1. Trang chủ
  2. » Luận Văn - Báo Cáo

Khảo sát một số tham số động lực học của máy xúc một gầu

128 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 128
Dung lượng 774,23 KB

Nội dung

Đại học quốc gia Hà nội Trung tâm hợp tác đào tạo bồi dãỡng học Trung tâm khoa học tự nhiên công nghệ quốc gia Viện học Nguyễn Ngọc Khanh Khảo sát Một số tham số động lực học Của máy xúc gầu Luận văn thạc sỹ học Hà nội 2003 Đại học quốc gia Hà nội Trung tâm hợp tác đào tạo bồi dãỡng học Trung tâm khoa học tự nhiên công nghệ quốc gia Viện học Nguyễn Ngọc Khanh Khảo sát Một số tham số động lực học Của máy xúc gầu Chuyên ngành: Cơ học ứng dụng Mà số: 2.02.02 Luận văn thạc sỹ học Ngãời hãớng dẫn khoa học: Tiến sĩ Chu Văn Đạt Hà nội 2003 Mục lục Trang Trang phụ bìa Mục lục Mở đầu Chãơng 1- Tổng quan 1.1- Mô hình hệ nhiều vật phãơng pháp nghiên cứu 1.1.1- Mô hình hệ nhiều vật 1.1.2- Hệ toạ độ 1.1.3- Phép biến đổi Denavit-Hartenberg ma trận chuyển cấp bốn 1.2- Giới thiệu sơ lãợc máy xúc gầu dẫn động thuỷ lực 11 15 1.2.1- Đặc điểm chung máy xúc gầu dẫn động thuỷ lực 15 1.2.2- Cơ sở tính toán thiết bị máy xúc gầu dẫn động thuỷ lực 16 1.2.3- Lực tãơng tác gầu đất trình đào 18 Chãơng 2- Mô hình động học động lực học máy xúc 21 2.1- Giới thiệu chung 21 21 2.2- Mô hình động học máy xúc 2.2.1- Động học thuận tay xúc 24 24 2.2.1.1- Các phãơng trình liên hệ góc với vị trí gầu xúc 2.2.1.2- Các phãơng trình liên quan chiều dài 26 cần thuỷ lực với góc quay khớp 29 2.2.2- Động học ngãợc tay xúc 2.2.2.1- Các phãơng trình liên hệ vị trí gầu xúc với góc 29 quay khớp 31 2.2.2.2- Mặt làm việc tay xúc 2.3- Mô hình động lực học 2.3.1- Mô hình động lực học 2.3.2- Các phãơng trình vận tốc gia tốc 2.3.3- Phãơng trình chuyển động cho khâu Chãơng 3- Tổ chức chãơng trình tính toán kết tính 3.1- Tổ chức chãơng trình tính toán 33 33 38 ………… 42 ……… 58 ……………………… … 3.2- Phãơng pháp giải phãơng trình vi phân Matlab 58 60 62 3.3.1- Các thông số động học động lực học 62 3.3.2- Các điều kiện đầu 64 3.3- Các thông số đầu vào để giải toán 64 3.4.1- Đồ thị chuyển vị, vận tốc, gia tốc khâu (cần máy xúc) 65 3.4.2- Đồ thị chuyển vị, vận tốc, gia tốc khâu (tay gầu) 66 3.4- Kết tính toán 67 68 3.4.3- Đồ thị chuyển vị, vận tốc, gia tốc khâu (gầu xúc) 69 3.4.4- Biểu đồ lực khâu 70 3.4.5- Biểu đồ mômen khâu 71 KÕt ln 72 Tµi liƯu tham khảo 72 Phụ lục Phụ lục 1- Chãơng trình maple tính góc cần thuỷ lực 76 Phụ lục - Chãơng trình Maple thiết lập phãơng trình vi phân chuyển động hệ 85 Phụ lục 3- Chãơng trình Matlab giải hệ phãơng trình vi phân chuyển động hệ Phụ lục 4- Một số hình vẽ liên hệ góc xilanh khâu 94 Mở đầu Trong công trình xây dựng đãờng sá, đê đập thuỷ lợi, thuỷ điện, kênh đào, mãơng máng, khai thác mỏ v.v, máy xúc gầu chiếm vị trí quan trọng công tác đào, đắp đất đá Máy xúc gầu đảm nhận dãới 50% tổng khối lãợng đất đá phải thi công, phần lại loại máy làm đất khác đảm nhiệm Trong khoảng ba chục năm trở lại đây, máy xúc gầu dẫn động thuỷ lực đà đãợc phát triển mạnh mẽ có xu hãớng thay dần máy xúc có truyền động khí Đặc biệt từ sau năm 1975, máy xúc thuỷ lực cỡ nhỏ vừa hầu nhã loại máy xúc đãợc chế tạo nãớc công nghiệp phát triển nhã Nhật, Nga, Đức, đãợc trao đổi, buôn bán thịnh hành thị trãờng giới Để tăng suất cho máy, hãớng cải tiến đổi trang bị rút ngắn thời gian trình thao tác máy nhã tăng tốc độ đào xúc, quay, rút ngắn thời gian lấy đà, hÃm phanh v.v Kết điều không tránh khỏi tải trọng động tác dụng mÃnh liệt liên tục vào máy, gây nên dao động dạng, thực tế phức tạp Việc cho phép tính toán lực tải trọng động xuất máy làm việc cho khả xác định đãợc yếu tố ảnh hãởng đến độ lớn quy luật xuất lực Nhờ ta tìm đãợc biện pháp nhằm giảm bớt tác động xấu chúng, góp phần tăng tuổi thọ độ tin cậy máy trình khai thác Trong luận văn đà đề cập đến việc xây dựng mô hình tính toán tổng quát động lực học máy xúc gầu dẫn động thuỷ lực, nghiên cứu ảnh hãởng thông số động lực học đến chất lãợng công tác, suất, kết cấu máy để từ xác định chế độ làm việc hợp lý Các mô hình động học động lực học máy xúc gầu điều khiển thuỷ lực đãợc xây dựng sở lý thuyết học hệ nhiều vật Các mô hình động học động lực học đà đãợc phát triển từ tảng lý thuyết tay máy rôbốt Mô hình động học đãợc tính toán theo nguyên lý Denavit- Hartenberg