Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 49 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
49
Dung lượng
5,82 MB
Nội dung
272 Bài Nguyên Hàm - Tích Phân - Ứng Dụng – Trong Các Đề Thi Thử Và Chính Thức Năm 2018 Can Lộc Hà Tĩnh Câu 1: [2D3-2] Cho biết xe � 2x đề A a 2b dx 2x e ax b C , a, b �� C số Mệnh B b a D 2a b C ab Câu 2: [2D3-2] Cho hàm số y f x có đạo hàm, liên tục � f ( x ) > x �[ 0;5] Biết dx f ( x ) f ( - x) =1 , tính tích phân I � 1 f x A I = B I = C I = D I = 10 Câu 3: [2D3-1] Diện tích hình phẳng giới hạn đường y x , x , x , y A S 10 B S C S 13 D S Câu 4: [2D3-1] Cho hai hàm số f x , g x hàm số liên tục, có F x , G x nguyên hàm f x , g x Xét mệnh đề sau: I F x G x nguyên hàm f x g x II k F x nguyên hàm k f x với k �� III F x G x nguyên hàm f x g x Các mệnh đề A II III B Cả mệnh đề C I III D I II Câu 5: [2D3-1] Cho hàm số y f x liên tục a; b Viết cơng thức tính diện tích S hình cong giới hạn đồ thị hàm số y f x , trục Ox hai đường thẳng x a ; x b b A S �f x dx a b B S �f x dx a b C S �f x dx a f x dx � a f x dx , � 2 Câu 6: [2D3-2] Biết hàm số f x ax bx c thỏa mãn b D S �f x dx f x dx 2 � 13 (với a , b , c ��) Tính giá trị biểu thức P a b c A P Chuyên Đại Học Vinh Lần B P C P D P Câu 7: [2D3-1] Thể tích khối trịn xoay tạo thành quay hình phẳng giới hạn đường y xe x , y , x , x xung quanh trục Ox là: x e x dx A V � xe x dx B V � x e2 x dx C V � Trang / 49 x e x dx D V � 272 Bài Nguyên Hàm - Tích Phân - Ứng Dụng – Trong Các Đề Thi Thử Và Chính Thức Năm 2018 Câu 8: [2D3-1] Tất nguyên hàm hàm số f x 2x 1 ln x C A ln x 3 C B ln x C C ln x C D 2 ln x x � Câu 9: [2D3-2] Tích phân A 3 dx B Câu 10: [2D3-2] Cho biết F x C D x2 a x x nguyên hàm f x x x Tìm nguyên hàm g x x cos ax 1 x sin x cos x C 1 D x sin x cos x C A x sin x cos x C B C x sin x cos x C Câu 11: [2D3-4] Cho hàm số y f x liên tục 0; 1 thỏa mãn xf x dx � max f x Tích phân I � e x f x dx thuộc khoảng khoảng sau đây? [0; 1] 5� � �; � A � 4� � Chuyên Hạ Long Lần �3 � B � ; e 1� �2 � � 3� ; � C � � 2� D e 1; � Câu 12: [2D3-1] Cho hình phẳng H giới hạn đồ thị hai hàm số f1 x f x liên tục đoạn a; b hai đường thẳng x a , x b (tham khảo hình vẽ dưới) Cơng thức tính diện tích hình H b f1 x f x dx A S � a b f1 x f x dx C S � a b f1 x f x dx B S � a b b a a f x dx � f1 x dx D S � Trang / 49 272 Bài Nguyên Hàm - Tích Phân - Ứng Dụng – Trong Các Đề Thi Thử Và Chính Thức Năm 2018 Câu 13: [2D3-2] Cho hình phẳng H giới hạn đường y x x , y x (phần tô đậm y hình vẽ) Diện tích H 37 454 C 25 109 91 D A B 3 Câu 14: [2D3-3] Biết x 1 dx ln ln a b � x x ln x O x với a , b số nguyên dương Tính