Nghiên cứu tính chất nhạy khí của vật liệu nano ôxít sắt sử dụng vi cân tinh thể thạch anh.

267 8 0
Nghiên cứu tính chất nhạy khí của vật liệu nano ôxít sắt sử dụng vi cân tinh thể thạch anh.

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Nghiên cứu tính chất nhạy khí của vật liệu nano ôxít sắt sử dụng vi cân tinh thể thạch anh.Nghiên cứu tính chất nhạy khí của vật liệu nano ôxít sắt sử dụng vi cân tinh thể thạch anh.Nghiên cứu tính chất nhạy khí của vật liệu nano ôxít sắt sử dụng vi cân tinh thể thạch anh.Nghiên cứu tính chất nhạy khí của vật liệu nano ôxít sắt sử dụng vi cân tinh thể thạch anh.Nghiên cứu tính chất nhạy khí của vật liệu nano ôxít sắt sử dụng vi cân tinh thể thạch anh.

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI NGUYỄN THÀNH VINH NGHIÊN CỨU TÍNH CHẤT NHẠY KHÍ CỦA VẬT LIỆU NANO Ơ-XÍT SẮT SỬ DỤNG VI CÂN TINH THỂ THẠCH ANH LUẬN ÁN TIẾN SĨ KHOA HỌC VẬT LIỆU HÀ NỘI, 2021 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI NGUYỄN THÀNH VINH NGHIÊN CỨU TÍNH CHẤT NHẠY KHÍ CỦA VẬT LIỆU NANO Ơ-XÍT SẮT SỬ DỤNG VI CÂN TINH THỂ THẠCH ANH Ngành: Khoa học vật liệu Mã ngành: 9440122 LUẬN ÁN TIẾN SĨ KHOA HỌC VẬT LIỆU NGƯỜI HƯỚNG DẪN KHOA HỌC PGS TS Nguyễn Văn Quy GS TS Lê Anh Tuấn LỜI CẢM ƠN Lời em xin gửi lời cảm ơn sâu sắc đến PGS TS Nguyễn Văn Quy – Viện Đào tạo Quốc tế Khoa học vật liệu (ITIMS) – Đại học Bách Khoa Hà Nội, GS TS Lê Anh Tuấn – Viện Nghiên cứu nano – Đại học Phenikaa Các thầy tận tình giúp đỡ hướng dẫn em suốt trình làm học tập hoàn thành luận án Em xin chân thành cảm ơn thầy cô giáo, anh chị em NCS, học viên cao học Viện đào tạo Quốc tế Khoa học vật liệu (ITIMS), nhóm nghiên cứu NEB (ITIMS – AIST – Phenikaa University), nhóm iSensor (ITIMS) giúp đỡ em nhiều công tác chun mơn, đóng góp nhiều ý kiến tận tình q trình học, giúp em hồn thành luận án Đồng thời, xin chân thành cảm ơn giúp đỡ chuyên môn công tác giảng dạy, chế độ người lao động Ban giám hiệu, tập thể sử phạm nhà trường đặc biệt anh chị em đồng nghiệp Bộ môn Vật lý công nghệ – Khoa Khoa học ứng dụng – Trường Đại học Công nghệ GTVT, giúp tơi hồn thành luận án Cuối không phần quan trọng, xin cảm ơn thành viên gia đình tơi bên mang lại cho động lực để hồn thành q trình học tập nghiên cứu khoa học Nghiên cứu sinh 10 11 12 13 Nguyễn Thành Vinh 14 LỜI CAM ĐOAN 15 16 Tơi xin cảm đoan luận án cơng trình nghiên cứu bảo khoa học tập thể hướng dẫn Luận án khơng có chép tài liệu, cơng trình nghiên cứu người khác mà khơng có trích dẫn danh mục tài liệu tham khảo Những kết luận án chưa cơng bố hình thức ngồi tơi tập thể hướng dẫn Tơi xin chịu hoàn toàn trách nhiệm trước nhà trường lời cam đoan 17 18 19 20 27 28 29 dẫn 22 24 25 26 PGS TS Nguyễn Văn Quy Nghiên cứu sinh 30 31 32 33 21 Thay mặt tập thể hướng 23 Hà Nội, ngày …… tháng… năm…… 34 Nguyễn Thành Vinh 35 MỤC LỤC 36 LỜI CẢM ƠN LỜI CAM ĐOAN 37 D ANH MỤC CÁC KÍ HIỆU VÀ CHỮ VIẾT TẮT iv 38 D ANH MỤC CÁC BẢNG vi 39 DA NH MỤC CÁC HÌNH VẼ ĐỒ THỊ vii 40 M Ở ĐẦU 1 Lý chọn đề tài Mục tiêu luận án 3 Nội dung nghiên cứu Đối tượng phạm vi nghiên cứu Phương pháp nghiên cứu Ý nghĩa khoa học đóng góp thực tiễn luận án Tính luận án Bố cục luận án 41 C HƯƠNG 1: TỔNG QUAN 1.1.Tổng quan vi cân tinh thể thạch anh (QCM) 1.1.1 Hiệu ứng áp điện 1.1.2 Vi cân tinh thể thạch anh 1.2 Tổng quan ứng dụng QCM cảm biến khí 12 1.2.1 Giới thiệu cảm biến khí 12 1.2.2 Cảm biến QCM nguyên lý hoạt động 13 1.2.3 Cơ chế nhạy khí cảm biến QCM 17 1.3 Tổng quan vật liệu nhạy khí cảm biến QCM 19 1.3.1 Vật liệu nhóm cacbon 19 1.3.2 Vật liệu polymer vật liệu hữu 22 1.3.3 Khung hữu kim loại 25 1.3.4 Vật liệu nano ô-xít kim loại bán dẫn chất vô 27 1.4 Tổng quan vật liệu ô-xít sắt 29 1.4.1 Phương pháp chế tạo vật liệu nano ô-xít sắt 29 1.4.2 Vật liệu nano ơ-xít sắt ứng dụng lĩnh vực cảm biến môi trường31 1.4.3 Tổng quan cấu trúc vật liệu nano ơ-xít ơ-xít – hydroxit sắt 36 1.5 Kết luận chương 38 42 C HƯƠNG 2: CHẾ TẠO, KHẢO SÁT TÍNH CHẤT VẬT LIỆU NANO Ơ-XÍT SẮT VÀ LỚP CẢM NHẬN TRÊN ĐIỆN CỰC QCM 39 2.1 Tổng hợp vật liệu nano ơ-xít sắt 39 43 .2.1 Tổng hợp hạt nano (NPs) ơ-xít sắt 39 44 .2.1 Tổng hợp nano (NRs) ơ-xít sắt 42 2.2 Nghiên cứu phương pháp khảo sát tính chất hóa - lý vật liệu .43 2.2.1 Phương pháp phân tích cấu trúc thành phần mẫu 43 2.2.2 Phương pháp phân tích Rietveld 45 2.2.3 Phương pháp khảo sát kính hiển vi điện tử quét (SEM) kính hiển vi điện tử truyền qua (TEM) 45 2.2.4 Phương pháp đo từ tính vật liệu từ kế mẫu rung (VSM) 46 2.2.5.Phương pháp đo phổ hồng ngoại biến đổi Fourier phổ tán xạ Raman 47 2.2.6 Phương pháp đo diện tích bề mặt phân bố kích thước lỗ rỗng 48 2.3 Chế tạo lớp cảm nhận nano ơ-xít sắt điện cực QCM khảo sát đo khí 49 2.3.1 Chế tạo lớp cảm nhận nano ơ-xít sắt điện cực QCM .49 2.3.2 Quy trình khảo sát đo khí 52 45 2.4 Kết luận Chương 54 46 C HƯƠNG 3: ĐẶC TRƯNG NHẠY KHÍ CỦA CÁC HẠT NANO Ơ-XÍT SẮT SỬ DỤNG CẢM BIẾN QCM 55 3.1 Khảo sát cấu trúc, hình thái tính chất hóa lý hạt nano ơ-xít sắt 55 3.1.1 Khảo sát đặc trưng cấu trúc hạt nano ơ-xít sắt .55 3.1.2 Khảo sát hình thái tính chất hóa lý vật liệu hạt nano ơ-xít sắt 61 3.2 Khảo sát đặc trưng nhạy khí cảm biến QCM phủ hạt nano Fe3O4, γ-Fe2O3 (QP200) α-Fe2O3 67 3.2.1 Khảo sát khả nhận biết khí cảm biến QCM phủ hạt nano Fe3O4 67 3.2.2 So sánh đặc trưng nhạy khí SO2 cảm biến QCM phủ hạt nano Fe3O4, γ-Fe2O3 (QP200) α-Fe2O3 68 3.2.3 Khảo sát đặc trưng nhạy khí SO2 cảm biến sử dụng hạt nano γ-Fe2O3 (QP200) 72 3.3 Ảnh hưởng ion [Fe3+] [Fe2+] tính chất nhạy khí SO2 hạt nano γ-Fe2O3 phủ điện cực QCM 74 3.3.1 Khảo sát đặc trưng nhạy khí SO2 cảm biến QCM phủ hạt nano γ-Fe2O3 chế tạo từ tiền chất khác 74 3.3.2 Khảo sát đặc trưng nhạy khí chọn lọc, ổn định ảnh hưởng độ ẩm đến tính chất nhạy khí cảm biến Q3 79 3.4 Kết luận Chương 