Tài liệu Physics exercises_solution: Chapter 36 ppt

28 176 0
Tài liệu Physics exercises_solution: Chapter 36 ppt

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

36.1: m.105.06 m2.00 m)10(7.50m)10(1.35 λ λ 7 43 1 1      x ay a x y 36.2: m.103.21 m1010.2 m)10(5.46m)(0.600 λλ 5 3 7 1 1        y x a a x y 36.3: The angle to the first dark fringe is simply:  θ arctan       a λ = arctan .0.15 m100.24 m10633 3 9              36.4: m.105.91 m 10 7.50 m)10(6.33m)2(3.50λ2 2 3 4 7 1        a x yD 36.5: The angle to the first minimum is  = arcsin       a λ = arcsin .48.6 cm12.00 cm9.00          So the distance from the central maximum to the first minimum is just    tan 1 xy cm.45.4)(48.6tancm)(40.0    36.6: a) According to Eq. 36.2 a a m a m θ λλ 1)0.90(sin λ )(sin  Thus, mm.105.80nm580λ . 4 a b) According to Eq. 36.7     .128.0 )(sin )(sinsin )(sin )(sinsin 2 4 4 2 0                      λa λa I I 36.7: The diffraction minima are located by ,2,1,sin     maλm  m1.00m;0.2752Hz)(1250)sm(344λ  afv ;6.55,3;4.33,2;0.16,1                θmθmm  no solution for larger m 36.8: a) )sin( max tωkxEE   Hz105.73 m 10 5.24 sm103.0 λ λ m105.24 m1020.1 22 λ λ 2 14 7 8 7 17           c fcf k k    b) λsin   a m101.09 28.6sin m105.24 sin λ 6 7        a c) ,.3,2,1(λsin   mma  )  74 22sin 2 m101.09 m105.24 λ 2 6 7         D 36.9: aθ λsin  locates the first minimum m920.0)38.42(sinm)10620(sinλ 38.42andcm)(40.0cm)5.36(tan,tan 9 μθa xyθθxy         36.10: a) m.104.17 m103.00 m)10(5.00m)(2.50 λλ 4 3 7 1 1        y x a a x y b) cm.4.2m104.17 m103.00 m)10(5.00m)(2.50 λ 2 3 5 1        y x a c) m.104.17 m103.00 m)10(5.00m)(2.50 λ 7 3 10 1        y x a 36.11: a) m.105.43 m 10 3.50 m)10(6.33m)(3.00λ 3 4 7 1        a x y So the width of the brightest fringe is twice this distance to the first minimum, 0.0109 m. b) The next dark fringe is at m0.0109 m 10 3.50 m)106.33(m)2(3.00λ2 4 7 2       a x y . So the width of the first bright fringe on the side of the central maximum is the distance from ,yto 12 y which is m1043.5 3  . 36.12: .)m1520( m)(3.00m)1020.6( m)1005.4(2 λ 2 sin λ 2 1 7 4 yy π x yaa β            a) .760.0 2 )m1000.1()m1520( 2 :m1000.1 31 3      β y 0 2 0 2 0 822.0 760.0 )760.0(sin 2 )2(sin II β β II                  b) .28.2 2 )m1000.3()m1520( 2 :m1000.3 31 3      β y .111.0 28.2 )28.2(sin 2 )2(sin 0 2 0 2 0 II β β II                  c) .80.3 2 )m1000.5()m1520( 2 :m1000.5 31 3      β y .0259.0 80.3 )80.3(sin 2 )2(sin 0 2 0 2 0 II β β II                  36.13: a) m.10.756 m 10 2.40 m)10(5.40m)(3.00λ 3 4 7 1        a x y b) . 2 λ λ 22 λ 2 sin λ 2 1 π ax xπa x yπaa β    .mW1043.2 2 )2(sin )mW1000.6( 2 )2(sin 2 6 2 26 2 0                     π π β β II 36.14: a) .00sin 2 :0  o λ a   b) At the second minimum from the center .4 λ2 λ 2 sin λ 2 π a πa θ πa β  c) 1910.7sin m 10 00 . 6 m)1050.1(2 sin λ 2 7 4       π θ πa β rad. 36.15: m.1036.524.0sin 2 m)1020.3(2 sin 2 λsin λ 2 6 4              aa 36.16: The total intensity is given by drawing an arc of a circle that has length 0 E and finding the length of the cord which connects the starting and ending points of the curve. So graphically we can find the electric field at a point by examining the geometry as shown below for three cases. a) . 2 λ λ 2 sin λ 2       a aa From the diagram, . 2 2 00 EEE E p p    So the intensity is just: . 