THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 56 |
Dung lượng | 1,18 MB |
Nội dung
Ngày đăng: 10/12/2021, 19:35
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết | ||
---|---|---|---|---|
[4] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In | Sách, tạp chí |
|
||
[1] W. McCulloch and W. Pitts. A logical calculus of the ideas immanent nervous activity (1943) | Khác | |||
[3] M. Minsky and S. Papert. Perceptrons: an introduction to computational geometry (1969) | Khác | |||
[5] Ian Goodfellow. Deep Learning Book. 2014. doi: 10.1016/b978-0-12- 391420- 0.09987-x | Khác | |||
[6] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive Subgradient Methods | Khác | |||
[7] Jonathan L.Herlocker. Evaluating Collaborative Filtering Recommender Systems (2004) | Khác | |||
[8] Greg Linden. Amazon. com recommendations: Item-to-item collaborative filtering (2000) | Khác | |||
[9] Thomas Hofmann and Jan Puzicha. Latent class models for collaborative filtering. In IJCAI, volume 99, pages 688–693, 1999 | Khác | |||
[10] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2017. arXiv: 1412.6980 [cs.LG] | Khác | |||
[11] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. Knowledge and Data Engineering, IEEE Transactions on, 17(6):734–749, 2005 | Khác | |||
[12] Rodolphe Jenatton. A latent factor model for highly multi-relational data (2012) | Khác | |||
[13] Zhengzheng Xian. New Collaborative Filtering Algorithms Based on SVD++ and Differential Privacy (2017) | Khác | |||
[14] Robin Burke. Hybrid recommender systems: Survey and experiments. User modeling and user-adapted interaction, 12(4):331–370, 2002 | Khác |
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN