1. Trang chủ
  2. » Thể loại khác

Chapter 4 linear transformation

27 37 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 27
Dung lượng 525,48 KB

Nội dung

Linear transformation Phan Thi Khanh Van E-mail: khanhvanphan@hcmut.edu.vn May 13, 2021 (Phan Thi Khanh Van) Linear transformation May 13, 2021 / 27 Table of contents Linear transformation The transformation matrix Change of basis matrix and transformation matrix Kernel and Image of a linear transformation (Phan Thi Khanh Van) Linear transformation May 13, 2021 / 27 Linear transformation Let U, V be vector spaces over the field K(R, C) f : U → V is called a linear transformation if: ∀u1 , u2 ∈ U, f (u1 + u2 ) = f (u1 ) + f (u2 ) ∀u ∈ U, α ∈ K : f (αu) = αf (u) Example Let f : R2 → R2 be a linear transformation satisfying: f (x1 , x2 ) = (2x1 + x2 , x1 − 3x2 ) Find f (3, 4) f (3, 4) = (2.3 + 4, − 3.4) = (10, −9) Represent f as matrix multiplication: 2x1 + x2 x1 [f (x)] = = = A[x] x1 − 3x2 −3 x2 (Phan Thi Khanh Van) Linear transformation May 13, 2021 / 27 Example Let f : R3 → R2 be a linear transformation satisfying: f (1, 1, 3) = (1, 0), f (1, −1, 0) = (2, −3), f (2, 0, 0) = (1, 1) Find a) f (2, 0, 3) b) f (−3, −1, 6) = f (2(1, 1, 3) + 3(1, −1, 0) − 4(2, 0, 0)) c) f (2, 3, −4) (2, 0, 3) = (1, 1, 3) + (1, −1, 0) ⇒ f (2, 0, 3) = f (1, 1, 3) + f (1, −1, 0) = (1, 0) + (2, −3) = (3, −3) b) f (−3, −1, 6) = f (2(1, 1, 3) + 3(1, −1, 0) − 4(2, 0, 0)) = 2f (1, 1, 3) + 3f (1, −1, 0) − 4f (2, 0, 0) = 2(1, 0) + 3(2, −3) − 4(1, 1) = (4, −13) a) (Phan Thi Khanh Van) Linear transformation May 13, 2021 / 27 c) We have that E = {(1; 1; 3), (1; −1; 0), (2; 0; 0)} is a basis of R (det(E ) = 0)  −1     −3 1 2  [(2, 3, −4)]E = 1 −1 0   = − 13 23 0 −4 Or (2, 3, −4) = − 43 (1, 1, 3) − 13 (1, −1, 0) + 23 (2, 0, 0) Consequently, 23 [f (2, 3, −4)] = − 43 [f (1, 1, 3)] − 13 [f (1, −1, 0)] + [f (2, 0, 0)] 37 − = − 34 − 13 + 23 = 1016 −3 (Phan Thi Khanh Van) Linear transformation May 13, 2021 / 27 Example Let f : R3 → R2 be a linear transformation satisfying: f (1, 1, 3) = (1, 0), f (1, −1, 0) = (2, −3), f (2, 0, 0) = (1, 1) Find f (x1 , x2 , x3 ) E = {(1; 1; 3),  −1; 0), (2; 0; 0)} is a basis of R  (1; α Put [x]E = β  = E −1 [x] γ [x] = α[e1 ] + β[e2 ] + γ[e3 ] ⇒ [f (x)] = α[f (e1 )] + β[f(e2 )] + γ[f (e3 )] α  = f (e1 ) f (e2 ) f (e3 ) β  = f (e1 ) f (e2 ) f (e3 ) E −1 [x] γ  −1   1 x1 x1  + −3x2 + 2x3 = −1 0 x2  = x21 7x22 −4x33 −3 + + x3 0 Therefore, f (x1 , x2 , x3 ) = x21 − 3x22 + 2x33 , x21 + 7x22 − 4x33 [f (x)] = A[x] = fE E −1 [x] (Phan Thi Khanh Van) Linear transformation May 13, 2021 / 27 Example Given a triangle ABC : A(0, 1), B(2, 3), C (4, 2) Find the image of the triangle under the transformation: a) b) c) (Phan Thi Khanh Van) Linear transformation Rotation about the origin 60o counterclockwise Reflection in the line y = −3x Shear transformation with the fixed line x−axis: S(x, y ) = (x + 3y , y ) May 13, 2021 / 27 Rotation about the origin 60o counterclockwise: π3 The standard basis of R2 : E = {i = (1, 0), j = (0, 1)T } The matrix of coordinates of the triangle: [OA OB OC ] = a) √ cos( π3 ) sin( π3 ) − sin( π3 ) f (j) = cos( π3 ) Rotation matrix: f (i) = R = f (E ).E −1 = = √2 − √ 1√− 3 + 32 √ 2√− 3+1 √ − The coordinates of the image: [OA OB OC ] = R.[OA OB OC ] (Phan Thi Khanh Van) Linear transformation May 13, 2021 / 27 b) Reflection about the line y = −3x Choose the directional vector: e1 = (1, −3), and the normal vector e2 = (3, 1) to form a basis of R2 −3 −3 f (e2 ) = −e2 = −1 Reflection matrix: − 54 − 53 T = fE E −1 = − 35 The coordinates of the image: [OA OB OC ] = R.[OA OB OC ] f (e1 ) = e1 == (Phan Thi Khanh Van) = Linear transformation − 53 − 17 − 22 − 45 May 13, 2021 / 27 b) Shear transformation S(x, y ) = (x + 3y , y ) Shear matrix: S = The coordinates of the image: S(X ) = S.X = (Phan Thi Khanh Van) Linear transformation 11 10 May 13, 2021 10 / 27 The transformation matrix Let f : U → V be a linear transformation Let E = {e1 , e2 , , en } and F = {f1 , f2 , , fm } be bases of U and V , respectively An m × n matrix whose the i-th column is the coordinate vector of f (ei ) with respect to the basis F is called the transformation matrix of f with respect to E , F Denote: AEF = [f (e1 )]F [f (e2 )]F [f (en )]F [f (x)]F = AEF [x]E Remark: If f : Rn → Rm : [f (ei )]F = F −1 [f (ei )], then, AEF = F −1 [f (e1 )] F −1 [f (e2 )] F −1 [f (en )] = F −1 f (E ) Remark: If f : Rm → Rn , E , F are two corresponding bases Then, AEF = F −1 f (E ) If f : Rn → Rn , E is a basis of R n Then, AE = E −1 f (E ) (Phan Thi Khanh Van) Linear transformation May 13, 2021 13 / 27 Example Let f be a linear transformation f : R3 → R2 : f (x1 , x2 , x3 ) = (2x1 + x2 + x3 , x1 − x2 − x3 ) Find the transformation matrix of f w.r.t E = {(1, 2, 1), (1, 1, 0), (1, 0, 0)}, F = {(1, 3), (2, 4)}   x 1  1 x2 [f (x)] = A[x] = −1 −1 x3 AEF = F −1 fE = F −1 A.E   1 −1 −12 −6 −3 2 1 = 2 0 = 17 −1 −1 2 0 (Phan Thi Khanh Van) Linear transformation May 13, 2021 14 / 27 Theorem Let E and F be bases of U and V , respectively For any linear transformation f : U → V , there exists a unique matrix AEF satisfying: ∀x ∈ U : [f (x)]F = AEF [x]E For any m × n matrix AEF , there exists a unique linear transformation f : U → V such that: ∀x ∈ U : [f (x)]F = AEF [x]E Conclusion: For any linear transformation f , we can find and only matrix A : f (v ) = Av If f is invertible, then f −1 has the matrix A−1 The product of transformations f1 : f1 (v ) = A1 v and f2 : f2 (v ) = A2 v corresponds to A1 A2 This is where the matrix multiplication came from! (Phan Thi Khanh Van) Linear transformation May 13, 2021 15 / 27 Example Let f be a linear