P a b ab A 10 B C 12 D 20 x 30 x �3 � Câu 15: [2D3-2] Biết khoảng � ; �� , hàm số f x có nguyên hàm �2 � 2x F x ax bx c x ( a, b, c số nguyên) Tổng S a b c A B C D Câu 16: [2D4 -3]Cho số p, q thỏa mãn điều kiện: p , q , 1 số dương a, b p q Xét hàm số: y x p 1 x có đồ thị C Gọi S1 diện tích hình phẳng giới hạn C , trục hoành, đường thẳng x a , Gọi S diện tích hình phẳng giới hạn C , trục tung, đường thẳng y b , Gọi S diện tích hình phẳng giới hạn trục hoành, trục tung hai đường thẳng x a , y b Khi so sánh S1 S S ta nhận bất đẳng thức bất đẳng thức đây? A a p bq �ab p q B a p 1 b q 1 a p 1 b q 1 a p bq �ab C �ab D �ab p 1 q 1 p 1 q 1 p q Chuyên Hà Tĩnh Lần 1 e x dx Câu 17: [2D3-1] Tích phân � A e B e C e 1 e D e Câu 18: [2D3-1] Diện tích hình phẳng giới hạn bới hai đường thẳng x , x π , đồ thị hàm số y cos x trục Ox π cos x dx A S � π cos x dx B S � π C S �cos x dx π D S �cos x dx Câu 19: [2D3-1] Họ nguyên hàm hàm số y cos 3x sin x sin x C ( C số) C ( C số) A B 3 Trang / 49 272 Bài Nguyên Hàm - Tích Phân - Ứng Dụng – Trong Các Đề Thi Thử Và Chính Thức Năm 2018 C sin 3x C ( C số) D sin 3x C ( C số) x 3x dx a ln b với a, b số nguyên dương Tính P a b Câu 20: [2D3-3] Biết �2 x x A 13 B D 10 C m x 1 e2 x dx Tập hợp tất giá trị tham số m để I m khoảng Câu 21: [2D3-3] Cho I � a; b Tính P a 3b A P 3 B P 2 C P 4 D P 1 x sin 2018 x a dx Câu 22: [2D3-4] Biết � 2018 a , b số nguyên dương Tính sin x cos 2018 x b P 2a b A P B P 10 C P D P 12 Đại Học Sư Phạm Hà Nội Lần Câu 23 [2D3-2] Cho số dương a thỏa mãn hình phẳng giới hạn đường parabol y ax y 2ax có diện tích 16 Giá trị a A B C D Câu 24: [2D3-1] Cho hàm số y f x liên tục có đồ thị hình bên Gọi D hình phẳng giới hạn đồ thị hàm số cho trục Ox Quay hình phẳng D quanh trục Ox ta khối trịn xoay tích V xác định theo công thức A V � f x dx B V C V � f x dx 2 f x dx � 31 D V � f x dx Trang / 49 272 Bài Nguyên Hàm - Tích Phân - Ứng Dụng – Trong Các Đề Thi Thử Và Chính Thức Năm 2018 Câu 25: [2D3-1] Cho hàm số y f x liên tục � có đồ thị hình vẽ bên Hình phẳng đánh dấu hình vẽ bên có diện tích A b c a b f x dx � f x dx � b c a b B f x dx � f x dx C � b c a b b b a c f x dx � f x dx � f x dx � f x dx D � Câu 26: [2D3-2] Cho số dương a hàm số f x liên tục � thỏa mãn f x f x a , x �� Giá trị biểu thức A 2a B a a �f x dx a C a D 2a Chuyên Hùng Vương GiaLai Câu 27: [2D3-1] Tìm nguyên hàm hàm số f x cos x A cos xdx sin x C � cos xdx sin x C B � cos xdx sin x C C � D cos xdx sin x C � x Câu 28: [2D3-1] Tìm họ nguyên hàm hàm số f x A 5x xC ln B x x C C x ln x x C D x x C Câu 29: [2D3-1] Thể tích khối trịn xoay hình phẳng giới hạn