42 2 0 0 2  I II         This agrees with Eq. (36.5). b) .2 λ λ 2 sin λ 2       a aa From the diagram, it is clear that the total amplitude is zero, as is the intensity. This also agrees with Eq. (36.5). c) .3 2 λ3 λ 2 sin λ 2       a aa From the diagram, . 3 2 2 3 00 EEE E p p    So the intensity is just: . 9 4 3 2 0 2 0 2 III          This agrees with Eq. (36.5). 36.17: a)     25.3sin rad0.56 m)1005.1(2 sin 2 λsin λ 2 4        aa .m1068.6 7  b) .)1036.9( 20.56 )20.56(sin 2 )2sin( 0 5 2 0 2 0 IIII                       36.18: a) Ignoring diffraction, the first five maxima will occur as given by: .5,4,3,2,1for, 4 λ arcsin λ arcsinλsin                m a m d m md  b) .2 λ λ 2 sin λ 2 and, 2 λ λ 2 sin λ 2 m d mddm d maa            So including diffraction, the intensity: . 4/ )4/(sin 4/ )4/(sin 2 2 cos 2 )2sin( 2 cos 2 0 2 2 0 2 2 0                              m m I m mm III So for ;405.0 2 )2(sin :2;811.0 4 )4(sin :1 00 2 200 2 1 IIImIIIm                        0 )(sin :4;0901.0 43 )43(sin :3 0 2 400 2 3                  IImIIIm     .0324.0 45 )45(sin :5 00 2 5 IIIm             36.19: a) ,3If  a d then there are five fringes: .2,1,0    m b) The 6  m interference fringe coincides with the second diffraction minimum, so there are two fringes )5,4(     mm within the first diffraction maximum on one side of the central maximum. 36.20: By examining the diagram, we see that every fourth slit cancels each other. 36.21: a) If the slits are very narrow, then the first maximum is at .1sin λ 1   d .0627.0 m1030.5 m1080.5 arcsin λ arcsin 4 7 1                      d  Also, the second maximum is at 2sin λ 2   d .125.0 m105.30 m)102(5.80 arcsin λ2 arcsin 4 7 2                      d  b) ,1 2 cosbut 2 2)sin( 2 cos 2 2 0              II since we are at the 2 slit maximum. So 2 0 2 1 1 01 )sin( λsin ) λsinsin(                   da da I θa θa II     .249.0 m)10(5.30m)1020.3( m))10(5.30m)1020.3(sin( 0 2 44 44 01 III                 And .0256.0 m)1030.5(m)1020.3(2 ))m10(5.30m)10(3.20(2sin 2 )sin(2 λsin ) λsinsin( 0 2 44 44 02 2 0 2 2 2 02 III da da I a a II                                       36.22: We will use 2 2 0 2 2)sin( 2 cos            II , and must calculate the phases  and  . Using ,sin λ 2 and,sin λ 2      da  we have: a) .757.0)1.01(57.9and),0.177(10.12:rad1025.1 0 4 II    b) .268.0)2.03(116.3and),0.355(20.32:rad1050.2 0 4 II    c) .)114.0()2.43(139.2and),0.426(24.12:rad1000.3 0 4 II    36.23: With four slits there must be four vectors in each phasor diagram, with the orientation of each successive one determined by the relative phase shifts. So: We see that destructive interference occurs from adjacent slits in case (ii) and from alternate slits in cases (i) and (iii). 36.24: Diffraction dark fringes occur for , λ sin a m d   and interference maxima occur for d m i λ sin   . Setting them equal to each other yields a missing bright spot whenever the destructive interference matches the bright spots. That is: .3 λλ ddi di mm a d m a m d m  That is, the missing parts of the pattern occur for integers.for,3 9,6,3  mmm i 36.25: a) Interference maxima: Diffraction minima: mλθd i sin and .