transformation f : R3 → R2 The transformation matrix of f w.r.t E = {(1, 1, −1), (2, 1, 0), (1, 0, 0)}, F = {(1, 2), (−2, 3)} is −1 AEF = Find f (x) We have: [f (x)]F = AEF [x]E = AEF E −1 [x] Then [f (x)] = F [f (x)]F = F AEF E −1 [x] −1    x1 2 −1  −2 = 1 0 x2  x3 −1 0   x1 −5 −5x1 + 5x2 [f (x)] = x2  = 18 −32 −21 18x1 − 32x2 − 21x3 x3 (Phan Thi Khanh Van) Linear transformation May 13, 2021 16 / 27 Example Let f be a linear transformation f : R3 → R3 : f (x1 , x2 , x3 ) = (2x1 + x2 + x3 , x1 − x2 − x3 , 4x1 − x2 − x3 ) Find the matrix of f in E = {(1, 1, 1), (1, 1, 0), (1, 0, 0)}, F = {(1, 1, 2), (1, −2, 1), (0, 0, 3)}   1 [f (x)] = 1 −1 −1 [x] = A.[x] ⇒ f (E ) = A.E −1 −1 We have: AEF = F −1 f (E ) = F −1 A.E  −1    1 1 1 = 1 −2 0 1 −1 −1 1 0 = −1 −1 0 (Phan Thi Khanh Van) Linear transformation May 13, 2021 17 / 27 Change of basis matrix and transformation matrix Let f : U → V be a linear transformation; E and E be bases of U; F and F be bases of V Transformation matrix of f w.r.t E , F is AEF Change of basis matrices: PE →E = E −1 E , and QF →F = F −1 F Then, the transformation matrix of f w.r.t E , F is: AE F = QF−1→F AEF PE →E Remark Let f : U → U be a linear transformation; E and E be bases of U The change of basis matrix: PE →E = E −1 E Then, the transformation matrix of f with respect to E : AE = PE−1→E AE PE →E (AE and AE are similar matrices) (Phan Thi Khanh Van) Linear transformation May 13, 2021 18 / 27 Example Given a linear transformation f : R3 → R3 Matrix of f w.r.t  −1  Find the matrix E = {(1, 1, −1), (2, 1, 0), (1, 0, 0)} is AE = 1 −3 −1 representation of f w.r.t the standard basis (standard matrix representation)     12 −24 −17 E =  1 0 ⇒ A = E AE E −1 =  −13 −9  −3 −1 0 (Phan Thi Khanh Van) Linear transformation May 13, 2021 19 / 27 Example Let f be a linear transformation f : R3 → R3 The matrix  of f in −1 E = {(1; 1; 1), (1; 2; −1), (0; 2; 1)} is AE = 1 0 Find the matrix 1 of f w.r.t F = {(1; −1; −1), (1; 1; 1), (0; 0; 1)} −1 AF =F −1 E AE E  F , where:   1 1 E = 1 2, F = −1 0 −1 −1 1 (Phan Thi Khanh Van) Linear transformation May 13, 2021 20 / 27 Kernel and Image of a linear transformation Let f be a linear transformation f : U → V Kernel of the linear transformation f : Kerf = {x ∈ U|f (x) = 0} Image of the linear transformation f : Imf = {y ∈ V |∃x ∈ U : y = f (x)} Theorem Let f be a linear transformation f : U → V Kerf is a subspace of U Imf is a subspace of V dim(Imf ) + dim(Kerf ) = dim(U) Proposition Let f : U → V be a linear transformation If U = span{e1 , e2 , en }, then Imf = span{f (e1 ), f (e2 ) f (en )} (Phan Thi Khanh Van) Linear transformation May 13, 2021 21 / 27 Example Let f be a linear transformation f : R3 → R3 : f (x1 , x2 , x3 ) = (2x1 + x2 + x3 , x1 − x2 − x3 , 4x1 − x2 − x3 ) Find the dimensions, bases of Kerf , Imf Find a basis