Dp Lp − ( x − xn ) LP dp dx pn (e V VT − 1)e − ( x − xn ) LP Total loss by recombination = External electric field inject electrons Inject holes from P region to diffuse away from the junction into the N region and disappear by recombination 25 Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt PN Junction under forward bias Jp = q Dp Lp pno (e V VT − 1) V Dn Jn = q n po (e VT − 1) Ln I = A( J p + J n ) IS < ID Reverse saturation current I = I s (e V / VT if Dp V Dn I = Aqn ( + )(e V T − 1) L p N A Ln N D i − 1) V > I s Forward ⇒ i ≈ I se v nVT i ⇒ v = nVT ln Is V1 I1 ≈ I s e nVT V2 I ≈ I se nVT n : Ideality factor which depending on diode’s material and physical structure ⎧1 ⎪ n = ⎨1 ⎪2 ⎩ Ge Si( I D ≥ 25mA) Si( I D ≤ 25mA) I2 I2 ⇒ V2 − V1 = nVT ln = 2.3nVT log I1 I1 28 Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt VD = ⇒ I D = Open current Forward bias VD > ⇒ I D ≈ I s e reverse bias VD < ⇒ I D = − I s VD nVT Cut-in voltage V r Vr = 0.7 → Vr = 0.25 → Si Ge Vr = 1.2 → GaAs 29 Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Diode Model I (ideal model ) 30 Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Diode Model II (constant-Voltage Drop model ) 31 Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Diode Model III (Piecewise-linear model ) 32 Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Table 3.1 Modeling the Diode Forward Characteristic 33 Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Special Diodes (Zener Diode) 圖片來自;www.alibaba.com/catalog/11418809/0_5w_Series 34 Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt I = Iz + IL ⇒ V − Vz Pz Vz = + R Vz RL I = I z (max) + I L (min) V − Vz Pz (max) Vz ⇒ = + R Vz RL (max) I = I z (min) + I L (max) V − Vz Pz (min) Vz ⇒ = + R Vz RL (min) Ideal case: rz = RL ↑ (max) → I L ↓Q R = K ∴ I = fixed ⇒ I z ↑ (max) RL ↓ (min) → I L ↑Q R = K ∴ I = fixed ⇒ I z ↓ (min) 35 Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt hyperphysics.phy-astr.gsu.edu/ /schottky.gif The others Special Diodes Schottky Diode - Metal + semiconductor (unipolar) Light emitting diode (LED) - GaAs diode - GaN diode (B, G) Tunnel diode Photo diode (PD) Opto coupler (LED + PD) www.personeel.glr.nl/koster/elektro/ledjes.JPG hyperphysics.phy-astr.gsu.edu/ /tundio.html home.swipnet.se/ /hifi_100pr/photodiode.jpg www.du.edu/~etuttle/electron/circ43.gif www.geda.seul.org/ /analog/photodiode-1_tn.png 36 Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt LED • 1963 Red • 1993 Blue • 1996 white 37 Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt ... ⇒E= p1 p2 V1 V2 ∫ dV = ∫ − VT dp p p1 → V2 − V1 = −VT (ln p2 − ln p1 ) = VT ln p2 V21 Boltzmann equation Mass-action law VT ⇒ p1 = p2 e J n = ⇒ n1 = n2 e Vo =V 21 = VT ln −V21 VT p1 p2 N AND Vo... temperature (20 oC)VT kT VT ≡ q k = 1.38 × 10 VT thermal voltage 溫度伏特當量 ≈ 25 mV Boltzmann’s constant − 23 joules kelvin T = 27 3+ oC T = 20 o C → 29 3o K ⇒ VT ≈ 25 mV T = 27 o C → 300o K ⇒ VT ≈ 26 mV q =... V2 I ≈ I se nVT n : Ideality factor which depending on diode’s material and physical structure ⎧1 ⎪ n = ⎨1 ? ?2 ⎩ Ge Si( I D ≥ 25 mA) Si( I D ≤ 25 mA) I2 I2 ⇒ V2 − V1 = nVT ln = 2. 3nVT log I1 I1 28

Ngày đăng: 01/01/2022, 22:59

TỪ KHÓA LIÊN QUAN

w