λsin nθa d  If the thm interference maximum corresponds to the thn diffraction minimum then . di θθ  or n m a d  so mm.0.280mm)840.0( 3 1  d m n a b) The diffraction minima will squelch the interference maxima for all 3 n m up to the highest seen order. For nm,630λ  the largest value of m will be when .90   θ .1333 m1030.6 m1040.8 λ 7 4 max       d m .444 m)1030.6(3 m1040.8 λ 7 4 max       a n So after 444.,.,.3,2,1for1332.,.,.9,6,3    nmm will also be missing. c) By changing λ we only change the highest order seen. .666 3 2000 λ .2000 m1020.4 m1040.8 λ max 7 4 max        a n d m So .666.,.,.3,2,1for1999.,.,.9,6,3   nm 36.26: The third bright band is missing because the first order single slit minimum occurs at the same angle as the third order double slit maximum.   91 . 1 tan cm90 cm3 θ θ Single-slit dark spot: λsin  θa nm(width)1050.1 91.1sin nm500 sin λ 4    θ a Double-slit bright fringe: λ3sin   d ion)nm(separat1050.4 91.1sin nm)500(3 sin λ3 4    θ d 36.27: a) Find λsin: mθdd  cm10086.2sinλso,nm681λand3for4.78 4   mdm The number of slits per cm is cmslits47901 d b) 1st order:   1.19and)m10086.2()m10681(λsinso,1 69  dm 2nd order:     40.8and/2λsinso,2 θdm  c) For dm /4sin,4    is greater than 1.00, so there is no 4th-order bright band. 36.28: First-order: λsin 1  θd Fourth-order: λ4sin 1 θd    4.38 94.8sin4sin4sin λ λ 4 sin sin 4 14 1 4 θ θθ θ d θd 36.29: a)   m10111.1cm 5 900 1  d For .106.3λnm,700λ 4  d The first-order lines are located at θd sin;λsin   is small enough for θθ  sin to be an excellent approximation. b) m.2.50where,λ  xdxy The distance on the screen between 1st order bright bands for two different wavelengths is xyddyxy )(λso,)(       nm13.3m)(2.50m)103.00()m10111.1( 35   36.30: a) slits.1820 m)106.5627m102(6.5645 m105645.6 λ λ λ λ 77 7           m NNmR b)          d m d λ sin)mslits000,500()mmslits500( 111  . 0137 . 0 41.0160500,000)m)105627.6()2((sin 41.0297500,000)m)105645.6()2((sin 71 2 71 1      θ   36.31: ))396.0((arcsin m101.60 m)10m(6.328 arcsin λ arcsin 6 7 m d m                       .3.52:2;3.23:1 1          mm All other m-values lead to angles greater than .90 o 36.32: m.1000.2 m1000.5 1 cmslits5000 6 15      d a) m.1067.4 1 13.5sin m)1000.2(sin λλsin 7 6       m d md   b) .8.27 m102.00 m)1067.4(2 arcsinarcsin:2 6 7 o                      d m λ m  36.33: :Thenm.1086.2 m1050.3 1 mmslits350 6 15      d .1.33:3;3.21:2;5.10:1 ))182.0((arcsin m102.86 m)1020.5( arcsin λ arcsinλsin 6 7                         mmm m m d m md [...]... 1.22(0. 036 m) sin 1 D W 2.8  10 4 m  D  1.88 m 36. 41: sin 1  1.22 36. 42: sin 1  1.22 D sin 1 D1 (8.00  10 6 m)(1.00  10 8 ) λ λ   D 1.22 1.22 1.22  λ  0.0656 m  6.56 cm 6.20  10 7 m λ  1.22  0.102 The screen is 4.5 m away, so the 7.4  10 6 m D diameter of the Airy ring is given by trigonometry: D  2 y  2 x tan θ  2 x sin θ  2(4.5 m)(0.102)  91.8 cm 36. 43: sin 1  1.22 36. 44:... : 1  11.2; m  2 :   22.9; so, a) 1  4.00, b)  2  8.77  36. 36: 587.8002 nm  λ 587.8002  Nm  N    λ mλ (587.9782 nm  587.8002 nm) 0.178  N  3302 slits 3302 slits N   2752 1.20 cm 1.20 cm cm 36. 37: For x-ray diffraction, 2d sin   mλ  d  2(8.50  10 11 m) mλ d   2.32  10 10 m 2 sin  2 sin 21.5 36. 38: For the first order maximum in Bragg reflection: 2d sin  2(4.40... width a is increased ii) 36. 52: If the apparatus of Exercise 36. 4 is placed in water, then all that changes is the λ 2 xλ 2 xλ D 5.91  10 3 m      wavelength λ  λ  So : D  2 y1  n a an n 1.33 4.44  10 3 m  4.44 mm 36. 