đường y x , trục Ox hai đường thẳng x ; x quay quanh trục hồnh tính cơng thức nào? xdx A V � B V �x dx C V xdx � D V �xdx Câu 30: [2D3-2] Cho F x nguyên hàm hàm số f x F 1 Tính F 1 A F ln B F ln C F ln 2 Trang / 49 ; biết 2x 1 D F ln 272 Bài Nguyên Hàm - Tích Phân - Ứng Dụng – Trong Các Đề Thi Thử Và Chính Thức Năm 2018 Câu 31: [2D3-2] Tính thể tích khối trịn xoay sinh quay quanh trục Ox hình phẳng giới hạn hai đồ thị y x x y x x A 3 B C D 2 x 3 dx C � x x 1 x x 3 g x Tính tổng nghiệm phương trình g x Câu 32: [2D3-3] Giả sử A 1 e B ln x ( C số) D 3 C dx có kết dạng I ln a b với a , b �� Câu 33: [2D3-2] Cho I � x ln x Khẳng định sau đúng? A 2ab 1 C b ln B 2ab Câu 34: [2D3-3] Giá trị I �x sin x e cos x3 2a D b ln 2a dx gần số số sau đây: A 0, 046 B 0, 036 C 0, 037 D 0, 038 Chuyên Hùng Vương Phú Thọ Câu 35: [2D3-1] Nguyên hàm hàm số f x cos x A sin x C B sin x C C cos x C Câu 36: [2D3-2] Cho 0 D cos x C f x dx 16 Tính � f x dx � A 16 B C 32 D Câu 37: [2D3-2] Cho hàm số f x liên tục khoảng 2; 3 Gọi F x nguyên hàm f x khoảng 2; 3 Tính I � � �f x x � �dx , biết F 1 F 1 A I B I 10 C I D I Câu 38: [2D3-2] Biết dx a ln b ln c ln , a, b, c �� � x 2 x 4 Giá trị biểu thức 2a 3b c A Câu 39: � �f x � � A [2D3-4] B Cho hàm C số f x � Tích phân � � f x sin �x � dx � � 4� � B xá định f x d x � D �� 0; � � 2� � C Chuyên Lam Sơn Thanh Hóa Trang / 49 D thỏa mãn 272 Bài Nguyên Hàm - Tích Phân - Ứng Dụng – Trong Các Đề Thi Thử Và Chính Thức Năm 2018 Câu 40: [2D3-1] Hình phẳng giới hạn đồ thị hàm số y f x liên tục đoạn a; b , trục hoành hai đường thẳng x a , x b , a �b có diện tích S là: b b f x dx A S � f x dx B S � a b b C S a f x dx D S � f x dx � a a Câu 41: [2D3-2] Họ nguyên hàm hàm số f x sin x là: A cos3 x C B H Câu 42: [2D3-3] Hình phẳng y 4 cos3 x C C 3cos3x C giới hạn parabol y D 3cos3x C x2 đường cong có phương trình 12 x2 Diện tích hình phẳng H bằng: A 4 3 B 4 C D 4 2 x ln x 1 dx a.ln b , với a, b �N * , b số nguyên tố Tính 6a 7b Câu 43: [2D3-3] Biết � A 33 B 25 Câu 44: [2D3-2] Tích phân dx � 2x D 39 C 42 bằng: log Chuyên Lê Quý Đôn Đà Nẵng A B ln C ln D 35 Câu 45: [2D3-3] Cho hàm số f x liên tục nhận giá trị dương 0;1 Biết dx f x f x với x � 0;1 Tính giá trí I � 1 f x A B C D Câu 46: [2D3-2] Tìm khẳng định khẳng định sau A C 1 0 sin x dx � sin xdx � x cos dx � cos xdx � 0 B cos x dx � cos xdx � D x sin dx � sin xdx � Câu 47: [2D3-3] Cho hàm số f x liên tục � thỏa 2018 �f x dx Khi tích e 2018 1 phân �x x f ln x 1 dx 1 Trang / 49 272 Bài Nguyên Hàm - Tích Phân - Ứng Dụng – Trong Các Đề Thi Thử Và Chính Thức Năm 2018 A B C D Câu 48: [2D3-2] Nguyên hàm hàm số y e 3 x 