mô hình động lực học sử dụng phãơng trình Newton- Euler viết cho khâu Trong luận văn tác giả đà sử dụng thông số kích thãớc động học ®éng lùc häc cđa m¸y xóc thùc nghiƯm Komatsu PC05-7, sử dụng phần mềm Matlab để giải hệ phãơng trình chuyển động Mô hình động học máy xúc thể mối liên hệ hình học thiết bị Dựa theo nguyên lý Denavit- Hartenberg xuất phát từ mối quan hệ động học liên hệ góc quay khớp máy xúc xác định hệ trục toạ độ khác đà xây dựng mô hình động học đầy đủ cho máy xúc, nguyên lý đà đãợc sử dụng rộng rÃi lĩnh vực rôbốt Các phãơng trình động học thuận ngãợc đà trình bày, mô tả vị trí hãớng gầu xúc, góc quay khớp chiều dài cần thuỷ lực Các phãơng trình đãợc giới thiệu chi tiết mục II chãơng luận văn Động học thuận liên quan góc quay khớp với vị trí cần, tay gầu gầu xúc, đãợc sử dụng cho mô chuyển động máy Động học ngãợc biểu diễn mối liên quan vị trí hãớng gầu xúc với góc quay khớp, tã gầu xúc không đạt tới đãợc cần phải có góc khớp vãợt xa giới hạn máy, nằm mặt làm việc máy xúc Cả hai điều kiện tìm đãợc từ kết giải phãơng trình động học ngãợc Trong mô hình động học có sở mối liên hệ hình học mô hình động lực học đề cập đến vần đề nhã: lực, gia tốc, quán tính ma sát Mô hình động lực học xác định mối liên hệ mô men xoắn ngoại lực với chuyển động khâu máy xúc Mô hình động lực học thuận sử dụng để mô mô men xoắn, ngoại lực mô men đà cho, chuyển động máy biết trãớc Mô hình động lực học ngãợc có tính thực tiễn lớn, cung cấp quan hệ mô men xoắn khớp với quỹ đạo chuyển động ngoại lực đà cho Các phãơng trình động lực học đãợc giới thiệu chi tiết mục III chãơng luận văn Qua xin phép bầy tỏ lòng biết ơn sâu sắc tới thầy giáo hãớng dẫn, TS Chu Văn Đạt, PGS TS Phan Nguyên Di đà tận tình dẫn góp ý kiến quý báu trình thực luận văn Tôi xin chân thành cảm ơn Đại học quốc gia Hà nội, Trung tâm hợp tác đào tạo bồi dãỡng học, Trung tâm khoa học tự nhiên công nghệ quốc gia Viện học đà giúp đỡ tạo điều kiện thuận lợi cho đãợc học tập suốt thời gian qua Cuối xin bày tỏ lòng biết ơn tới đồng nghiệp, bạn bè đà giúp đỡ, động viên trình thực luận văn Chãơng 1: Tổng quan 1.1- Mô hình hệ nhiều vật phãơng pháp nghiên cứu 1.1.1- Mô hình hệ nhiều vật Hệ nhiều vật hệ gồm nhiều vật rắn (vật rắn tuyệt đối vật rắn biến dạng) liên kết với khớp chuyển động có quy luật, lò xo, giảm chấn, tựa, Các máy, cấu, ô tô, máy bay, tàu thuỷ, loại rôbốt, hệ nhiều vật Vật rắn hệ nhiều vật đãợc gọi hệ (hoặc phần tử, kết cấu con) có hình dáng, cấu trúc tuỳ ý mà từ sau để đơn giản cách gọi tên ta gọi vật Các vật hệ nhiều vật chuyển động tịnh tiến quay, tất nhiên chuyển động không hoàn toàn tuỳ ý, phần tử nằm hệ chịu liên kết Rõ ràng biết đãợc vị trí, vận tốc, gia tốc điểm tuỳ ý vật tuỳ ý hệ hoàn toàn xác định, nghĩa cấu hình hệ nhận biết đãợc Vì cố gắng xác định chuyển động (cũng có nghĩa vận tốc, gia tốc) điểm tuỳ ý hệ chịu liên kết Hiển nhiên, chất điểm nằm vật, muốn xác định chuyển động cần phải biết chuyển động vật chứa điểm Nói cách khác, trãớc hết phải xét chuyển động cđa vËt bÊt kú thc hƯ vËt Cã h•íng khác để nghiên cứu chuyển động vật Hãớng thứ (hay cách tiếp cận thứ nhất) nghiên cứu theo quan điểm vật rắn tuyệt đối Khi đó, cho vật rắn hoàn toàn tự do, ta cần tham số để xác định vị trí Mô hình toán học dẫn đến hệ phãơng trình vi phân cấp phi tun bËc cao xem gãc quay lµ lín Hãớng thứ hai, nghiên cứu theo quan điểm học kết cấu, nghĩa phận học vật rắn biến dạng, cần phải dùng số lớn tham số để xác định chuyển động vật Hãớng thứ ba, nghiên cứu theo quan điểm học môi trãờng liên tục, mô hình toán học, khác với hai hãớng dẫn đến phãơng trình phi tuyến vô hạn bậc tự Trong phần đây, ta nghiên cứu theo hãớng thứ nhất, xem vật (hệ con) vật rắn tuyệt đối có mô hình nhã (hình 1.1) Hình 1.1- Hệ nhiều vật rắn 1.1.2- Hệ toạ độ Cấu hình hệ nhiều vật hoàn toàn xác định nhã biết đãợc vị trí, vận tốc, gia tốc điểm tuỳ ý vật tuỳ ý Các véc tơ có quan hệ với hệ toạ độ đãợc chọn (hệ quy chiếu) Hệ quy chiếu thãờng dùng để nghiên cứu hệ nhiều vật toạ độ đề Giả sử hệ trục đề có gốc O, trục tãơng ứng X1, X2, X3, véc tơ đơn vị trục tãơng ứng e1, e2, e3, véc tơ tuỳ ý kh«ng gian, kh«ng nhÊt thiÕt cã gèc trïng víi gèc O, có toạ độ hệ trục đãợc chọn Chẳng hạn véc tơ U có thành phần tãơng ứng trục là: