Tài liệu tham khảo |
Loại |
Chi tiết |
[1] K. K. H. K. S. H.Aiki, "Boiler Digital Twin Applying Machine Learning," Mitsubishi Heavy Industries Technical Review , p. Vol. 55 No. 4, December 2018 |
Sách, tạp chí |
Tiêu đề: |
Boiler Digital Twin Applying Machine Learning |
|
[2] W. Y. S. J.P.Wang, "Industrial Big Data Analytics: Challenges, Methodologies, and Applications," arXiv, p. 1807.01016, 3 Jul 2018 |
Sách, tạp chí |
Tiêu đề: |
Industrial Big Data Analytics: Challenges, Methodologies, and Applications |
|
[3] Y. S. A. Ch.Wang, "Optimizing Combustion of Coal Fired Boilers for Reducing NOx Emission using Gaussian Process," Energy, vol. 10.1016, 2018 |
Sách, tạp chí |
Tiêu đề: |
Optimizing Combustion of Coal Fired Boilers for Reducing NOx Emission using Gaussian Process |
|
[4] W. Z. Y.Gu, "Online adaptive least squares support vector machine and its application in utility boiler combustion optimization systems," Journal of Process Control, vol. 21, pp. 1040-1048, 2011 |
Sách, tạp chí |
Tiêu đề: |
Online adaptive least squares support vector machine and its application in utility boiler combustion optimization systems |
|
[5] D. D. C. M. D.Adams, "Prediction of SOxeNOx emission from a coal-fired CFB power plant with machine learning: Plant data learned by deep neural network and least square support vector machine," Journal of Cleaner Production, vol. 270, p. 122310, 2020 |
Sách, tạp chí |
Tiêu đề: |
Prediction of SOxeNOx emission from a coal-fired CFB power plant with machine learning: Plant data learned by deep neural network and least square support vector machine |
|
[6] C. E. R. Z. Y. E. S. Z. X. R. L. M. Fengqi Si, "Optimization of coal-fired boiler SCRs based on modified support vector machine models and genetic algorithms," Fuel, vol. 88, p. 806–816, 2009 |
Sách, tạp chí |
Tiêu đề: |
Optimization of coal-fired boiler SCRs based on modified support vector machine models and genetic algorithms |
|
[7] W. Z. G. H.Pan, "Optimization of industrial boiler combustion control system based on genetic algorithm," Computers and Electrical Engineering, vol. 000, pp. 1-11, 2018 |
Sách, tạp chí |
Tiêu đề: |
Optimization of industrial boiler combustion control system based on genetic algorithm |
|
[8] K. L. F. G. Z. N. Yuguang, "Case-based reasoning based on grey-relational theory for the optimization of boiler combustion systems," ISA Transactions, pp. 0019-0578, 2020 |
Sách, tạp chí |
Tiêu đề: |
Case-based reasoning based on grey-relational theory for the optimization of boiler combustion systems |
|
[10] Z. Zh.Tang, "The multi-objective optimization of combustion system operations based on deep data-driven models," Energy, vol. 182, pp. 37-47, 2019 |
Sách, tạp chí |
Tiêu đề: |
The multi-objective optimization of combustion system operations based on deep data-driven models |
|
[11] C. Z. B. J.Song, "Improved artificial bee colony-based optimization of boiler combustion considering NOx emissions, heat rate and fly ash recycling for on-line applications," Fuel, vol. 172, pp. 20-28, 2016 |
Sách, tạp chí |
Tiêu đề: |
Improved artificial bee colony-based optimization of boiler combustion considering NOx emissions, heat rate and fly ash recycling for on-line applications |
|
[12] C. R. J. A.A.M.Rahat, "Data-driven multi-objective optimisation of coal- fired boiler combustion systems," Applied Energy, vol. 229, pp. 446-458, 2018 |
Sách, tạp chí |
Tiêu đề: |
Data-driven multi-objective optimisation of coal-fired boiler combustion systems |
|
[13] V. K. P.llamathi, "Modeling and Optimization of Unburned Carbon in Coal- Fired Boiler Using Artificial Neural Network and Genetic Algorithm,"Journal Of Energy Resources Technology, vol. 135, pp. 032201(1-5), 2013 |
Sách, tạp chí |
Tiêu đề: |
Modeling and Optimization of Unburned Carbon in Coal-Fired Boiler Using Artificial Neural Network and Genetic Algorithm |
|
[14] J. J. Y.Ding, "Optimizing Boiler Control in Real-Time with Machine Learning for Sustainability," CIKM’18, October 22-26, 2018, Torino, Italy, pp. 2147-2154 |
Sách, tạp chí |
Tiêu đề: |
Optimizing Boiler Control in Real-Time with Machine Learning for Sustainability |
|
[15] L. L. N. N.H.Linh, "Nghiên cứu quá trình cháy bột than và nâng cao hiệu quả đốt than trộn trong các lò hơi đốt than phun trên mô hình mô phỏng," NLN, vol. 133, 01/2017 |
Sách, tạp chí |
Tiêu đề: |
Nghiên cứu quá trình cháy bột than và nâng cao hiệu quả đốt than trộn trong các lò hơi đốt than phun trên mô hình mô phỏng |
|
[16] N. L.D.Dung, "Nghiên cứu tối ưu hóa quá trình cháy bột than trong lò hơi SG 130-40-450 bằng phương pháp mô phỏng số CFD," Tạp chí Khoa học và Công nghệ Đại học Đà Nẵng , vol. 9(118), pp. 15-19, 2017 |
Sách, tạp chí |
Tiêu đề: |
Nghiên cứu tối ưu hóa quá trình cháy bột than trong lò hơi SG 130-40-450 bằng phương pháp mô phỏng số CFD |
|
[17] "Modeling and optimization of NOX emission in a coal-fired power plant using advanced machine learning methods," The 6th International Conference on Applied Energy – ICAE2014, vol. 61, p. 377 – 380 , 2014 |
Sách, tạp chí |
Tiêu đề: |
Modeling and optimization of NOX emission in a coal-fired power plant using advanced machine learning methods |
|
[20] B. S. A. J. Smola, "A tutorial on support vector regression," Statistics and Computing , vol. 14, p. 199–222, 2004 |
Sách, tạp chí |
Tiêu đề: |
A tutorial on support vector regression |
|
[23] A. V. V.K.Ojha, "ACO for Continuous Function Optimization: A Performance Analysis," arXiv, p. 1707.01812v1, 6 Jul 2017 |
Sách, tạp chí |
Tiêu đề: |
ACO for Continuous Function Optimization: A Performance Analysis |
|
[24] M. S. R. T. D. Khandelwal, "Data-driven Modelling of Dynamical Systems Using Tree Adjoining Grammar and Genetic Programming," arXiv, p.904.03152v1, 5 Apr 2019 |
Sách, tạp chí |
Tiêu đề: |
Data-driven Modelling of Dynamical Systems Using Tree Adjoining Grammar and Genetic Programming |
|
[25] J. Z. Q. G. P.Tan, "Modeling and reduction of NOX emissions for a 700 MW coal-fired boiler with the advanced machine learning method," Energy, vol.94, pp. 672-679, 2016 |
Sách, tạp chí |
Tiêu đề: |
Modeling and reduction of NOX emissions for a 700 MW coal-fired boiler with the advanced machine learning method |
|