81 47 C HƯƠNG 4: ĐẶC TRƯNG NHẠY KHÍ CỦA THANH NANO Ơ-XÍT SẮT SỬ DỤNG CẢM BIẾN QCM 83 4.1 Khảo sát cấu trúc, hình thái tính chất vật liệu nano ơ-xít sắt .83 4.1.1 Vật liệu nano Fe3O4/α-FeOOH 83 4.1.2 So sánh cấu trúc, hình thái tính chất nano Fe3O4/αFeOOH, γ-Fe2O3 α-Fe2O3 86 4.2 Khảo sát đặc trưng nhạy khí cảm biến sử dụng nano Fe3O4/α-FeOOH 90 4.2.1 Các đặc trưng nhạy khí SO2, NO2, CO .90 4.2.2 Khảo sát ảnh hưởng khí CO nồng độ cao đến đặc trưng nhạy khí cảm biến Fe3O4/α-FeOOH 95 4.3 Khảo sát đặc trưng nhạy khí SO2 cảm biến sử dụng nano Fe3O4/α-FeOOH, γ-Fe2O3 α-Fe2O3 106 4.3.1 So sánh đặc trưng nhạy khí 106 4.3.2 Đề xuất chế nhạy khí SO2 nano ơ-xít sắt .110 4.3.3 Ảnh hưởng độ ẩm đến khả nhận biết khí SO2 111 4.3.4 Tính chọn lọc SO2 cảm biến sử dụng nano γ-Fe2O3 113 4.4 Kết luận Chương 117 4.4.1 KẾT LUẬN VÀ KIẾN NGHỊ 119 4.4.2 TUY ỂN TẬP CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ CỦA LUẬN ÁN 121 4.4.3 TÀI LIỆU THAM KHẢO 122 4.4.4 DANH MỤC CÁC KÍ HIỆU VÀ CHỮ VIẾT TẮT 4.4.5 4.4.7 4.4.6 Kí hiệu 4.4.9 Tên tiếng Anh 4.4.10.Ý STT nghĩa 4.4.8 viết tắt 4.4.11 4.4.12 4.4.13 Zero4.4.14 Không chiều 0D Dimensional 4.4.15 4.4.16 4.4.17 One4.4.18 Một chiều 1D Dimensional 4.4.19 4.4.20 4.4.21 Two4.4.22 Hai chiều 2D Dimensional 4.4.23 4.4.24 4.4.25 Three4.4.26 Ba chiều 3D Dimensional 4.4.29 Advanced 4.4.31 Viện Tiên tiến Khoa 4.4.27 4.4.28 Institute for học Công AIST 4.4.30 Science and 4.4.32 nghệ Technology 4.4.33 4.4.34 4.4.35 Brunauer – 4.4.36 Phương pháp đo diện BET Emmett – Teller tích bề mặt 4.4.40 Phương pháp đo phân 4.4.37 4.4.38 4.4.39 Barrett – bố kích BJH Joyner - Halenda 4.4.41 thước lỗ rỗng 4.4.42 4.4.43 4.4.44 Carbon 4.4.45 Ống nano cacbon CNT nanotube 4.4.48 Multi wall 4.4.46 4.4.47 4.4.50 Ống nano cacbon đa carbon MWCNT lớp 4.4.49 nanotubes 4.4.51 4.4.52 4.4.53 Concentration 4.4.54 Nồng độ 10 Con 4.4.55 4.4.56 4.4.57 Dionized Water 4.4.58 Nước khử ion 11 DI 4.4.61 X-ray Energy 4.4.59 4.4.60 4.4.63 Phổ tán sắc Dispersion 12 EDX lượng tia X 4.4.62 Spectroscopy 4.4.66 Fourier 4.4.64 4.4.65 4.4.68 Phổ hồng ngoại biến Transform Infrared 13 FT-IR đổi Fourier 4.4.67 Spectroscopy 4.4.74 Giá trị ngưỡng giới 4.4.69.4.4.71.4.4.73 Immediately 4.4.70 hạn gây ảnh hưởng tức thời tới sức Dangerous to Life and 14 4.4.72 khỏe đời Health IDLH 4.4.75 sống [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [14] tree, Horsfieldia hainanensis merr., to simulated sulfuric and nitric acid rain in southern China”, Plant Physiol Biochem., vol 144, no July, pp 118– 126 M Barzegar Gerdroodbary, D D Ganji, I Shiryanpour, and R Moradi, (2018), “Mass analysis of CH4/SO2 gas mixture by low-pressure MEMS gas sensor”, J Nat Gas Sci Eng., vol 53, pp 317–328 H Song, Q Li, and Y Zhang, (2020), “CNT-based sensor array for selective and steady detection of SO2 and NO”, Mater Res Bull., vol 124, no June 2019, p 110772, 2020 R Kumar, O Al-Dossary, G Kumar, and A Umar, (2015), “Zinc Oxide Nanostructures for NO2 Gas–Sensor Applications: A Review”, Nano-Micro Lett., vol 7, no 2, pp 97–120 K Liu and C Zhang, (2021), “Volatile organic compounds gas sensor based on quartz crystal microbalance for fruit freshness detection: A review”, Food Chem., vol 334, no July 2020, p 127615 L Wang, (2020), “Metal-organic frameworks for QCM-based gas sensors: A review”, Sensors Actuators, A Phys., vol 307, p 111984 A Alassi, M Benammar, and D Brett, (2017), “Quartz crystal microbalance electronic interfacing systems: A review”, Sensors (Switzerland), vol 17, no 12, pp 1–41 N L Bragazzi and R Gasparini (2015), “Quartz-Crystal Microbalance (QCM) for Public Health Fundamentals of protein and cell inter- actions in biomaterials Enzymes of Energy Technology”, Vol 101, pp149 - 211 X Ding, X Chen, X Chen, X Zhao, and N Li (2018), “A QCM humidity sensor based on fullerene/graphene oxide nanocomposites with high quality factor”, Sensors Actuators, B Chem., vol 266, pp 534–542 H Jin et al (2017), “A humidity sensor based on quartz crystal microbalance using graphene oxide as a sensitive layer”, Vacuum, vol 140, pp 101–105 N X Dinh, L A Tuan, and N Van Quy (2015), “Room Temperature Violate Organic Compound Sensor Based on Functional Multi-Wall Carbon Nanotubes Coated Quartz Crystal Microbalance”, Sens Lett., vol 13, no 6, pp 449–455 M M Aria, A Irajizad, F R Astaraei, S P Shariatpanahi, and R Sarvari (2016), “Ethanol sensing properties of PVP electrospun membranes studied by quartz crystal microbalance”, Meas J Int Meas Confed., vol 78, pp 283– 288 R Das, R Bandyopadhyay, and P Pramanik (2019), “Stereo-regulated Schiff base siloxane polymer coated QCM sensor for amine vapor detection”, Mater Chem Phys., vol 226, no January, pp 214–219 Y Tian, K Qu, and X Zeng (2017), “Investigation into the ring-substituted polyanilines and their application for the detection and adsorption of sulfur dioxide”, Sensors Actuators, B Chem., vol 249, pp 423–430 [28] O Alev, N Sarıca, O Ưzdemir, L Ç Arslan, S Bükkưse, and Z Z Öztürk (2020), “Cu-doped ZnO nanorods based QCM sensor for hazardous gases”, J Alloys Compd., vol 826, no [29] V Georgieva, and et al., (2004), “Quartz resonator with thin TiO2 for NH3 detection”, Vacuum, vol 76, no 2–3, pp 203–206 [30] S E Dıı̇ltemıı̇z and K Ecevıı̇t (2019), “High-performance formaldehyde adsorption on CuO/ZnO composite nanofiber coated QCM sensors”, J Alloys Compd., Vol 783, pp 608–616 [31] T Addabbo, A Fort, M Mugnaini, M Tani, V Vignoli, and M Bruzzi (2017), “Quartz crystal microbalance sensors based on TiO nanoparticles for gas sensing”, I2MTC 2017 - 2017 IEEE Int Instrum Meas Technol Conf Proc (I2MTC), pp 1-6 [32] E E A Campos, D V B S Pinto, J I S de Oliveira, E da C Mattos, and R de C L Dutra (2015), “Synthesis, characterization