53: sin θ  λ a locates the first dark band λ liquid λ sin  air  air ; sin  liquid  a a  sin  liquid  λ liquid  λ air   sin    0.4 836  air   λ  λ air n... s 2 fy 2(0.180 m)(8.00  10 3 m) D  2 | y  | y   1.15  10 4 m  0.115 mm s 25.0 m s 36. 45: sin 1  1.22 1.22 λ λ R D  1.22λ D sin 1 W 5.93  1011 m  1.22(5.0  10 m)  1.45 m 2.50  10 5 m 7 36. 46: sin 1  1.22 (4.00  10 3 m)(0.0720 m) λ y yD  s   429 m D s 1.22(5.50  10 7 m) 1.22λ 36. 47: Let y be the separation between the two points being resolved and let s be their λ y distance... adjacent slits means that the total amplitude is 6E , and the intensity is 36I b) If the phase difference is 2 , then we have the same phasor diagram as above, and equal amplitude, 6E , and intensity, 36I c) There is an interference minimum whenever the phasor diagrams close on themselves, such as in the five cases below 36. 61: a) For the maxima to occur for N slits, the sum of all the phase differences... m 1 36. 39: The best resolution is 0.3 arcseconds, which is about 8.33  10 5  1.22λ 1.22(5.5  10 7 m)  a) D   0.46 m  0.5 m sin 1 sin(8.33  10 5) b) The Keck telescopes are able to gather more light than the Hale telescope, and hence they can detect fainter objects However, their larger size does not allow them to have greater resolutionatmospheric conditions limit the resolution 36. 40:... locates the first dark band λ liquid λ sin  air  air ; sin  liquid  a a  sin  liquid  λ liquid  λ air   sin    0.4 836  air   λ  λ air n (Eq.33.5), so n  λ air λ liquid  1 0.4 836  2.07 1 36. 54: For bright spots, N sin   λ 1 Red: N sin θR  700 nm 1 Violet: N sin θV  400 nm sin  R 7  sin  V 4  R   V  15   R  V  15 sin(V  15) 7  sin  V 4 sin θV cos 15  cos θ... (1.20 m)(5.40  10 7 m)   1.80  10 3 m 4 3.60  10 m a 1 sin(a sin  λ ) a sin θ b)    1.39 a sin  λ λ 2 36. 55: a) y1  (1.39)(5.40  10 7 m)  sin    6.64  10 4 4  (3.60  10 m)  y  x tan   x sin   (1.20 m)(6.64  10 4 )  7.97  10 4 m  0.797 mm 2  sin γ  36. 56: a) I  I 0   γ  The maximum intensity occurs when the derivative of the    intensity function with respect... be  N 2 Therefore total phase shifts of these minima are 2m  N Hence the angle at which they are found, and the angular width, will be: 36. 57: The phase shift for adjacent slits is     λ  2  mλ λ 2λ   θ   2m   2d  N  d dN dN 2 2 2 36. 58: a) E p  E p x  E p y So, from the diagram at right, we have: 2 Ep E 2 0  (1  cos   cos 2 ) 2  (sin   sin 2 ) 2  (2 cos 2 ... in Section 35.5 d) Below are phasor diagrams for specific phase shifts 36. 59: a) For eight slits, the phasor diagrams must have eight vectors: 3 5 7 ,  , and   , totally destructive interference occurs between 4 4 4 3 , totally destructive interference occurs with every second slit slits four apart For   2 b) For   36. 60: For six slits, the phasor diagrams must have six vectors a) Zero .    tan 1 xy cm.45.4)(48.6tancm)(40.0    36. 6: a) According to Eq. 36. 2 a a m a m θ λλ 1)0.90(sin λ )(sin  Thus, mm.105.80nm580λ . 4 a b) According to Eq. 36. 7     .128.0 )(sin )(sinsin )(sin )(sinsin 2 4 4 2 0                      λa λa I I 36. 7:.  74 22sin 2 m101.09 m105.24 λ 2 6 7         D 36. 9: aθ λsin  locates the first minimum m920.0)38.42(sinm)10620(sinλ 38.42andcm)(40.0cm)5 .36( tan,tan 9 μθa xyθθxy         36. 10:

Ngày đăng: 17/01/2014, 04:20

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan