Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 11 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
11
Dung lượng
174 KB
Nội dung
1
Digital Principles and Applications
Digital Principles and Applications
Chương 1: Hệ thống đếm và mã số
Chương 1: Hệ thống đếm và mã số
1.1 Hệ thống đếm
1.2 Chuyển đổi giữa cáchệ đếm
1.3 Cácphép tính số học trong hệnhị phân
1.4 Mã hóa số của hệ thập phân: Mã BCD, mã dư 3, mã Gray…
1.5 Mã ASCII, EBCDIC
1.6 Khái niệm về phần bù
1.7 Biểu diễn số âm trong hệnhị phân
2
•
Mã 8421
Mã 8421
Mã 8-4-2-1 biểu diễn một số thập phân bất kì bởi 4 bit nhịphân tương
đương
VD.
Số thập phân: 429 4 2 9
↓ ↓ ↓
0100 0010 1001
Trọng số của mã là 8, 4, 2, 1.
Ưu điểm chính của mã 8421 là dễ dàng chuyển đổi các số từ hệ thập
phân sang hệnhịphân và ngược lại.
Nhược điểm của mã là việc thực hiện cácphép cộng nhị phân:
VD.
Mã 8421 là một trong rất nhiều mã thuộc nhóm mã hệnhịphân binary-
coded decimals (BCD)
(Mã trọng số 7421, 2421, 5121, mã dư 3, Gray, Johnson, mã 2 trên 5…)
1.4 Mã Nhị phân
1.4 Mã Nhị phân
Digital Principles and Applications
Digital Principles and Applications
12 1100 0001 0010
+ 9 1001 + 1001
= 21 10101
→ 21
0001 1011
→ 11
Đúng Sai
3
•
Mã dư 3
Mã dư 3
Là một mã quan trọngtrong nhóm mã BCD.
Mã hóa: cộng 3 vào mỗi con số thập phân trước khi chuyển đổi sang
hệ nhị phân.
VD.
Số thập phân: 12 1 2
+ 3 + 3
4 5
↓ ↓
0100 0101
1.4 MÃ NHỊ PHÂN
1.4 MÃ NHỊ PHÂN
Digital Principles and Applications
Digital Principles and Applications
4
•
Các loại mã BCD 4 bit khác
Các loại mã BCD 4 bit khác
Có rất nhiều mã nhịphân 4 bit. Tất cả các loại mã dưới đây đều là mã
có trọng số (weighted codes)
VD. (75)
10
decimal 7 5
↓ ↓ ↓
5421 code 1010 1000
1.4 MÃ NHỊ PHÂN
1.4 MÃ NHỊ PHÂN
Digital Principles and Applications
Digital Principles and Applications
Decimal 7421 6311 5421 5311 5211
0 0000 0000 0000 0000 0000
1 0001 0001 0001 0001 0001
2 0010 0011 0010 0011 0011
3 0011 0100 0011 0100 0101
4 0100 0101 0100 0101 0111
5 0101 0111 1000 1000 1000
6 0110 1000 1001 1001 1001
7 1000 1001 1010 1011 1011
8 1001 1011 1011 1100 1101
9 1010 1100 1100 1101 1111
5
•
Các loại mã nhịphân BCD 4 bit khác
Các loại mã nhịphân BCD 4 bit khác
Bảng mã dưới đây sử dụng trọng số dương ngoại trừ hai mã cuối cùng
sử dụng trọng số âm
Ví dụ, trong mã 8421, chữ số cuối cùng có trọng số là -1, và vị trí tiếp
ttheo có trọng số là -2:
(1011)
8421
1 0 1 1
8 + 4 - 2 - 1 = 5
1.4 MÃ NHỊ PHÂN
1.4 MÃ NHỊ PHÂN
Digital Principles and Applications
Digital Principles and Applications
Decimal 4221 3321 2421 8421 7421
0 0000 0000 0000 0000 0000
1 0001 0001 0001 0111 0111
2 0010 0010 0010 0110 0110
3 0011 0011 0011 0101 0101
4 1000 0101 0100 0100 0100
5 0111 1010 1011 1011 1010
6 1100 1100 1100 1010 1001
7 1101 1101 1101 1001 1000
8 1110 1110 1110 1000 1111
9 1111 1111 1111 1111 1110
6
•
Các loại mã 5 bit
Các loại mã 5 bit
Các loại mã 5 bit vẫn tồn tại. Mặc dù chỉ những mã 4 bit là cần thiết
cho việc mã hóa các chữ số thập phân từ 0 đến 9, một bit trong mã 5 bit
sẽ giúp ta giải mã các số dễ dàng hơn và phát hiện ra các lỗi một cách
nhanh chóng hơn nhiều.
Mã 2 trên 5 là mã không có trọng số được sử dụng trong công
nghệ điện thoại và thông tin liên lạc. Nó chứa hai con số 1 và ba con
số 0 trong mỗi nhóm mã. Bởi như thế các lỗi sẽ được phát hiện một
cách nhanh chóng hơn rất nhiều.
Mã shift-counter (Mã Johnson) là mã không có trọng số được sử
dụng trong cách máy đếm điện tử. Nó có một ưu điểm lớn là dễ dàng
giải mã bằng điện tử.