of Kerf : x ∈ Kerf ⇔ [f (x)]  =0⇔  A[x] =  3 1 −1 −1  −1 −1  ∼  −1 −1  ∼ 1 −1 −1 0 3 General solution: x = (0, −m, m) One basis for Kerf : {(0, −1, 1)}, dim(Kerf ) = Find a basis of Imf : Choose a basis of R3 : {(1, 0, 0), (0, 1, 0), (0, 0, 1)} ⇒ A spanning set of Imf : {f (1, 0, 0), f (0, 1, 0), f (0, 0, 1)} = {(2, 1, 4),  (1, −1, −1),(1, −1,  −1)}  1 1 We have 1 −1 −1 ∼ 0 −3 −3 −1 −1 −3 −3 One basis of Imf : {(2, 1, 4), (1, −1, −1)}, dim(Imf ) = (Phan Thi Khanh Van) Linear transformation May 13, 2021 22 / 27 Example Given f : R3 → R3 : f (1, 1, 1) = (1, 2, 1), f (1, 1, 2) = (2, 1, −1), f (1, 2, 1) = (5, 4, −1) Find the dimensions, bases of Kerf , Imf We have that E = {e1 = (1, 1, 1), e2 = (1, 1, 2), e3 = (1, 2, 1)} is a basis of R3 Then {f (e1 ),  f (e2 ),f (e3 )} is a spanning   set of Imf  5 2  ∼ 0 −3 −6 ∼ 0 −3 −6 −1 −1 −3 −6 0 One basis for Imf : {(1, 2, 1), (2, 1, −1)}, dim(Imf ) = (Phan Thi Khanh Van) Linear transformation May 13, 2021 23 / 27 Find a basis of Kerf : We have: x ∈ Kerf ⇔ [f (x)] = A[x] = ⇔ f (E )E −1 [x] =   −1     1 x1 −4 −1   1 2 x2  = ⇔  ⇔ 2 1 −1 −1 x3 −2 −2   −1 ∼  12 −3  12 −3 −1 ∼ −1 General solution: x = (2m, m, 4m) One basis for Kerf : {(2, 1, 4)}, dim(Ker (f )) = (Phan Thi Khanh Van) Linear transformation May 13, 2021 24 / 27 Exercises The projection f in Oxyz onto the plane P : x − y + 2z = is a linear transformation Find the dimensions, bases of Imf , Kerf The reflection f in Oxyz with respect to the plane x + y + z = is a linear transformation Find the dimensions, bases of Imf , Kerf The rotation f in Oxyz with respect to z-axis by 45o counterclockwise is a linear transformation Find the dimensions, bases of Imf , Kerf (Phan Thi Khanh Van) Linear transformation May 13, 2021 25 / 27 Example Given f : R3 → R3 The matrix of f in the   basis −1  Find the E = {(1, 1, 1), (1, 1, 0), (1, 0, 0)} is AE = 1 −3 −1 dimensions, bases of Kerf , Imf   −8 A = E AE E −1 = 7 −6 2 −4   6x1 − 8x2 + 6x3 Hence, [f (x)] = A.[x] = 7x1 − 6x2 + 2x3  Continue!!! 3x1 − 4x2 + 3x3 (Phan Thi Khanh Van) Linear transformation May 13, 2021 26 / 27 Thank you for your attention! (Phan Thi Khanh Van) Linear transformation May 13, 2021 27 / 27 ... of contents Linear transformation The transformation matrix Change of basis matrix and transformation matrix Kernel and Image of a linear transformation (Phan Thi Khanh Van) Linear transformation. .. (Phan Thi Khanh Van) Linear transformation May 13, 2021 20 / 27 Kernel and Image of a linear transformation Let f be a linear transformation f : U → V Kernel of the linear transformation f : Kerf... −1     −3 1 2  [(2, 3, ? ?4) ]E = 1 −1 0   = − 13 23 0 ? ?4 Or (2, 3, ? ?4) = − 43 (1, 1, 3) − 13 (1, −1, 0) + 23 (2, 0, 0) Consequently, 23 [f (2, 3, ? ?4) ] = − 43 [f (1, 1, 3)] − 13 [f (1,

Ngày đăng: 01/01/2022, 16:28

TỪ KHÓA LIÊN QUAN