u1, u2, u3, ta viÕt: U=  u1 u2 u3T hc: U= u1e1+ u2e2+ u3e3 C¸c vËt cđa hƯ nhiỊu vËt nói chung không hoàn toàn tự do, chúng đãợc liên kết với chuyển động vật phụ thuộc vào chuyển động vật Vì để nghiên cứu chuyển động hệ nhiều vật cần phải dùng hệ thống hệ trục toạ độ Tuy nhiên biết chuyển động hệ toạ độ hệ toạ độ khác, trình xác định hệ toạ độ hệ toạ độ thứ 3, thứ hoàn toàn tãơng tự Vì cách trình bày giới hạn hai hệ trục toạ độ, hệ trục toạ độ đãợc xem cố định (trên thực tế không thiết cố định) gốc O, trục tãơng ứng là: X1, X2, X3 dùng để quan sát chuyển động hệ trục gắn với vật chuyển động gọi hệ trục động Nếu vật cần quan sát gọi i, ta chọn X1i X i X3i điểm Oi tuỳ ý vật i làm gốc, lập hệ trục toạ độ đề gắn chặt với vật, xác định đãợc vị trí hệ trục toạ độ (điểm gốc Oi hãớng trục) vị trí vật i hoàn toàn xác định (hình 1.2) X2 X3 Ui P i X2i Oi X1 i X1 X3 H×nh1.2- Hệ cố định hệ động sin dy2 := l AB  [ lAB sin( y1( t )  11 )  lAH ]     y1( t arctan   (l cos( y1( t )  A [l   )  lH ]  F 11    BE      )  l sin( y3( t )   ) ) sin( y3( t )   ) F l sin( y3( t )   A 11  F 2  sin(  )  cos(  ) tan( 4 )  y3( t ) )   l sin(      sin( y1( t )  y3( t )   )  cos( y1( t )  y3( t )   ) tan(  )  5    l sin(     sin(  )  cos(  ) tan( y1( t )  y3( t )  5 )    F )  sin( )  cos( ) tan( y1( t )  y3( t ) 5 JK 4 5)          l2[ Ft sin( y1( t )   )  Fn cos( y1( t )   ) ]  m4 g ( l2 cos( y1( t ) ) 3 l cos( y1( t )  y3( t ) G4 )l  )) cos( y1( t )  y3( t ) 4 y5( t )   m3 g ( l2 cos( y1( t ) ) G3l cos( y1( t )  y3( t ) 5 ) ) 2m gG2l cos( y1( t )   )  ( 2 ( m l l sin( y3( t )  )  l l sin( y3( t ) )  l2 lG4 sin( y3( t )  y5( t ) 4 ) ) m m  y4( t )  ( l l sin( y3( t )  y5( t )  )  l3 lG4 sin( y5( t )  ) ) y6( t ) ) y2( t ) G4 m m   4 ( G3 ( m3 l2 lG3 sin( y3( t )  5 )  m l l sin( y3( t ) ) 4m l lsin( y3( t )  y5( t )  4 ) G4 ) y4( t )  (4m2 lG4lsin( y3( t )  y5( t )  4 )  4m3 G4 l l sin( y5( t )  4 ) ) y6( t ) ) y4( t )  ( m4 l2 lG4 sin( y 3( t )  y 5( t ) 4  ) 4 3mG4l l  dy4 :=  l sin(    CL    )  lC sin(   7 )  l sin( y1( t )  y3( t )   )  lCJ sin( y 5( 4t )   ) ) y 6( t )2 sin(  )  cos(  ) tan( y1( t )  y3( t )  5    FI   sin( )  cos( ) tan( y1( t )  y3( t ) )          sin(  )  l sin( y1( t )  y3( t )   )  sin( )  cos( ) tan(  )    sin( y1( t )  y3( t )   )  cos( y1( t )4  y3( t )   ) tan(  )  5   l sin(  sin(  )  cos( ) tan( y1(   ) t )  y3( t )  sin( )  cos( ) tan( y1( t )  y3( t )       l [ Ft sin( y1( t )   )  Fn cos( y1( t )   ) ] CL 5)   JK   mg(l mgl G3 cos( y1( t )  y3( t ) ) G4 cos( y1( t )  y3( t )  y5( t ) 5  ) ) l cos( y1( t )  y3( t )  )  (  ( m3 l2 lG3 sin( y3( t )  5 )  m4 l2 l3 sin( y3( t ) )  m4 l2 lG4 sin( y3( t )  y5( t )  4 ) ) y2( t )  m4 l3 lG4 sin( y5( t )  4 ) y6( t ) ) y2( t )  m4 l3 lG4 sin( y5( t )  4 ) y6( t ) y4( t )  m4 l3 lG4 sin( y5( t )  4 ) ( y2( t )  y4( t )  y6( t ) ) y6( t ) dy6 := lDP sin( 5  12  y1( t )  y3( t )  y5( t ) ) sin(  )  cos(  ) tan(    )   sin( y1( t )  y3( t )   )  cos( y1( t )  y3( t )   ) tan(  )F JK 5 4   l [ Ft sin(  )  Fn cos(  ) ]  m g l cos( y1( t )  y3( t )  y5( t ) )  ( 4  4 G4 ( m4 l l sin( y3( t )  y5( t )  )  l l sin( y5( t )  ) ) y2( t ) G4 G4  m   m l l sin( y5( t )  ) y4( t ) ) y2( t ) G4  m4 l3 l  ) ( y2( t )  y4( t )) y4( t ) G4 sin( y5( t )   C¸c gãc  ,  ,  , góc đào dg : > epsilon[4]:= arctan((4*l[LK]^2*(l[LD]^2+l[GD]^2+2*l[LD]*l[GD]*cos(-q4+v[2]+ v[3]))-(l[LK]^2+l[LD]^2+l[GD]^2+2*l[LD]*l[GD]*cos(-q4+v[2]+ v[3])-l[KG]^2)^2)^(1/2)/(l[LK]^2+l[LD]^2+l[GD]^2+2*l[LD]*l[GD]* cos(-q4+v[2]+v[3])-l[KG]^2))+arctan((4*l[LD]^2*(l[LD]^2+ l[GD]^2+2*l[LD]*l[GD]*cos(-q4+v[2]+v[3]))-(2*l[LD]^2+ 2*l[LD]*l[GD]*cos(-q4+v[2]+v[3]))^2)^(1/2)/(2*l[LD]^2+ 2*l[LD]*l[GD]*cos(-q4+v[2]+v[3])))-v[2]: > epsilon[5]:= Pi+v[3]+q2-q3-q4-arctan((4*l[GD]^2*(l[LD]^2+ l[GD]^2+2*l[LD]*l[GD]*cos(-q4+v[2]+v[3]))-(2*l[GD]^2+2*l[LD]* l[GD]*cos(-q4+v[2]+v[3]))^2)^(1/2)/(2*l[GD]^2+2*l[LD]*l[GD]* cos(-q4+v[2]+v[3])))-arctan((4*l[KG]^2*(l[LD]^2+l[GD]^2+ 2*l[LD]*l[GD]*cos(-q4+v[2]+v[3]))-(l[KG]^2+l[LD]^2+l[GD]^2+ 2*l[LD]*l[GD]*cos(-q4+v[2]+v[3])-l[LK]^2)^2)^(1/2)/(l[KG]^2+ l[LD]^2+l[GD]^2+2*l[LD]*l[GD]*cos(-q4+v[2]+v[3])-l[LK]^2)): > gamma1:= -Pi+sigma[7]+v[4]+arctan((4*(l[LJ]^2+l[LK]^2-2* l[LJ]*l[LK]*cos(-v[1]+arctan((4*l[LK]^2*(l[LD]^2+l[GD]^2+ 