Mã 63210, 86421, 51111 là các mã có trọng số.
-
Mã 1111 tương tự như mã Johnson, do đó nó dễ dàng giải mã
với các thiết bị điện tử.
-
Mã 63210 là mã có trọng số trừ giá trị 0 thập phân. Nó luôn có
hai chữ số 1 trong mỗi nhóm mã, cho phép xác định chính xác
các lỗi. Mã này được đã và đang được sử dụng để lưu trữ dữ liệu
kĩ thuật số trên cáctrống từ.
1.4 MÃ NHỊ PHÂN
1.4 MÃ NHỊ PHÂN
Digital Principles and Applications
Digital Principles and Applications
7
•
Các loại mã 5 bit
Các loại mã 5 bit
1.4 MÃ NHỊ PHÂN
1.4 MÃ NHỊ PHÂN
Digital Principles and Applications
Digital Principles and Applications
Decimal
Decimal
2-out-of-5
2-out-of-5
63210
63210
Shift-counter
Shift-counter
86421
86421
51111
51111
0 00011 00110 00000 00000 00000
1 00101 00011 00001 00001 00001
2 00110 00101 00011 00010 00011
3 01001 01001 00111 00011 00111
4 01010 01010 01111 00100 01111
5 01100 01100 11111 00101 10000
6 10001 10001 11110 01000 11000
7 10010 10010 11100 01001 11100
8 10100 10100 11000 10000 11110
9 11000 11000 10000 10001 11111
8
•
Mã GRAY
Mã GRAY
Mã Gray là mã không có trọng số, không phù hợp với các tính toán số
học, nhưng rất tiện lợi cho các thiết bị đầu cuối (input-output devices),
Chuyển đổi tương tự - Số (analog-to-digital converters – ADC), và các
thiết bị ngoại vi khác.
Mỗi từ mã trong mã Gray khác với các từ mã trước đó một bit.
1.4 MÃ NHỊ PHÂN
1.4 MÃ NHỊ PHÂN
Digital Principles and Applications
Digital Principles and Applications
9
Chuyển đổi từ mã nhịphân sang mã Gray:
Chuyển đổi từ mã nhịphân sang mã Gray:
- Chữ số đầu tiên của mã Gray giống chữ số đầu tiên của mã nhị phân.
- Cộng không nhớ từng cặp bit liền kề ta sẽ thu được chữ số tiếp theo
trong mã Gray.
VD. (1100)
binary
= Mã Gray???????
Bước 1 Chữ số đầu tiên của mã Gray giống chữ số đầu tiên của mã nhị phân.
1 1 0 0 binary
1 Gray
Bước 2 Cộng không nhớ hai bit đầu tiên của số nhị phân. Kết quả thu
được là số Gray tiếp theo.
1 1 0 0 binary
1 0 Gray
Bước 3 Cộng hai bit kế tiếp của số nhịphân ta nhận được chữ số Gray tiếp
theo.
1 1 0 0 binary
1 0 1 Gray
Bước 4 Cộng hai bit cuối cùng của số nhịphân ta nhận được bit cuối cùng
của mã Gray
1 1 0 0 binary
1 0 1 0 Gray
1.4 MÃ NHỊ PHÂN
1.4 MÃ NHỊ PHÂN
Digital Principles and Applications
Digital Principles and Applications
10
Chuyển đổi từ mã Gray sang mã nhị phân:
Chuyển đổi từ mã Gray sang mã nhị phân:
- Sử dụng phương pháp tương tự trên, tuy nhiên có một số khác
biệt.
Ex. (1010)
Gray
= binary ……
Bước 1 Chữ số đầu tiên của mã Gray giống chữ số đầu tiên của mã nhị
phân.
1 0 1 0 Gray
1 binary
Bước 2 Cộng theo đường chéo như ở dưới để nhận được từ mã nhịphân tiếp
theo
1 0 1 0 Gray
1 1 binary
Bước 3 Tiếp tục cộng theo đường chéo để nhận được các từ mã nhịphân
tiếp theo
1 0 1 0 Gray
1 1 0 binary
1 0 1 0 Gray
1 1 0 0 binary
1.4 MÃ NHỊ PHÂN
1.4 MÃ NHỊ PHÂN
Digital Principles and Applications
Digital Principles and Applications
[...]...1.4 MÃ NHỊPHÂN • Mã các chữ cái, chữ số: Các kí hiệu gồm có: - Bằng số - Không bằng số: bảng chữ cái, các kí tự tính toán (+, _, *, /), và các kí tự khác Các mã chữ cái, chữ số thông dụng là: ASCII - American Standard Code for Information Interchange Digital Principles and Applications . Applications
Chương 1: Hệ thống đếm và mã số
Chương 1: Hệ thống đếm và mã số
1.1 Hệ thống đếm
1.2 Chuyển đổi giữa các hệ đếm
1.3 Các phép tính số học trong hệ nhị phân
. chuyển đổi các số từ hệ thập
phân sang hệ nhị phân và ngược lại.
Nhược điểm của mã là việc thực hiện các phép cộng nhị phân:
VD.
Mã 8421 là một trong rất