and applications of iron oxide nanoparticles - A short review”, J Aerosp Technol Manag., vol 7, no 3, pp 267–276 [33] J Wang, Y Chen, G Liu, and Y Cao (2017), “Synthesis, characterization and photocatalytic activity of inexpensive and non-toxic Fe 2O3−Fe3O4 nanocomposites supported by montmorillonite and modified by graphene”, Composites Part B: Engineering, vol 114 pp 211–222 [34] C Lin, W Qin, and C Dong (2016), “H2S adsorption and decomposition on the gradually reduced α-Fe2O3 (001) surface: A DFT study”, Appl Surf Sci., vol 387, pp 720–731 [35] T Sen, N G Shimpi, S Mishra, and R Sharma (2014), “Polyaniline/γ-Fe2O3 nanocomposite for room temperature LPG sensing”, Sensors Actuators, B Chem., vol 190, pp 120–126 [36] L HOU et al (2018), “Ethanol Gas Sensor Based on γ-Fe2O3 Nanoparticles Working at Room Temperature with High Sensitivity”, Chinese J Anal Chem., vol 46, no 7, pp e1854–e1862 [37] S Capone et al., (2017), “Palladium/γ-Fe2O3 nanoparticle mixtures for acetone and NO2gas sensors”, Sensors Actuators, B Chem., vol 243, no 2, pp 895– 903 [38] V Xuan and P Tien (2020), “Influence of working temperature on the structure and gas-sensing properties of γ-FeOOH submicron spheres”, Mater Sci Semicond Process., vol 107, no November 2019, p 104857 [39] N Van Hoang et al., (2020), “Enhanced H2S gas-sensing performance of αFe2O3 nanofibers by optimizing process conditions and loading with reduced graphene oxide”, J Alloys Compd., vol 826, p 154169 [40] N Soin, T.H.Shah and et al, (2016) “Piezoelectric Effect”, Handbook of Technical Textiles (Second Edition) [41] N L Bragazzi and R Gasparini, (2015), “Quartz-Crystal Microbalance ( QCM [42] ) for Public Health Fundamentals of protein and cell inter- actions in biomaterials Enzymes of Energy Technology”, Advances in Protein Chemistry and Structural Biology, Vol 101, pp 149-211 [43] Y Saigusa, (2010), "Quartz-based piezoelectric materials", Advanced Piezoelectric Materials: Science and Technology, Woodhead Publishing Limited, pp 171 - 203 [44] D Wang, P Mousavi, P J Hauser, W Oxenham, and C S Grant (2005), “Quartz crystal microbalance in elevated temperature viscous liquids : Temperature effect compensation and lubricant degradation monitoring”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol 268, pp 30–39 [45] J P J., K Prabakaran, J Luo, and D H M G, (2021), “Effective utilization of quartz crystal microbalance as biosensing tool for biosensing applications”, Sensors Actuators A Phys., vol 331, p 113020 [46] M Uemoto, Y Kuwabara, S A Sato, and K Yabana (2019), “Nonlinear polarization evolution using time-dependent density functional theory”, The Journal of Chemical Physics, Vol 150, pp 094 - 101 [47] S R Systems, (2018), “QCM200 Digital Controller: Operation and Service Manual”, Oper Serv Man., vol Revision [48] O K T Raivo Jaaniso, (2013), "Semiconductor gas sensors", Elservier [49] S G Pawar et al (2012), “Nanocrystalline TiO2 thin films for NH3 monitoring : microstructural and physical characterization”, Journal of Materials Science: Materials in Electronics, Vol 23, pp 273–279, 2012 [50] G Sauerbrey, (1959), “Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung”, Zeitschrift für Phys., vol 155, no 2, pp 206– 222 [51] C E Reed, K K Kanazawa, and J H Kaufman (1990), “Physical description of a viscoelastically loaded AT-cut quartz resonator”, J Appl Phys., vol 68, no 5, pp 1993–2001 [52] K Keiji Kanazawa and J G Gordon (1985), “The oscillation frequency of a quartz resonator in contact with liquid”, Anal Chim Acta, vol 175, pp 99– 105 [53] Nguyễn Văn Hiếu, (2015), "Cảm biến khí dây nano ơ-xít kim loại bán dẫn", NXB Bách khoa Hà Nội [54] P Qi, Z Xu, T Zhang, T Fei, and R Wang (2020), “Chitosan wrapped multiwalled carbon nanotubes as quartz crystal microbalance sensing material for humidity detection”, J Colloid Interface Sci., vol 560, pp 284– 292 [55] A Shrivastava and V Gupta, (2011), “Methods for the determination of limit of detection and limit of quantitation of the analytical methods”, Chronicles [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [56] Young Sci., vol 2, no 1, p 21 N D Hoang, V Van Cat, M H Nam, V N Phan, L A Tuan, and N Van Quy (2019), “Enhanced SO2 sensing characteristics of multi-wall carbon nanotubes based mass-type sensor using two-step purification process”, Sensors Actuators A Phys., vol 295, pp 696–702, 2019 V Van Cat et al (2020), “Realization of graphene oxide nanosheets as a potential mass-type gas sensor for detecting NO 2, SO2, CO, and NH3”, Mater Today Commun., vol 25, no September, p 101682 J Huang, G Xie, Y Zhou, T Xie, H Tai, and G Yang (2014), “Polyvinylpyrrolidone/reduced graphene oxide nanocomposites thin films coated on quartz crystal microbalance for NO2 detection at room temperature", 7th Int Symp Adv Opt Manuf Test Technol Smart Struct Mater Manuf Test., vol 9285, no 2, p 92850B C Özbek, S Okur, Ö Mermer, M Kurt, S Sayin, and M Yilmaz (2015), “Effect of Fe doping on the CO gas sensing of functional calixarene molecules measured with quartz crystal microbalance technique”, Sensors Actuators, B Chem., vol 215, pp 464–470 S Sayin, C Ozbek, S Okur, and M Yilmaz (2014), “Preparation of the ferrocene-substituted 1,3-distal p-tert-butylcalix[4]arene based QCM sensors array and utilization of its gas-sensing affinities”, J Organomet Chem., vol 771, pp 9–13 S Jayawardena, H D Siriwardena, R M G Rajapakse, A Kubono, and M Shimomura (2019), “Fabrication of a quartz crystal microbalance sensor based on graphene oxide/TiO2 composite for the detection of chemical vapors at room temperature”, Appl Surf Sci., vol 493, no April, pp 250–260 W Chen, F Deng, M Xu, J Wang, Z Wei, and Y Wang (2018), “GO/Cu2O nanocomposite based QCM gas sensor for trimethylamine detection under low concentrations”, Sensors Actuators, B Chem., vol 273, pp 498–504 D Zhang, D Wang, X Zong, G Dong, and Y Zhang (2018), “HighPerformance QCM Humidity Sensor Based on Graphene Oxide/Tin Oxide/Polyaniline Ternary Nanocomposite Prepared by In-Situ Oxidative Polymerization Method”, Sensors Actuators B Chem., Vol 262, pp 531 – 541 W Jung, K Sahner, A Leung, and H L Tuller (2009), “Acoustic wave-based NO2 sensor: Ink-jet printed active layer”, Sensors Actuators, B Chem., vol 141, no 2, pp 485–490 M Osada, I Sasaki, M Nishioka, M Sadakata, and T Okubo (1998), “Synthesis of a faujasite thin layer and its application for SO2 sensing at elevated temperatures”, Microporous Mesoporous Mater., vol 23, no 5–6, pp 287–294 H Fang et al (2020), “Cu(OH)2 nanowires/graphene oxide composites based [69] [70] [72] [73] [74] [75] [76] [77] [78] [79] [80] [68] QCM humidity sensor with fast-response for real-time respiration monitoring”, Sensors Actuators, B Chem., vol 304, p 127313 H Wang, X Liu, J Xie, M Duan, and J Tang (2016), “Effect of humidity on the CO gas sensing of ZnSn(OH)6 film via quartz crystal microbalance technique”, J Alloys Compd., vol 657, pp 691–696 K N Chappanda, O Shekhah, O Yassine, S P Patole, M Eddaoudi, and K [71] N Salama (2018), “The quest for highly sensitive QCM humidity sensors: The coating of CNT/MOF composite sensing films as case study”, Sensors Actuators, B Chem., vol 257, pp 609–619 S W Lee et al (2018), “Reduction and compensation of humidity measurement errors at cold temperatures using dual QCM humidity sensors based on graphene oxides”, Sensors Actuators, B Chem., vol 284, no November 2018, pp 386–394 V Van Quang, V N Hung, L A Tuan, V N Phan, T Q Huy, and N Van Quy (2014), “Graphene-coated quartz crystal microbalance for detection of volatile organic compounds at room temperature”, Thin Solid Films, vol 568, no 1, pp 6–12 K Zhang, R Hu, G Fan, and G Li (2017), “Graphene oxide/chitosan nanocomposite coated quartz crystal microbalance sensor for detection of amine vapors”, Sensors Actuators, B Chem., vol 243, pp 721–730 Y Zhihua, Z Liang, S Kaixin, and H Weiwei (2012), “Characterization of quartz crystal microbalance sensors coated with graphene films”, Procedia Eng., vol 29, pp 2448–2452 P G Su, Y L Sun, and C C Lin (2006), “A low humidity sensor made of quartz crystal microbalance coated with multi-walled carbon nanotubes/Nafion composite material films”, Sensors Actuators, B Chem., vol 115, no 1, pp 338–343 L Wang, J Xu, X Wang, Z Cheng, and J Xu (2019), “Chemical Facile preparation of N-rich functional polymer with porous framework as QCM sensing material for rapid humidity detection”, Sensors Actuators B Chem., vol 288, no December 2018, pp 289–297 M Matsuguchi and A Tada (2017), “Fabrication of poly(Nisopropylacrylamide) nanoparticles using a simple spray-coating method and applications for a QCM-based HCl gas sensor coating”, Sensors Actuators, B Chem., vol 251, pp 821–827 M Matsuguchi, K Tamai, and Y Sakai (2001), “SO2 gas sensors using polymers with different amino groups”, Sensors Actuators, B Chem., vol 77, no 1–2, pp 363–367 F Benmakroha and et al., (1993), “Monitoring of Sulfur Dioxide Using a Piezoelectric Crystal Based Controller*”, the Analyst, vol 118, issue 4, pp [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [81] 401–406 V Syritski, J Reut, A Öpik, and K Idla (1999), “Environmental QCM sensors coated with polypyrrole”, Synth Met., vol 102, no 1–3, pp 1326– 1327 S R Kim, J D Kim, K H Choi, and Y H Chang (1997), “NO2-sensing properties of octa(2-ethylhexyloxy) metallophthalocyanine LB films using quartz-crystal microbalance”, Sensors Actuators, B Chem., vol 40, no 1, pp 39–45 M Matsuguchi, Y Kadowaki, and M Tanaka (2005), “A QCM-based NO2 gas detector using morpholine-functional cross-linked copolymer coatings”, Sensors Actuators, B Chem., vol 108, no 1-2 SPEC ISS., pp 572–575 A Bayram, C Özbek, M Şenel, and S Okur (2017), “CO gas sorption properties of ferrocene branched chitosan derivatives”, Sensors Actuators, B Chem., vol 241, pp 308–313 L Kosuru, A Bouchaala, N Jaber, and M I Younis (2016), “Humidity Detection Using Metal Organic Framework Coated on QCM”, Sensors and Actuators, A: Physical, vol 2016, pp 11984 D Zhang, H Chen, X Zhou, D Wang, and Y Jin (2019), “In-situ polymerization of metal organic frameworks-derived ZnCo 2O4/polypyrrole nanofilm on QCM electrodes for ultra-highly sensitive humidity sensing application”, Sensors Actuators A Phys., vol 295, pp 687–695 E Haghighi and S Zeinali (2020), “Formaldehyde detection using quartz crystal microbalance (QCM) nanosensor coated by nanoporous MIL-101(Cr) film”, Microporous Mesoporous Mater., vol 300, no February, p 110065 L Wang, Z Wang, Q Xiang, Y Chen, Z Duan, and J Xu (2017), “High performance formaldehyde detection based on a novel copper (II) complex functionalized QCM gas sensor”, Sensors Actuators, B Chem., vol 248, pp 820–828 N L Torad et al (2020), “MOF-derived hybrid nanoarchitectured carbons for gas discrimination of volatile aromatic hydrocarbons”, Carbon N Y., vol 168, pp 55–64 M R Tchalala et al (2019), “Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air”, Nat Commun., vol 10, no 1, pp 1–10 Z Ma et al (2019), “A benzene vapor sensor based on a metal-organic framework-modified quartz crystal microbalance”, Sensors Actuators, B Chem., vol 311, no October 2019, p 127365 V Georgieva, M Mitkova, P Chen, D Tenne, K Wolf, and V Gadjanova (2012), “NO2 gas sorption studies of Ge33Se67 films using quartz crystal microbalance”, Mater Chem Phys., vol 137, no 2, pp 552–557 X Cha et al (2018), “Superhydrophilic ZnO nanoneedle array: Controllable [95] in situ growth on QCM transducer and enhanced humidity sensing properties and mechanism”, Sensors Actuators, B Chem., vol 263, pp 436– 444 [96] Y Zhao, X Du, X Wang, J He, Y Yu, and H He (2010), “Effects of F doping on TiO2 acidic sites and their application in QCM based gas sensors”, Sensors Actuators, B Chem., vol 151, no 1, pp 205–211 [97] G Fan and G Li et al (2012), “Template free synthesis of hollow ball-like Nano-Fe2O3 and its application to the detection of dimethyl methylphosphonate at room temperature”, Sensors, vol 12, no 4, pp 4594– 4604 [98] N Van Quy, T M Hung, T Q Thong, L A Tuan, T Q Huy, and N D Hoa, “Novel synthesis of highly ordered mesoporous Fe2O 3/SiO2 nanocomposites for a room temperature VOC sensor”, Curr Appl Phys., vol 13, no 8, pp 1581–1588, 2013, doi: 10.1016/j.cap.2013.06.002 [99] L Wang, Y Wu, J Gao, and J Song (2019), “La doped AlPO-5: Enhenced NH3 sensing properties, thermodynamic investigation and humidity-enhanced effect”, J Solid State Chem., vol 277, pp 54–60 [100]C Retnhardf (2001), “The Iron Oxides”, Cheniical Sciences in the 20th Century, pp 5–18 [101]L Machala, R Zboril, and A Gedanken (2007), “Amorphous iron(III) oxide A review”, J Phys Chem B, vol 111, no 16, pp 4003–4018 [102] N V Lukashova, A G Savchenko, Y D Yagodkin, A G Muradova, and E [103] V Yurtov (2014), “Investigation of structure and magnetic properties of nanocrystalline iron oxide powders for use in magnetic fluids”, J Alloys Compd., vol 586, no SUPPL 1, pp S298–S300 [104]M M Can, S Ozcan, A Ceylan, and T Firat (2010), “Effect of milling time on the synthesis of magnetite nanoparticles by wet milling”, Mater Sci Eng B Solid-State Mater Adv Technol., vol 172, no 1, pp 72–75 [105]H Cui, Y Liu, and W Ren (2013), “Structure switch between α-Fe 2O3, γFe2O3 and Fe3O4 during the large scale and low temperature sol-gel synthesis of nearly monodispersed iron oxide nanoparticles”, Adv Powder Technol., vol 24, no 1, pp 93–97 [106]V A J Silva, P L Andrade, M P C Silva, A D Bustamante, L D L Santos, and J A Aguiar (2013), “Journal of Magnetism and Magnetic Materials Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides”, J Magn Magn Mater., vol 343, pp 138–143 [107]C Li, J Liu and et al (2019), “Peroxymonosulfate activation for efficient sulfamethoxazole degradation by Fe3O4/β-FeOOH nanocomposites: Coexistence of radical and non-radical reactions”, Chem Eng J., vol 356, pp 904–914 [108]X Huang, H Zhou, X Yue, S Ran, and J Zhu (2021), “ Novel Magnetic Fe3O4/α-FeOOH Nanocomposites and Their Enhanced Mechanism for [109] Tetracycline Hydrochloride Removal in the Visible Photo-Fenton Process”, ACS Omega, vol 6, no 13, pp 9095–9103 [110]D N Srivastava, N Perkas, A Gedanken, and I Felner (2002), “Sonochemical synthesis of mesoporous iron oxide and accounts of its magnetic and catalytic properties”, J Phys Chem B, vol 106, no 8, pp 1878–1883 [111]S I S Ramya and C K Mahadevan (2012), “Preparation by a simple route and characterization of amorphous and crystalline Fe2O3 nanophases”, Mater Lett., vol 89, pp 111–114 [112]S Babay, T Mhiri, and M Toumi (2015), “Synthesis, structural and spectroscopic characterizations of maghemite γ-Fe2O3 prepared by one-step coprecipitation route”, J Mol Struct., vol 1085, pp 286–293 [113]N A M Barakat (2012), “Synthesis and characterization of maghemite iron oxide (γ-Fe2O3) nanofibers: Novel semiconductor with magnetic feature”, J Mater Sci., vol 47, no 17, pp 6237–6245 [114]D D Vuong, L H Phuoc, V X Hien, and N D Chien, (2020) “Hydrothermal synthesis and ethanol-sensing properties of α- Fe 2O3 hollow nanospindles”, Mater Sci Semicond Process., vol 107, p 104861 [115]W Luo et al (2021), “Highly crystallized α-FeOOH for a stable and efficient oxygen evolution reaction”, Journal of Materials Chemistry A, vol 5, no pp 2021–2028 [116]M M Can, M Coşkun, and T Firat (2012), “A comparative study of nanosized iron oxide particles; Magnetite (Fe3O4), maghemite (γ-Fe2O3) and hematite (α- Fe2O3), using ferromagnetic resonance”, Journal of Alloys and Compounds, vol 542 pp 241–247 [117]S Liu, K Yao, L H Fu, and M G Ma (2016), “Selective synthesis of Fe3O4, γ-Fe2O3, and α-Fe2O3 using cellulose-based composites as precursors”, RSC Adv., vol 6, no 3, pp 2135–2140 [118]G Xu et al (2015), “Magnetite Fe3O4 nanoparticles and hematite α-Fe2O3 uniform oblique hexagonal microdisks, drum-like particles and spindles and their magnetic properties”, Journal of Alloys and Compounds, vol 629 pp 36–42 [119]H.-J Kim and J.-H Lee (2014), “Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview”, Sensors Actuators B Chem., vol 192, pp 607–627 [120]A Naskar, M Narjinary, and S Kundu, (2017), “Unconventional Synthesis of γ- Fe2O3: Excellent Low-Concentration Ethanol Sensing Performance”, J Electron Mater., vol 46, no 1, pp 478–487 [121]K Basu, P S Chauhan, M Awasthi, and S Bhattacharya (2019), “α-Fe2O3 loaded rGO nanosheets based fast response/recovery CO gas sensor at room temperature”, Appl Surf Sci., vol 465, no March 2018, pp 56–66 [122]S Saritas, M Kundakci, O Coban, S Tuzemen, and M Yildirim, (2018), “Ni:Fe2O3, Mg:Fe2O3 and Fe2O3 thin films gas sensor application”, Phys B Condens Matter, vol 541, pp 14–18 [123]H J Zhang, Y J Chen and et al., (2019), “Convenient route for synthesis of alpha-Fe2O3 and sensors for H2S gas”, J Alloys Compd., vol 774, pp 1181– 1188 [124]C Zhao, J Bai, B Huang, Y Wang, J Zhou, and E Xie, (2016), “G rain refining effect of calcium dopants on gas-sensing properties of electrospun Fe2O3 nanotubes”, Sensors Actuators, B Chem., vol 231, pp 552–560 [125]J J S Han, D E Davey, D E Mulcahy, and A B Yu (1999), “Effect of the pH value of the precipitation solution on the CO sensitivity of α-Fe 2O3”, Sensors Actuators, B Chem., vol 61, no 1, pp 83–91 [126]M Wang, T Hou, Z Shen, X Zhao, and H Ji (2019), “MOF-derived Fe2O3: Phase control and effects of phase composition on gas sensing performance”, Sensors Actuators, B Chem., vol 292, pp 171–179 [127]H Zhang, X Wei, L Liu, Q Zhang, and W Jiang (2019) , “The role of positively charged sites in the interaction between model cell membranes and γ-Fe2O3 NPs”, Sci Total Environ., vol 673, pp 414–423 [128]Y Zhang et al (2008), “A reusable piezoelectric immunosensor using antibody-adsorbed magnetic nanocomposite”, J Immunol Methods, vol 332, no 1–2, pp 103-111 [129]S S.-S Li et al (2016), “Iron Oxide with Different Crystal Phases (α- and γFe2O3) in Electroanalysis and Ultrasensitive and Selective Detection of Lead(II): An Advancing Approach Using XPS and EXAFS”, Anal Chem., vol 88, no 1, pp 906–914 [130]R Sivashankar, A B Sathya, K Vasantharaj, and V Sivasubramanian (2014), “Magnetic composite an environmental super adsorbent for dye sequestration [131] – A review”, Environ Nanotechnology, Monit Manag., vol 1–2, pp 36–49 [132]A Radoń, A Drygała, Ł Hawełek, and D Łukowiec (2017), “Structure and optical properties of Fe3O4 nanoparticles synthesized by co-precipitation method with different organic modifiers”, Mater Charact., vol 131, pp 148– 156 [133]N Randrianantoandro, A M Mercier, M Hervieu, and J M Greneche (2001), “Direct phase transformation from hematite to maghemite during high energy ball milling”, Materials Letters, Vol no January, pp 150–158 [134]H Yang and K Nakane (2019), “Pd (II)-doped SiO2/Fe2O3 nanofibers as a novel catalyst for the ethanol dehydration reaction”, J Mater Sci, Vol 54, pp 14763-14777 [135]N V Ter-Oganessian, A A Guda, and V P Sakhnenko (2017), “Linear magnetoelectric effect in göthite, α-FeOOH”, Sci Rep., vol 7, no 1, pp 1–6 [136]Hexiong, G Costin and et al., (2006), “Goethite, α-FeO(OH), from singlecrystal data”, Acta Crystallogr Sect E Struct Reports Online, vol 62, no 12, pp 250–252 [137]H Liu, T Chen, and R L Frost (2014), “An overview of the role of goethite surfaces in the environment”, Chemosphere, vol 103, pp 1–11 [138]P Senthil Kumar, K Grace Pavithra, and M Naushad (2019), "Characterization techniques for nanomaterials" Nanomaterials for Solar Cell Applications, pp 97 - 124 [139]Raijiv Kohli and K.L.Mital (2019), “X-Ray Diffraction Methods for Assessing Surface Cleanliness Characterization, testing, and reinforcing materials of biodegradable composites Thin Film Deposition for Front End of Line”, Developments in Surface Contamination and Cleaning, Vol 12 [140]H M Rietveld (1969), “A profile refinement method for nuclear and magnetic structures”, J Appl Crystallogr., vol 2, no 2, pp 65–71 [141]S Diaz-Castanon, J C Faloh-Gandarilla, E Munoz-Sandoval, and M Terrones (2008), “Vibration sample magnetometry, a good tool for the study of nanomagnetic inclusions”, Superlattices Microstruct., vol 43, no 5–6, pp 482–486 [142]T Zelinka, P Hejda, and V Kropáček (1987), “The vibrating-sample magnetometer and Preisach diagram”, Phys Earth Planet Inter., vol 46, no 1–3, pp 241–246 [143]M A Mohamed, J Jaafar, A F Ismail, M H D Othman, and M A Rahman (2017), "Fourier Transform Infrared (FTIR) Spectroscopy" Elsevier B.V [144]E Smith and G Dent (2005), "Modern Raman Spectroscopy - A Practical Approach", John Wiley & Sons, Lts, vol 5, pp - 210 [145]M Naderi (2015), “Surface Area: Brunauer-Emmett-Teller (BET)”, Prog Filtr Sep., pp 585–608 [146]J Villarroel-Rocha, D Barrera, and K Sapag (2014), “Introducing a selfconsistent test and the corresponding modification in the Barrett, Joyner and Halenda method for pore-size determination”, Microporous Mesoporous Mater., vol 200, pp 68–78 [147]E P Barrett, L G Joyner, and P P Halenda (1951), “The Determination of Pore Volume and Area Distributions in Porous Substances I Computations from Nitrogen Isotherms”, J Am Chem Soc., vol 73, no 1, pp 373–380 [148]C Özbek, S Okur, Ö Mermer, M Kurt, S Sayin, and M Yilmaz (2015), “Effect of Fe doping on the CO gas sensing of functional calixarene molecules measured with quartz crystal microbalance technique”, Sensors Actuators, B Chem., vol 215, pp 464–470 [149]L Zhang, Z Huang, H Shao, Y Li, and H Zheng (2016), “Effects of γ-Fe2O3 on γ-Fe2O3/Fe3O4 composite magnetic fluid by low-temperature low-vacuum [150] oxidation method”, Materials and Design, vol 105 pp 234–239 [151]T T Loan et al (2021), “Structure and magnetic properties of magnetic iron oxide/zinc oxide core/shell nanocomposites: Effect of ZnO coating”, Mater Today Commun., vol 26, p 101733 [152]M I Dar and S A Shivashankar (2014), “Single crystalline magnetite, maghemite, and hematite nanoparticles with rich coercivity”, RSC Adv., vol 4, no 8, pp 4105–4113 [153]R Arbi et al.