2*l[LD]*l[GD]*cos(-q4+v[2]+v[3]))-(l[LK]^2+l[LD]^2+l[GD]^2+ 2*l[LD]*l[GD]*cos(-q4+v[2]+v[3])-l[KG]^2)^2)^(1/2)/(l[LK]^2+ l[LD]^2+l[GD]^2+2*l[LD]*l[GD]*cos(-q4+v[2]+v[3])-l[KG]^2))+ arctan((4*l[LD]^2*(l[LD]^2+l[GD]^2+2*l[LD]*l[GD]* cos(-q4+v[2]+v[3]))-(2*l[LD]^2+2*l[LD]*l[GD]* cos(-q4+v[2]+v[3]))^2)^(1/2)/(2*l[LD]^2+2*l[LD]*l[GD]* cos(-q4+v[2]+v[3])))))*l[LJ]^2-(2*l[LJ]^2-2*l[LJ]*l[LK]* cos(-v[1]+arctan((4*l[LK]^2*(l[LD]^2+l[GD]^2+2*l[LD]*l[GD]* cos(-q4+v[2]+v[3]))-(l[LK]^2+l[LD]^2+l[GD]^2+2*l[LD]*l[GD]* cos(-q4+v[2]+v[3])-l[KG]^2)^2)^(1/2)/(l[LK]^2+l[LD]^2+l[GD]^2+ 2*l[LD]*l[GD]*cos(-q4+v[2]+v[3])-l[KG]^2))+arctan((4*l[LD]^2* (l[LD]^2+l[GD]^2+2*l[LD]*l[GD]*cos(-q4+v[2]+v[3]))-(2*l[LD]^2+ 2*l[LD]*l[GD]*cos(-q4+v[2]+v[3]))^2)^(1/2)/(2*l[LD]^2+2*l[LD]* l[GD]*cos(-q4+v[2]+v[3])))))^2)^(1/2)/(2*l[LJ]^2-2*l[LJ]*l[LK]* cos(-v[1]+arctan((4*l[LK]^2*(l[LD]^2+l[GD]^2+2*l[LD]*l[GD]* cos(-q4+v[2]+v[3]))-(l[LK]^2+l[LD]^2+l[GD]^2+2*l[LD]*l[GD]* cos(-q4+v[2]+v[3])-l[KG]^2)^2)^(1/2)/(l[LK]^2+l[LD]^2+l[GD]^2+ 2*l[LD]*l[GD]*cos(-q4+v[2]+v[3])-l[KG]^2))+arctan((4*l[LD]^2* (l[LD]^2+l[GD]^2+2*l[LD]*l[GD]*cos(-q4+v[2]+v[3]))-(2*l[LD]^2+ Phụ lục- 83 Chãơng trình Maple thiết lập phãơng trình vi phân chuyển động hệ 2*l[LD]*l[GD]*cos(-q4+v[2]+v[3]))^2)^(1/2)/(2*l[LD]^2+ 2*l[LD]*l[GD]*cos(-q4+v[2]+v[3])))))): > gamma2:=q3-v[5]+arctan((4*(l[IC]^2+l[FC]^2+2*l[IC]*l[FC]* cos(-q3+sigma[8]+v[5]))*l[IC]^2-(2*l[IC]^2+2*l[IC]*l[FC]* cos(-q3+sigma[8]+v[5]))^2)^(1/2)/(2*l[IC]^2+2*l[IC]*l[FC]* cos(-q3+sigma[8]+v[5]))): > lambda:=Pi-alpha+q2-q3-q4;  :=     q2  q3  q4 H¹ bËc hƯ PTVP cÊp thµnh HƯ PTVP cÊp > > M:=matrix(3,3,0): M[1,1]:=d[22]: M[2,1]:=M[1,2]: M[3,1]:=M[1,3]: M[1,2]:=d[23]: M[2,2]:=d[33]: M[3,2]:=M[2,3]: M[1,3]:=d[24]: M[2,3]:=d[34]: M[3,3]:=d[44]: eqt1:=diff(q2,t)=y2(t): eqt3:=diff(q3,t)=y4(t): eqt5:=diff(q4,t)=y6(t): RHS:=multiply(inverse(M),VP): eqt2:=diff(y2(t),t)=RHS[1]: eqt4:=diff(y4(t),t)=RHS[2]: eqt6:=diff(y6(t),t)=RHS[3]: eqt:=[eqt1,eqt2,eqt3,eqt4,eqt5,eqt6]: Giải in kết quả: Điều kiện đầu: > inits:=[y1(0)=Pi/10,y2(0)=0,y3(0)=Pi/2,y4(0)=0,y5(0)=Pi/6,y6(0)=0] ; 1  inits :=  y1( )  , y2( )  0, y3( )  , y4( )  0, y5( )  , y6( )      10   > DEplot(eqt,[y1(t),y2(t),y3(t),y4(t),y5(t),y6(t)],t=0 2,[inits],st epsize=.01,scene=[t,y1(t)],method=classical[abmoulton]); số liệu vào giải hệ: (Các số liệu từ mô hình thực nghiệm) Khối lãợng khâu: > m[2]:=64.8: m[3]:=31.2: Mô men quán tính khâu: > IO2:=72.59: IO3:=6.05: > g:=9.81: # m/s^2 m[4]:=37.2: #kg IO4:=1.81: #kg.m.m # m Chiều dài khâu: > l[2]:=1.674: l[3]:=0.817: l[4]:=0.430: Toạ độ trọng tâm khâu: > l[G2]:=0.938: l[G3]:=0.310: l[G4]:=0.123: Kích thãớc khâu: > l[AB]:=0.788: l[AH]:=0.197: l[AI]:=0.966: l[CL]:=0.689: l[CJ]:=0.241: l[JL]:=0.625: l[LK]:=0.174: l[LD]:=0.130: l[GD]:=0.135: l[DP]:=0.135: l[IC]:=0.874: l[FC]:=0.268: # # m l[HE]:=0.152: l[LJ]:=0.625: l[KG]:=0.173: m C¸c gãc v(i): > v[1]:=2.9322: v[2]:=0.1222: v[3]:=1.8850: v[4]:=1.6580: v[5]:=0.4538: #rad C¸c gãc  > (i) ,   b: sigma[1]:=0.2269: sigma[2]:=0.1222 sigma[3]:=0.4749: sigma[4]:=0.4749: sigma[5]:=0.4059: sigma[6]:=0.0175: sigma[7]:=1.1519: sigma[8]:=2.7925: sigma[9]:=0.0147: sigma[10]:=0.4014: sigma[11]:=0.3665: sigma[12]:=1.8850: beta:=sigma[11]: alpha:=0.9111: #rad Lùc cđa c¸c xy lanh thủ lùc F[xl]: > F[BE]:=(55-30)*0.5*3.1416*18.6: F[FI]:=(50-30)*0.5*3.1416*18.6: F[JK]:=(50-30)*0.5*3.1416*18.6: Lực đào Ft Fn: > Ft:=250: Fn:=100: #Newton # Newton Phụ lục- 85 Chãơng trình Matlab giải hệ phãơng trình vi phân chuyển động hệ File Input: function [varargout]=khanh01(t,y,flag) global m2 m3 m4 lG2 lG3 lG4 sig5 sig4 IO2 IO3 IO4 l2 l3 l4 m2=64.8; m3=31.2; m4=37.2; IO2=72.59; IO3=6.05; IO4=1.81; sig4=0.4749; sig5=0.4059; l2=1.674; l3=0.817; l4=0.430; lG2=0.938; lG3=0.310; lG4=0.123; switch flag case '' % Return dy/dt = f(t,y) varargout{1} = f(t,y); case 'mass' % Return mass matrix M varargout{1} = mass(t,y); otherwise error(['Unknown flag ''' flag '''.']); end % function dy = f(t,y) global m2 m3 m4 lG2 lG3 lG4 sig5 sig4 IO2 IO3 IO4 l2 l3 l4 