1 3 x 1 3 x 1 C C A e B 3e 3 x 1 C C e 3 D 3e 3 x 1 C Câu 49: [2D3-3] Cho số thực a , b khác không Xét hàm số f x 22 với x khác 1 Biết f � a x 1 bxe x f x dx Tính � ab ? A 19 B Chuyên Lương Thế Ving Đồng Nai C D 10 Câu 50: [2D3-1] Cho hàm số y f x liên tục đoạn a; b Gọi D diện tích hình phẳng giới hạn hàm số y f x , trục hoành, đường thẳng x a đường thẳng x b Khi diện tích S hình phẳng D tính theo cơng thức b b f x dx A S � f x dx B S � a b C S a a Câu 51: [2D3-1] Nguyên hàm hàm số f x A f x dx 2 ln x C � C f x dx ln x C � f x dx � b f x dx D S � a 1 2x B f x dx ln x C � D f x dx ln x C � Câu 52 : [2D3-2] Cho hàm số y f x liên tục � f x dx � Tính I xf x dx � A B 16 C D 32 Câu 53: [2D3-2] Biết x ex dx a eb ec với a , b , c số nguyên Tính � 2x 4x xe T a bc A T 3 B T C T 4 D T 5 Câu 54: [2D3-3] Gọi D hình phẳng giới hạn đồ thị hàm số y x , cung trịn có phương trình y x �x � trục hoành (phần tơ đậm hình vẽ bên) Tính thể tích V vật thể trịn xoay sinh quay hình phẳng D quanh trục Ox Trang / 49 272 Bài Nguyên Hàm - Tích Phân - Ứng Dụng – Trong Các Đề Thi Thử Và Chính Thức Năm 2018 B V 8 A V 8 2 Câu 55: [2D3-2] Cho hàm số f x 22 22 22 C V 8 D V 4 3 a b , với a, b số hữu tỉ thỏa điều x2 x kiện f x dx 3ln Tính T a b � A T 1 Chuyên Ngữ Hà Nội B T C T 2 D T Câu 56: [2D3-2] Tính diện tích hình phẳng giới hạn parabol y x x đường thẳng y x 11 27 17 A B C D 6 e x 1dx Câu 57: [2D3-1] Tích phân I � A e B e e C e e D e e Câu 58: [2D3-1] Họ nguyên hàm hàm số f x sin x 1 cos x x C B cos x x C C 5 D cos x x C Câu 59 :[2D3-1] Cho hàm số y f x , y g x liên tục a; b Gọi H hình A cos 5x C giới hạn hai đồ thị y f x , y g x đường thẳng x a , x b Diện tích hình H tính theo cơng thức: b b a a b f x dx � g x dx A S H � f x g x dx B S H � a b b � D S H � �f x g x � �dx � C S H � �f x g x � �dx a a Câu 60: [2D3-2] Biết tích phân x �3x Tính tổng T a b A T 10 B T 4 2x 1 dx ab với a , b số thực C T 15 Trang / 49 D T 272 Bài Nguyên Hàm - Tích Phân - Ứng Dụng – Trong Các Đề Thi Thử Và Chính Thức Năm 2018 x liên tục � thỏa mãn Câu 61: [2D3-4] Cho hàm số f x có đạo hàm f � f x dx , phát biểu f� x � 1;1 với x � 0; Biết f f Đặt I � đúng? A I � �;0 B I � 0;1 C I � 1; � D I � 0;1 Chuyên Phan Bội Châu Nghệ An Câu 62: [2D3-1] Mệnh đề sai? � f x dx � g x dx với hàm f x , g x liên tục � A � �f x g x � �dx � � f x dx � g x dx với hàm f x , g x liên tục � B � �f x g x � �dx � � f x dx.