(2021), “Role of hydration and micellar shielding in tuning the structure of single crystalline iron oxide nanoparticles for designer applications”, Nano Sel., no February, pp 1–13 [154]Z Lin, C Du, B Yan, and G Yang (2019), “Amorphous Fe2O3 for photocatalytic hydrogen evolution”, Catal Sci Technol., vol 9, no 20, pp 5582–5592 [155]A Sirivat and N Paradee (2019), “Facile synthesis of gelatin-coated Fe 3O4 nanoparticle: Effect of pH in single-step co-precipitation for cancer drug loading”, Mater Des., vol 181, p 107942 [156]N D Cuong, T T Hoa, D Q Khieu, T D Lam, N D Hoa, and N Van Hieu (2012), “Synthesis, characterization, and comparative gas-sensing properties of Fe2O3 prepared from Fe3O4 and Fe3O4-chitosan”, J Alloys Compd., vol 523, pp 120–126 [157]C Wang, A Li, and C Shuang (2018), “The effect on ozone catalytic performance of prepared-FeOOH by different precursors”, J Environ Manage., vol 228, no 163, pp 158–164 [158]C Liang, H Liu, J Zhou, X Peng, and H Zhang (2015), “ One-Step Synthesis of Spherical γ-Fe2O3”, Journal of Chemistry, Vol 2015, no ii, pp 1- [159]D Maity, S Choo, J Yi, J D Ã, and J M X Ã (2009), “Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route”, Journal of Magnetism and Magnetic Materials, vol 321, pp 1256–1259 [160]R Sakthivel, B Das, B Satpati, and B K Mishra (2009), “Gold supported iron oxide-hydroxide derived from iron ore tailings for CO oxidation”, Appl Surf Sci., vol 255, no 13–14, pp 6577–6581 [161]X Mou et al (2012), “ Crystal-phase- and morphology-controlled synthesis of Fe2O3 nanomaterials”, Eur J Inorg Chem., no 16, pp 2684–2690 [162]M Su, C He, and K Shih (2016), “Facile synthesis of morphology and sizecontrolled α-Fe2O3 and Fe3O4 nano-and microstructures by hydrothermal/solvothermal process: The roles of reaction medium and urea dose”, Ceramics International, vol 42, no 13 pp 14793–14804 [163]D P Rall (1974), “Review of the health effects of sulfur oxides”, Environ Health Perspect., Vol 8, no August, pp 97–121 [164] National Institute for Occupational Safety and Health (2005), “Threshold Limit [165] Values ( TLV ) and Immediately Dangerous to Life and Health ( IDLH ) values”, Saf Heal., p [166]A S Teja and P Y Koh (2009), “Synthesis, properties, and applications of magnetic iron oxide nanoparticles”, Prog Cryst Growth Charact Mater., vol 55, no 1–2, pp 22–45 [167]X Wang et al (2020), “Oxygen vacancy defects engineering on Ce-doped αFe2O3 gas sensor for reducing gases”, Sensors Actuators B Chem., vol 302, p 127165 [168]M Al-Hashem, S Akbar, and P Morris (2019), “Role of Oxygen Vacancies in Nanostructured Metal-Oxide Gas Sensors: A Review”, Sensors Actuators, B Chem., vol 301, no July, p 126845 [169]E Herrero and et al (1997), “Influence of synthesis conditions on the γ-Fe203 properties”, Solid State Ionics, vol 101 - 103, pp 213–219 [170][158]L Machala, R Zboril, and A Gedanken (2007), “Amorphous iron(III) oxide - A review”, J Phys Chem B, vol 111, no 16, pp 4003–4018 [159] X Song and J F Boily (2013), “Water vapor interactions with FeOOH particle surfaces”, Chem Phys Lett., vol 560, pp 1–9 [160] M Nishiyama and K Watanabe (2014), “Frequency characteristics of heterocore fiber optics sensor for mechanical vibration”, Sensors Actuators, A Phys., vol 209, pp 154–160 [161] I Urriza-Arsuaga, M Bedoya, and G Orellana (2019), “Tailored luminescent sensing of NH3 in biomethane productions”, Sensors Actuators, B Chem., vol 292, no 2019, pp 210–216 [162] M Zhang and J Li (2019), “Synthesis and characterization of a novel porphyrin derivative for optical sensor”, Mater Lett., vol 247, no February, pp 119–121 [163] F Ejeian et al (2019), “Design and applications of MEMS flow sensors: A review”, Sensors Actuators, A Phys., vol 295, pp 483–502 [164] D Patil, V Patil, and P Patil (2011), “Highly sensitive and selective LPG sensor based on α-Fe2O3 nanorods”, Sensors Actuators B Chem., vol 152, no 2, pp 299–306 [165] Y Y Ma, B Wang, Q Wang, and S Xing (2018), “Facile synthesis of α FeOOH /γ-Fe2O3 by a pH gradient method and the role of γ-Fe 2O3 in H2O2 activation under visible light irradiation”, Chem Eng J., vol 354, no May, pp 75–84 [166] B Qiao, L Liu, J Zhang, and Y Deng (2009), “Preparation of highly effective ferric hydroxide supported noble metal catalysts for CO oxidations : From gold to palladium”, J Catal., vol 261, no 2, pp 241–244 [167] L Liu, F Zhou, L Wang, X Qi, F Shi, and Y Deng (2010), “Lowtemperature CO oxidation over supported Pt, Pd catalysts : Particular role of FeOx support [168] for oxygen supply during reactions”, J Catal., vol 274, no 1, pp 1– 10 [169] A E R S Khder, S S Ashour, H M Altass, and K S Khairou (2016), “Pd nanoparticles supported on iron oxide nanorods for CO oxidation: Effect of preparation method”, J Environ Chem Eng., vol 4, no 4, pp 4794–4800 [170] G Neri et al (2001)., “HREELS study of Au/Fe2O3 thick film gas sensors”, Sensors Actuators, B Chem., vol 80, no 3, pp 222–228 [171] P Li, D E Miser, S Rabiei, R T Yadav, and M R Hajaligol (2003), “The removal of carbon monoxide by iron oxide nanoparticles”, Applied Catalysis B: Environmental, vol 43, pp 151–162 [172] R Naumann et al.( 2014), “Strong metal – support interactions between palladium and iron oxide and their effect on CO oxidation”, J Catal., vol 317, pp 220–228 [173] C Marius, M Chirita, and I Grozescu (2009), “Fe2O3 – Nanoparticles , Physical Properties and Their Photochemical And Photoelectrochemical Applications Fe2O3 – Nanoparticles , Physical Properties and Their Photochemical”, Chem Bull Politeh Univ Timsisoara, vol 54, no January 2009, pp 1–8, 2015 [174] M E Azim-Araghi and M J Jafari (2010), “Electrical and gas sensing properties of polyaniline-chloroaluminium phthalocyanine composite thin films”, EPJ Appl Phys., vol 52, no 1, pp 10402 [175] Y Zhihua, Z Liang, S Kaixin, and H Weiwei (2012), “Characterization of quartz crystal microbalance sensors coated with graphene films”, Procedia Eng., vol 29, pp 2448–2452 ... NGUYỄN THÀNH VINH NGHIÊN CỨU TÍNH CHẤT NHẠY KHÍ CỦA VẬT LIỆU NANO Ơ-XÍT SẮT SỬ DỤNG VI CÂN TINH THỂ THẠCH ANH Ngành: Khoa học vật liệu Mã ngành: 9440122 LUẬN ÁN TIẾN SĨ KHOA HỌC VẬT LIỆU NGƯỜI... phân tích ưu điểm linh kiện QCM vật liệu nano ơ-xít sắt trên, lựa chọn đề tài: ? ?Nghiên cứu tính chất nhạy khí vật liệu nano ơ-xít sắt sử dụng vi cân tinh thể thạch anh” 2 Mục tiêu luận án 4.4.259... HƯƠNG 4: ĐẶC TRƯNG NHẠY KHÍ CỦA THANH NANO Ơ-XÍT SẮT SỬ DỤNG CẢM BIẾN QCM 83 4.1 Khảo sát cấu trúc, hình thái tính chất vật liệu nano ơ-xít sắt .83 4.1.1 Vật liệu nano Fe3O4/α-FeOOH