g=9.81; lAB=0.788; lCL=0.689; lLJ=0.625; lGD=0.135; lIC=0.874; v1=2.9322; v4=1.6580; lAH=0.197; lHE=0.152; lCJ=0.241; lJL=0.625; lLK=0.174; lLD=0.130; lKG=0.173;lDP=0.135; lFC=0.268; v2=0.1222; v3=1.8850; v5=0.4538; beta=0.3665; sig6=0.0175; sig7=1.1519; sig8=2.7925; sig9=0.0147; sig10=0.4014; sig11=0.3665; sig12=1.8850; FBE=(55-30)*0.5*3.1416*18.6; FFI=(50-30)*0.5*3.1416*18.6; FJK=(50-30)*0.5*3.1416*18.6; Ft=250; Fn=100; %************************************************************ lam=pi+y(1)-y(3)-y(5); alpha=0.9111; eps4= atan((4*lLK^2*(lLD^2+lGD^2+2*lLD*lGD*cos(-y(3)+v2+v3))(lLK^2+lLD^2+lGD^2+2*lLD*lGD*cos(-y(3)+v2+v3)- lKG^2)^2)^(1/2)/ (lLK^2+lLD^2+lGD^2+2*lLD*lGD*cos(-y(3)+v2+v3)- lKG^2)) +atan((4*lLD^2*(lLD^2+lGD^2+2*lLD*lGD*cos(-y(3)+v2+v3))(2*lLD^2+2*lLD*lGD*cos(- y(3)+v2+v3))^2)^(1/2)/ (2*lLD^2+2*lLD*lGD*cos(-y(3)+v2+v3)))-v2; eps5= pi+v3+y(1)-y(3)-y(5)-atan((4*lGD^2*(lLD^2+lGD^2+2*lLD*lGD* cos(-y(5)+v2+v3))-(2*lGD^2+2*lLD*lGD*cos(-y(5)+v2+v3))^2)^(1/2) /(2*lGD^2+2*lLD*lGD*cos(-y(5)+v2+v3)))-atan((4*lKG^2*(lLD^2+ lGD^2+2*lLD*lGD*cos(-y(5)+v2+v3))-(lKG^2+lLD^2+lGD^2+2*lLD*lGD* cos(-y(5)+v2+v3)-lLK^2)^2)^(1/2)/(lKG^2+lLD^2+lGD^2+2*lLD*lGD* cos(-y(5)+v2+v3)- lLK^2)); gam1=-pi+sig7+v4+atan((4*(lLJ^2+lLK^2-2*lLJ*lLK*cos(-v1+atan((4* lLK^2*(lLD^2+lGD^2+2*lLD*lGD*cos(-y(5)+v2+v3))-(lLK^2+lLD^2+ lGD^2+2*lLD*lGD*cos(-y(5)+v2+v3)-lKG^2)^2)^(1/2)/(lLK^2+lLD^2+ lGD^2+2*lLD*lGD*cos(-y(5)+v2+v3)-lKG^2))+atan((4*lLD^2*(lLD^2+ lGD^2+2*lLD*lGD*cos(-y(5)+v2+v3))-(2*lLD^2+2*lLD*lGD*cos(y(5)+v2+v3))^2)^(1/2)/(2*lLD^2+2*lLD*lGD*cos(-y(5)+v2+v3)))))* lLJ^2-(2*lLJ^2-2*lLJ*lLK*cos(-v1+atan((4*lLK^2*(lLD^2+lGD^2+ 2*lLD*lGD*cos(-y(5)+v2+v3))-(lLK^2+lLD^2+lGD^2+2*lLD*lGD*cos(y(5)+v2+v3)-lKG^2)^2)^(1/2)/(lLK^2+lLD^2+lGD^2+2*lLD*lGD*cos(y(5)+v2+v3)-lKG^2))+atan((4*lLD^2*(lLD^2+lGD^2+2*lLD*lGD*cos(y(5)+v2+v3))-(2*lLD^2+2*lLD*lGD*cos(-y(5)+v2+v3))^2)^(1/2)/ (2*lLD^2+2*lLD*lGD*cos(-y(5)+v2+v3)))))^2)^(1/2)/(2*lLJ^22*lLJ*lLK*cos(-v1+atan((4*lLK^2*(lLD^2+lGD^2+2*lLD*lGD*cos(y(5)+v2+v3))-(lLK^2+lLD^2+lGD^2+2*lLD*lGD*cos(-y(5)+v2+v3)lKG^2)^2)^(1/2)/(lLK^2+lLD^2+lGD^2+2*lLD*lGD*cos(-y(5)+v2+v3)lKG^2))+atan((4*lLD^2*(lLD^2+lGD^2+2*lLD*lGD*cos(-y(5)+v2+v3))(2*lLD^2+2*lLD*lGD*cos(-y(5)+v2+v3))^2)^(1/2)/ (2*lLD^2+2*lLD*lGD*cos(-y(5)+v2+v3)))))); gam2=y(3)-v5+atan((4*(lIC^2+lFC^2+2*lIC*lFC*cos(-y(3)+sig8+v5))* lIC^2-(2*lIC^2+2*lIC*lFC*cos(-y(3)+sig8+v5))^2)^(1/2)/ (2*lIC^2+2*lIC*lFC*cos(-y(3)+sig8+v5))); % ************************************************************ dy(1,1)=y(2); dy(2,1)=-lAB*sin(-atan(lAB*sin(y(1)+sig11)+lAH/lAB*cos(y(1)+sig11 )-lHE)+2*y(1)+sig11)*FBE+(lAB*sin(y(3)+sig10+gam2)-l2*sin(y(3)+ gam2))*FFI+(l2*sin(y(3)+gam1)-l2*sin(eps4+y(3))*(sin(gam1)-cos (gam1)*tan(eps4))/(sin(y(1)+y(3)-eps5)-cos(y(1)+y(3)-eps5)* tan(eps4))-l2*sin(gam2-eps5)*(sin(gam1)+cos(gam1)*tan(y(1)+ y(3)-eps5))/(sin(eps4)+cos(eps4)*tan(y(1)+y(3)-eps5)))*FJKl2*Ft*sin(y(1)-lam)-Fn*cos(y(1)-lam)+m4*g*(l2*cos(y(1))+l3* cos(y(1)+y(3))+lG4*cos(y(1)+y(3)+y(5)+sig4))+m3*g*(l2*cos(y(1)) +lG3*cos(y(1)+y(3)+sig5))+m2*g*lG2*cos(y(1)+sig9)-(-2*(m3*l2*lG3*sin(y(3)+sig5)+m4*l2*l3*sin(y(3))+m4*l2*lG4*sin(y(3)+ y(5)+sig4))*y(4)-2*(m4*l2*lG4*sin(y(3)+y(5)+sig4)+m4*l3*lG4*sin (y(5)+sig4))*y(6))*y(2)-(-(-m3*l2*lG3*sin(y(3)+sig5)+m4*l2*l3* sin(y(3))+m4*l2*lG4*sin(y(3)+y(5)+sig4))*y(4)-2*(m4*l2*lG4* sin(y(3)+y(5)+sig4)+m4*l3*lG4*sin(y(5)+sig4))*y(6))*y(4)+(m4*l2 *lG4*sin(y(3)+y(5)+sig4)+m4*l3*lG4*sin(y(5)+sig4))*y(6)^2; dy(3,1)=y(4); dy(4,1)=(-lCL*sin(-sig8+gam2)-lCJ*sin(gam2-sig7)-l3*sin(y(1)+y(3)eps5)*(sin(gam1)+cos(gam1)*tan(y(1)+y(3)-eps5))/(sin(eps4)+cos (eps4)*tan(y(1)+y(3)-eps5)))*FFI+(-lCJ*sin(-sig7+gam1)+l3*sin (y(1)+y(3)-eps5)*(-sin(gam1)+cos(gam1)*tan(eps4))/(sin(y(1)+ y(3)-eps5)-cos(y(1)+y(3)-eps5)*tan(eps4))-lCL*sin(eps4-sig6)* (sin(gam1)+cos(gam1)*tan(y(1)+y(3)-eps5))/(sin(eps4)+cos(eps4)* tan(y(1)+y(3)-eps5)))*FJK-l3*[Ft*sin(y(1)-lam)-Fn*cos(y(1)lam)]+m4*g*(l3*cos(y(1)+y(3))+lG4*cos(y(1)+y(3)+y(5)+sig5))+m3* g*lG3*cos(y(1)+y(3)+sig5)-((-m3*l2*lG3*sin(y(3)+sig5)+m4*l2*l3* sin(y(3))+m4*l2*lG4*sin(y(3)+y(5)+sig4))*y(2)-m4*l3*lG4*sin (y(5)+sig4)*y(6))*y(2)+m4*l3*lG4*sin(y(5)+sig4)*y(6)*y(4)+m4*l3 *lG4*sin(y(5)+sig4)*(y(6)+y(4)+y(2))*y(6); dy(5,1)=y(6); dy(6,1)=-lDP*sin(-eps5+sig12+y(1)+y(3)+y(5))*(-sin(gam1)+cos(gam1) *tan(eps4))/(sin(y(1)+y(3)-eps5)-cos(y(1)+y(3)-eps5)*tan(eps4)) *FJK-l4*[-Ft*sin(alpha)+Fn*cos(alpha)]+m4*g*lG4*cos(y(1)+y(3)+ y(5)+sig4)-((m4*l2*lG4*sin(y(3)+y(5)+sig4)+m4*l3*lG4*sin(y(5)+ sig4))*y(2)-m4*l3*lG4*sin(y(5)+sig4)*y(4))*y(2)-m4*l3*lG4* sin(y(5)+sig4)*(y(2)+y(4))*y(4); function M=mass(t,y); global m2 m3 m4 lG2 lG3 lG4 sig5 sig4 IO2 IO3 IO4 l2 l3 l4 n=m4*l3*lG4; k=m4*l2*lG4; d=-m3*l2*lG3*sin(y(3)+sig5)+m4*l2*l3*sin(y(3)); a=(m2*lG2^2+IO2+(m3+m4)*l2^2); b=(m2*lG3^2+IO3+m4*l3^2); c=(m4*lG4^2+IO4); h=(m3*l2*lG3*cos(y(3)+sig5)+m4*l2*l3*cos(y(3))); a1=(a+b+c); a2=(b+c); M=zeros(6,6); M(1,1)=1;M(3,3)=1;M(5,5)=1; M(2,2)=(a1+2*h+2*n*cos(y(5)+sig4)+2*k*cos(y(3)+y(5)+sig4)); M(2,4)=(a2+2*h+2*n*cos(y(5)+sig4)+k*cos(y(3)+y(5)+sig4)); M(2,6)=(c+n*cos(y(5)+sig4)+k*cos(y(3)+y(5)+sig4)); M(4,2)=M(2,4); M(4,4)=(a2+2*n*cos(y(5)+sig4)); M(4,6)=(c+n*cos(y(5)+sig4)); M(6,2)=M(2,6); M(6,4)=M(4,6); M(6,6)=c; File run: % Kich thuoc cac khau: l2=1.674; l3=0.817; l4=0.430; options=odeset('RelTol',1.0e-8,'AbsTol',1.0e-10,'Mass','M(t,y)'); [t,y]=ode15s('khanh01',[0 10],[pi/10;0;pi/2;0;pi/6;0],options); figure,plot(t,y(:,1)); title('Do thi chuyen vi (khau 2) q2 theo t'); xlabel('Time t(s)'); ylabel('(rad)'); grid on; figure,plot(t,y(:,2)); title('Do thi van toc (khau 2) dq2 theo t'); xlabel('Time t(s)'); ylabel('(rad)'); grid on; figure,plot(t,y(:,3)); title('Do thi chuyen vi (khau 3) q3 theo t'); xlabel('Time t(s)'); ylabel('(rad)'); grid on; figure,plot(t,y(:,4)); title('Do thi van toc (khau 3) dq3 theo t'); xlabel('Time t(s)'); ylabel('(rad/s)'); grid on; figure,plot(t,y(:,5)); title('Do thi chuyen vi (khau 4) q4 theo t'); xlabel('Time t(s)'); ylabel('(rad/s)'); grid on; figure,plot(t,y(:,6)); title('Do thi van toc (khau 4) dq4 theo t'); xlabel('Time t(s)'); ylabel('(rad/s)'); grid on; % Bieu dien quy dao diem N: x=a4*cos(y(:,1)+y(:,3)+y(:,5)) +a3*cos(y(:,1)+y(:,3))+a2*cos(y(:,1) )+a1; z=a4*sin(y(:,1)+y(:,3)+y(:,5))+a3*sin(y(:,1)+y(:,3))+a2*sin(y(:,1) ); figure,plot(z,x,'.:'); title('Do thi quy dao cua dinh gau xuc'); %************************************************************** M=zeros(3,3); dy=zeros(3,1); maxn=size(y,1); giatoc=size(maxn,3); for i=1:maxn m2=64.8; IO2=72.59; l2=1.674; lG2=0.938; m3=31.2; IO3=6.05; l3=0.817; lG3=0.310; m4=37.2; IO4=1.81; l4=0.430; lG4=0.123; sig4=0.4749; sig5=0.4059; n=m4*l3*lG4; k=m4*l2*lG4; d=-m3*l2*lG3*sin(y(i,3)+sig5)+m4*l2*l3*sin(y(i,3)); a=(m2*lG2^2+IO2+(m3+m4)*l2^2); b=(m2*lG3^2+IO3+m4*l3^2); c=(m4*lG4^2+IO4); h=(m3*l2*lG3*cos(y(i,3)+sig5)+m4*l2*l3*cos(y(i,3))); a1=(a+b+c); a2=(b+c); M(1,1)=(a1+2*h+2*n*cos(y(i,5)+sig4)+2*k*cos(y(i,3)+y(i,5)+sig4)); M(1,2)=(a2+2*h+2*n*cos(y(i,5)+sig4)+k*cos(y(i,3)+y(i,5)+sig4)); M(1,3)=(c+n*cos(y(i,5)+sig4)+k*cos(y(i,3)+y(i,5)+sig4)); M(2,1)=M(1,2); M(2,2)=(a2+2*n*cos(y(i,5)+sig4)); M(2,3)=(c+n*cos(y(i,5)+sig4)); M(3,1)=M(1,3); M(3,2)=M(2,3); M(3,3)=c; g=9.81; lAB=0.788; lAH=0.197; lAI=0.966; lCL=0.689; lCJ=0.241; lJL=0.625; lLK=0.174; lLD=0.130; lGD=0.135; lDP=0.135; lIC=0.874; lFC=0.268; lHE=0.152; lLJ=0.625; lKG=0.173; v1=2.9322; v2=0.1222; v3=1.8850; v4=1.6580; v5=0.4538; alpha=0.9111; beta=0.3665; sig1=0.2269; sig4=0.4749; sig7=1.1519; sig10=0.4014; sig2=0.1222; sig5=0.4059; sig8=2.7925; sig11=0.3665; sig3=0.4749; sig6=0.0175; sig9=0.0147; sig12=1.8850; % Luc day cua cac xilanh thuy luc: FBE=(55-30)*0.5*3.1416*18.6; FFI=(50-30)*0.5*3.1416*18.6; FJK=(50-30)*0.5*3.1416*18.6; % Luc dao: Ft=250; Fn=100; %************************************************************ p=(atan((lAB*sin(y(i,1)+sig11)+lAH)/(lAB*cos(y(i,1)+sig11)-lHE))y(i,1)); lam=pi+y(i,1)-y(i,3)-y(i,5); eps4= atan((4*lLK^2*(lLD^2+lGD^2+2*lLD*lGD*cos(-y(i,3)+v2+v3))(lLK^2+lLD^2+lGD^2+2*lLD*lGD*cos(-y(i,3)+v2+v3)-lKG^2)^2)^(1/2) /(lLK^2+lLD^2+lGD^2+2*lLD*lGD*cos(-y(i,3)+v2+v3)-lKG^2)) +atan( (4*lLD^2*(lLD^2+lGD^2+2*lLD*lGD*cos(-y(i,3)+v2+v3))(2*lLD^2+ 2*lLD*lGD*cos(-y(i,3)+v2+v3))^2)^(1/2)/ (2*lLD^2+2*lLD*lGD*cos(- y(i,3)+v2+v3)))-v2; eps5= pi+v3+y(i,1)-y(i,3)-y(i,5)-atan((4*lGD^2*(lLD^2+lGD^2+ 2*lLD*lGD*cos(-y(i,5)+v2+v3))-(2*lGD^2+2*lLD*lGD*cos(-y(i,5)+ v2+v3))^2)^(1/2)/(2*lGD^2+2*lLD*lGD*cos(-y(i,5)+v2+v3)))-atan ((4*lKG^2*(lLD^2+lGD^2+2*lLD*lGD*cos(-y(i,5)+v2+v3))-(lKG^2+ lLD^2+lGD^2+2*lLD*lGD*cos(-y(i,5)+v2+v3)-lLK^2)^2)^(1/2)/ (lKG^2+lLD^2+lGD^2+2*lLD*lGD*cos(-y(i,5)+v2+v3)-lLK^2)); gam1= -pi+sig7+v4+atan((4*(lLJ^2+lLK^2-2*lLJ*lLK*cos(-v1+atan ((4*lLK^2*(lLD^2+lGD^2+2*lLD*lGD*cos(-y(i,5)+v2+v3))-(lLK^2+ lLD^2+lGD^2+2*lLD*lGD*cos(-y(i,5)+v2+v3)-lKG^2)^2)^(1/2)/ (lLK^2+lLD^2+lGD^2+2*lLD*lGD*cos(-y(i,5)+v2+v3)-lKG^2))+atan ((4*lLD^2*(lLD^2+lGD^2+2*lLD*lGD*cos(-y(i,5)+v2+v3))-(2*lLD^2+ 2*lLD*lGD*cos(-y(i,5)+v2+v3))^2)^(1/2)/(2*lLD^2+2*lLD*lGD* cos(-y(i,5)+v2+v3)))))*lLJ^2-(2*lLJ^2-2*lLJ*lLK*cos(-v1+atan ((4*lLK^2*(lLD^2+lGD^2+2*lLD*lGD*cos(-y(i,5)+v2+v3))-(lLK^2+ lLD^2+lGD^2+2*lLD*lGD*cos(-y(i,5)+v2+v3)-lKG^2)^2)^(1/2)/ (lLK^2+lLD^2+lGD^2+2*lLD*lGD*cos(-y(i,5)+v2+v3)-lKG^2))+atan ((4*lLD^2*(lLD^2+lGD^2+2*lLD*lGD*cos(-y(i,5)+v2+v3))-(2*lLD^2+ 2*lLD*lGD*cos(-y(i,5)+v2+v3))^2)^(1/2)/(2*lLD^2+2*lLD*lGD* cos(-y(i,5)+v2+v3)))))^2)^(1/2)/(2*lLJ^2-2*lLJ*lLK*cos(-v1+atan ((4*lLK^2*(lLD^2+lGD^2+2*lLD*lGD*cos(-y(i,5)+v2+v3))-(lLK^2+ lLD^2+lGD^2+2*lLD*lGD*cos(-y(i,5)+v2+v3)-lKG^2)^2)^(1/2)/ (lLK^2+lLD^2+lGD^2+2*lLD*lGD*cos(-y(i,5)+v2+v3)-lKG^2))+atan ((4*lLD^2*(lLD^2+lGD^2+2*lLD*lGD*cos(-y(i,5)+v2+v3))-(2*lLD^2+ 2*lLD*lGD*cos(-y(i,5)+v2+v3))^2)^(1/2)/(2*lLD^2+2*lLD*lGD* cos(-y(i,5)+v2+v3)))))); gam2=y(i,3)-v5+atan((4*(lIC^2+lFC^2+2*lIC*lFC*cos(-y(i,3)+sig8+v5) )*lIC^2-(2*lIC^2+2*lIC*lFC*cos(-y(i,3)+sig8+v5))^2)^(1/2)/ (2*lIC^2+2*lIC*lFC*cos(-y(i,3)+sig8+v5))); % ************************************************************* dy(1,1)=-lAB*sin(-atan(lAB*sin(y(i,1)+sig11)+lAH/lAB*cos(y(i,1)+ sig11)-lHE)+2*y(i,1)+sig11)*FBE+(lAB*sin(y(i,3)+sig10+gam2)l2*sin(y(i,3)+gam2))*FFI+(l2*sin(y(i,3)+gam1)-l2*sin(eps4+ y(i,3))*(sin(gam1)-cos(gam1)*tan(eps4))/(sin(y(i,1)+y(i,3)eps5)-cos(y(i,1)+y(i,3)-eps5)*tan(eps4))-l2*sin(gam2-eps5)*(sin (gam1)+cos(gam1)*tan(y(i,1)+y(i,3)-eps5))/(sin(eps4)+cos(eps4)* tan(y(i,1)+y(i,3)-eps5)))*FJK-l2*Ft*sin(y(i,1)-lam)-Fn*cos (y(i,1)-lam)+m4*g*(l2*cos(y(i,1))+l3*cos(y(i,1)+y(i,3))+lG4*cos (y(i,1)+y(i,3)+y(i,5)+sig4))+m3*g*(l2*cos(y(i,1))+lG3*cos(y(i,1 )+y(i,3)+sig5))+m2*g*lG2*cos(y(i,1)+sig9)-(-2*(-m3*l2*lG3*sin (y(i,3)+sig5)+m4*l2*l3*sin(y(i,3))+m4*l2*lG4*sin(y(i,3)+y(i,5)+ sig4))*y(i,4)-2*(m4*l2*lG4*sin(y(i,3)+y(i,5)+sig4)+m4*l3*lG4* sin(y(i,5)+sig4))*y(i,6))*y(i,2)-(-(-m3*l2*lG3*sin(y(i,3)+ sig5)+m4*l2*l3*sin(y(i,3))+m4*l2*lG4*sin(y(i,3)+y(i,5)+sig4))* y(i,4)-2*(m4*l2*lG4*sin(y(i,3)+y(i,5)+sig4)+m4*l3*lG4*sin( y(i,5)+sig4))*y(i,6))*y(i,4)+(m4*l2*lG4*sin(y(i,3)+y(i,5)+sig4) +m4*l3*lG4*sin(y(i,5)+sig4))*y(i,6)^2; dy(2,1)=(-lCL*sin(-sig8+gam2)-lCJ*sin(gam2-sig7)-l3*sin(y(i,1)+ y(i,3)-eps5)*(sin(gam1)+cos(gam1)*tan(y(i,1)+y(i,3)-eps5))/ (sin(eps4)+cos(eps4)*tan(y(i,1)+y(i,3)-eps5)))*FFI+(-lCJ*sin(sig7+gam1)+l3*sin(y(i,1)+y(i,3)-eps5)*(-sin(gam1)+cos(gam1)* tan(eps4))/(sin(y(i,1)+y(i,3)-eps5)-cos(y(i,1)+y(i,3)-eps5)* tan(eps4))-lCL*sin(eps4-sig6)*(sin(gam1)+cos(gam1)*tan(y(i,1)+ y(i,3)-eps5))/(sin(eps4)+cos(eps4)*tan(y(i,1)+y(i,3)-eps5)))* FJK-l3*[Ft*sin(y(i,1)-lam)-Fn*cos(y(i,1)-lam)] +m4*g*(l3*cos( y(i,1)+y(i,3)) +lG4*cos(y(i,1)+y(i,3)+y(i,5)+sig5))+m3*g*lG3*cos (y(i,1)+y(i,3)+sig5)-((-m3*l2*lG3*sin(y(i,3)+sig5)+m4*l2*l3* sin(y(i,3))+m4*l2*lG4*sin(y(i,3)+y(i,5)+sig4))*y(i,2)-m4*l3* lG4*sin(y(i,5)+sig4)*y(i,6))*y(i,2)+m4*l3*lG4*sin(y(i,5)+sig4)* y(i,6)*y(i,4)+m4*l3*lG4*sin(y(i,5)+sig4)*(y(i,6)+y(i,4)+y(i,2)) *y(i,6); dy(3,1)=-lDP*sin(-eps5+sig12+y(i,1)+y(i,3)+y(i,5))*(-sin(gam1)+ cos(gam1)*tan(eps4))/(sin(y(i,1)+y(i,3)-eps5)-cos(y(i,1)+ y(i,3)-eps5)*tan(eps4))*FJK-l4*[-Ft*sin(alpha)+Fn*cos(alpha)]+ m4*g*lG4*cos(y(i,1)+y(i,3)+y(i,5)+sig4)-((m4*l2*lG4*sin(y(i,3)+ y(i,5)+sig4)+m4*l3*lG4*sin(y(i,5)+sig4))*y(i,2)m4*l3*lG4*sin(y(i,5)+sig4)*y(i,4))*y(i,2)m4*l3*lG4*sin(y(i,5)+sig4)*(y(i,2)+y(i,4))*y(i,4); acc=inv(M)*dy; giatoc(i,1)=acc(1,1); giatoc(i,2)=acc(2,1); giatoc(i,3)=acc(3,1); % W='gia toc' % Cac luc tai diem K: FPK=FJK*((sin(gam1)+cos(gam1)*tan(eps4))/ (sin(y(i,3)-y(i,1)+eps5)tan(eps4)*cos(y(i,3)-y(i,1)+eps5))); FLK=FJK*((sin(gam1)+cos(gam1)*tan(y(i,3)-y(i,1)+eps5))/(sin(eps4)cos(eps4)*tan(y(i,3)-y(i,1)+eps5))); %********************** KHAU (Gau xuc) ***************** %F(i,041)=F04x; F(i,042)=F04y; F(i,041)= m4*((-W(i,1)-W(i,2)-W(i,3))*lG4*sin(sig3)+(y(i,2)+ y(i,4)+y(i,6))^2*lG4*cos(sig3)-(y(i,2)+y(i,4)+y(i,6))^2*l4cos(y(i,3)+y(i,5))*l2*y(i,2)^2+sin(y(i,3)+y(i,5))*l2*W(i,1)l3*cos(y(i,5))*(y(i,2)+y(i,4))^2+l3*sin(y(i,5))*(W(i,1)+W(i,2)) )+m4*g*sin(y(i,5)+y(i,3)-y(i,1)); F(i,042)= m4*((-W(i,1)-W(i,2)-W(i,3))*lG4*cos(sig3)(y(i,2)+y(i,4)+y(i,6))^2*lG4*sin(sig3)+(W(i,1)+W(i,2)+W(i,3))*l 4+sin(y(i,3)+y(i,5))*l2*y(i,2)^2+cos(y(i,3)+y(i,5))*l2*W(i,1)+l 3*sin(y(i,5))*(y(i,2)+y(i,4))^2+l3*cos(y(i,5))*(W(i,1)+W(i,2))) +m4*g*cos(y(i,5)+y(i,3)-y(i,1)); % F(i,1)=F34x; F(i,2)=F34y; F(i,1)=(-Ft*cos(alpha)-Fn*sin(alpha)+FPK*cos(eps5+y(i,5)+y(i,3)y(i,1))-F(i,041)); F(i,2)=(Ft*sin(alpha)-Fn*cos(alpha)+FPK*sin(eps5+y(i,5)+y(i,3)y(i,1))-F(i,042)); F(i,34)=(F(i,1)^2+F(i,2)^2)^(1/2); % Mo men Q(i,34)=M34z; Q(i,34)=-l4*(Ft*sin(alpha)-Fn*cos(alpha))+FPK*lGD*sin(eps5+y(i,5)+ y(i,3)-y(i,1)-sig12)+F(i,042)*lG4*cos(sig4)-F(i,041)*lG4* sin(sig4)+IO2*(W(i,1)+W(i,2)+W(i,3)); %********************* KHAU (Tay xuc): ******************* % F(i,031)=F03x; F(i,032)=F03y; F(i,031)= m3*((-W(i,1)-W(i,2))*lG3*sin(sig2)-(y(i,2)+y(i,4))^2* lG3*cos(sig2)-(y(i,2)+y(i,4))^2*l3-cos(y(i,3))*l2*y(i,2)^2+ sin(y(i,3))*l2*W(i,1))+m3*g*sin(y(i,3)-y(i,1)); F(i,032)= m3*((W(i,1)+W(i,2))*lG3*cos(sig2)-(y(i,2)+y(i,4))^2* lG3*sin(sig2)+(W(i,1)+W(i,2))*l3+sin(y(i,3))*l2*y(i,2)^2+ cos(y(i,3))*l2*W(i,1))+m3*g*cos(y(i,3)-y(i,1)); % F(i,3)=F23x; F(i,4)=F23y; F(i,3)=F(i,1)-FLK*cos(eps4)-FJK*cos(gam1)-FFI*cos(y(i,3)-gam2)F(i,031); F(i,4)=F(i,2)-FLK*sin(eps4)-FLK*sin(gam1)-FLK*sin(y(i,3)-gam2)F(i,032); F(i,23)=(F(i,3)^2+F(i,4)^2)^(1/2); % Mo men Q(i,23)=M23z; Q(i,23)= Q(i,34)-l3*(-Ft*sin(y(i,3)-y(i,1)+lam)+Fn*cos(y(i,3)y(i,1)+lam)+F(i,042)*cos(y(i,5)))+F(i,032)*lG3*cos(sig5)F(i,031)*lG3*sin(sig5)+IO2*(W(i,1)+W(i,2))+FLK*lCL*sin(eps4sig6)+FJK*lCJ*sin(gam1-sig7)-FFI*lFC*sin(-gam2+sig8)+ FPK*l3*sin(eps5+y(i,3)-y(i,1)); % ********************* KHAU (Can xuc): ***************** % F(i,021)=F02x; F(i,022)=F02x; F(i,021)=-m2*W(i,1)*lG2*sin(sig1)+m2*y(i,2)^2*(lG2*cos(sig1)-l2); F(i,022)=m2*W(i,1)*(-lG2*cos(sig1)+l2)m2*y(i,2)^2*lG2*sin(sig1)+m2*g; % F(i,5)=F12x; F(i,6)=F12y; F(i,5)= F(i,3)+FFI*cos(gam2-y(i,3))-F(i,021); F(i,6)= F(i,4)+FFI*sin(gam2-y(i,3))-F(i,022); F(i,12)=(F(i,5)^2+F(i,6)^2)^(1/2); % Mo men Q(i,12)=M12z; Q(i,12)= Q(i,23)-l2*(-Ft*sin(-y(i,1)+lam)-Fn*cos(-y(i,1)+lam)+ F(i,042)*cos(y(i,3)+y(i,5))-F(i,032)*cos(y(i,3)))+F(i,022)* lG2*cos(sig9)-F(i,021)*lG2*sin(sig9)+IO2*W(i,1)+FFI*lAI* sin(gam2-y(i,3)-sig10)+FBE*lAB*sin(p-sig11)+FFI*l2*sin(gam2y(i,3)); end %**************************************************************** % BIEU DIEN KET QUA: figure,plot(t,W(:,1)); title('Do thi gia toc (khau 2) qdd2 theo t'); xlabel('Time t(s)'); ylabel('rad/s^2'); grid on; figure,plot(t,W(:,2)); title('Do thi gia toc (khau 3) qdd3 theo t'); xlabel('Time t(s)'); ylabel('rad/s^2'); grid on; figure,plot(t,W(:,3)); title('Do thi gia toc (khau 4) qdd4 theo t'); xlabel('Time t(s)'); ylabel('rad/s^2'); grid on; figure,plot(t,F(:,34)); title('Bieu luc F34 khau 4'); xlabel('Time t(s)'); ylabel('Force (N)'); grid on; figure,plot(t,Q(:,34)); title('Bieu mo men M34 khau 4'); xlabel('Time t(s)'); ylabel('Moment (N.m)'); grid on; figure,plot(t,F(:,23)); title('Bieu luc F23 khau 3'); xlabel('Time t(s)'); ylabel('Force (N)'); grid on; figure,plot(t,Q(:,23)); title('Bieu mo men M23 khau 3'); xlabel('Time t(s)'); ylabel('Moment (N.m)'); grid on; figure,plot(t,F(:,12)); title('Bieu luc F12 khau 2'); xlabel('Time t(s)'); ylabel('Force (N)'); grid on; figure,plot(t,Q(:,12)); title('Bieu mo men M12 khau 2'); xlabel('Time t(s)'); ylabel('Moment (N.m)'); grid on; % Phô lôc- 94 Một số hình vẽ liên hệ góc xilanh khâu F I Jx y1 v5 3 O2,C  10 x3 2 x1 O1,A Hình P.1- Mối lên hệ góc xilanh thuỷ lực cần J O2,C v4 K G,P L O3,D x x3 Hình P.2- Mối lên hệ góc xilanh thuỷ lực tay gÇu K K L L 4 1 v2 O3,D G,P 3 6 2 G,P 5 x3 O3,Dv3 x1 2 x2 x1 3 4 O4,N x x3 H×nh P.3- Mèi lên hệ góc gầu xúc tay gÇu ... lập tính toán động học, động lực học máy xúc gầu dẫn động thuỷ lực chãơng Chãơng mô hình động học động lực học máy xúc 2.1- Giới thiệu chung: Cả hai mô hình động học động lực học đà đãợc phát... thông số kích thãớc động học động lực học thực nghiệm để tính toán 2.2- Mô hình động học máy xúc: Mô hình đãợc nghiên cứu dãới mô hình động lực học tổng quát máy xúc gầu dẫn động thuỷ lực Mô...Đại học quốc gia Hà nội Trung tâm hợp tác đào tạo bồi dãỡng học Trung tâm khoa học tự nhiên công nghệ quốc gia Viện học Nguyễn Ngọc Khanh Khảo sát Một số tham số động lực học Của máy xúc gầu

Ngày đăng: 23/12/2021, 21:34

w