Ngày đăng: 19/12/2021, 17:47

Mục lục

  • BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

  • LUẬN ÁN TIẾN SĨ KHOA HỌC VẬT LIỆU

    • BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

    • LUẬN ÁN TIẾN SĨ KHOA HỌC VẬT LIỆU

      • 3. LỜI CẢM ƠN

      • 8. Nghiên cứu sinh

      • 35. MỤC LỤC

        • 36. LỜI CẢM ƠN LỜI CAM ĐOAN

        • 1.2. Tổng quan về ứng dụng QCM trong cảm biến khí 12

        • 1.3. Tổng quan về vật liệu nhạy khí của cảm biến QCM 19

        • 1.4. Tổng quan về vật liệu ô-xít sắt 29

        • 1.5. Kết luận chương 1 38

        • 2.2 . Nghiên cứu các phương pháp khảo sát tính chất hóa - lý của vật liệu 43

        • 2.3 . Chế tạo lớp cảm nhận nano ô-xít sắt trên điện cực của QCM và khảo sát đo khí 49

        • 45. 2.4. Kết luận Chương 2 54

        • 3.2. Khảo sát đặc trưng nhạy khí của các cảm biến QCM phủ hạt nano Fe3O4, γ-Fe2O3 (QP200) và α-Fe2O3 67

        • 3.3. Ảnh hưởng của ion [Fe3+] và [Fe2+] đối với tính chất nhạy khí SO2 của hạt nano γ-Fe2O3 phủ trên điện cực của QCM 74

        • 3.4. Kết luận Chương 3 81

        • 4.2. Khảo sát các đặc trưng nhạy khí của cảm biến sử dụng thanh nano Fe3O4/α-FeOOH 90

        • 4.3. Khảo sát đặc trưng nhạy khí SO2 của các cảm biến sử dụng thanh nano Fe3O4/α-FeOOH, γ-Fe2O3 và α-Fe2O3 106

        • 4.4. Kết luận Chương 4 117

        • 4.4.187. DANH MỤC CÁC HÌNH VẼ ĐỒ THỊ

          • 1. Lý do chọn đề tài

          • 2. Mục tiêu của luận án

Tài liệu cùng người dùng

Tài liệu liên quan