� g x dx với hàm f x , g x liên tục � C � �f x g x � �dx � D f� x dx f x C � với hàm f x có đạo hàm � Câu 63: [2D3-1] Diện tích S hình phẳng giới hạn đồ thị hàm số y x y ex , trục tung đường thẳng x tính theo cơng thức: 1 e dx A S � e x dx B S � x 0 x x e dx C S � D S e2 C D e x �e x dx x 1 e x dx bằng: Câu 64: [2D3-1] Tích phân I � B e A e Câu 65: [2D3-2] Cho f x 1 xdx Khi I � f x dx � A Câu 66: [2D3-3] Hàm số f x � � trị F � �bằng? �2 � 3 11ln A B C 1 D cos x 4sin x � � 3 có nguyên hàm F x thỏa mãn F � � Giá cos x sin x �4 � B 3 C 3 D 3 ln Câu 67: [2D3-2] Xét hàm số f x liên tục đoạn 0;1 thỏa mãn f x f x x Tích phân f x dx � Chuyên Thái Bình Lần A B C Trang 10 / 49 15 D 272 Bài Nguyên Hàm - Tích Phân - Ứng Dụng – Trong Các Đề Thi Thử Và Chính Thức Năm 2018 Câu 241: [2D3-2] Cho hàm số f x liên tục � thỏa điều kiện f x f x 2sin x Tính �f x dx A 1 B C D Sở GD&ĐT- Bà Rịa – Vũng Tàu Câu 242 [2D3-2] Hàm số sau nguyên hàm hàm số f ( x) x 3 ? A F ( x) C F ( x) x 3 8 x 3 B F ( x) D F ( x) x 3 x 3 4 Sở GD&DDT Nam Định Câu 243 [2D3-2] F x nguyên hàm hàm số f x 3x Biết 2x 1 b b F , F 1 a ln a , b , c số nguyên dương phân số tối c c giản Khi giá trị biểu thức a b c A B C D 12 Câu 244 [2H2-3] Thể tích khối trịn xoay sinh phép quay trục hồnh hình x phẳng giới hạn đồ thị hàm số y e , trục hoành, trục tung đường thẳng x bằng: A e 1 B e C e Câu 245 [2D3-1] Diện tích hình phẳng H giới hạn đồ thị hàm số y f x , trục hoành hai đường thẳng x a , x b vẽ) tính theo cơng thức: Trang 35 / 49 D e 1 a b (phần tô đậm hình 272 Bài Ngun Hàm - Tích Phân - Ứng Dụng – Trong Các Đề Thi Thử Và Chính Thức Năm 2018 b f x dx A S � a b C S c b a c f x dx � f x dx B S � c b a c f x dx � f x dx D S � f x dx � a e4 f x dx f ln x dx Tính tích phân I � Câu 246 [2D3-2] Biết � x e A I B I 16 ln � 1 Câu 247 [2D3-3] Biết tích phân nguyên Tính T a b c A T 1 f x ex ex D I dx a b ln c ln , với a , b , c số B T C T f x Câu 248 [2D3-3] Cho hàm số C I D T 1; 4 liên tục đoạn thỏa mãn ln x Tính tích phân I �f x dx f x 1 x x A I ln 2 B I ln 2 D I ln C I ln 2 �� 0; Cau 249 [2D3-4] Cho hàm số y f x có đạo hàm liên tục đoạn � � 4� � � � f � � Biết �4 � f x dx , � f� x sin 2xdx Tính tích phân � 0 B I A I I� f x dx D I C I Sở GD&ĐT Nam Định Câu 250 [2D3-1] Tìm A 1 dx C � x x dx � x B 1 dx C � x x C 1 dx C � x 2x D dx ln x � x 2 C Câu 251 [2D3-1] Cho hai hàm số y f x , y g x liên tục đoạn a; b nhận giá trị Diện tích hình phẳng giới hạn đồ thị hai hàm số đường thẳng x a; x b tính theo công thức b � A S � �f x g x � �dx a b � g x f x � B S � � �dx a b f x g x dx C S � b D S a � �f x g x � �dx � a Trang 36 / 49 272 Bài Nguyên Hàm - Tích Phân - Ứng Dụng – Trong Các Đề Thi Thử Và Chính Thức Năm 2018 Câu 252 [2D3-2] Tích phân cos xdx � A B C x cos xdx ax sin x b cos x C � Câu 253 [2D3-2] Biết D với a , b số hữu tỉ Tính tích ab ? A ab B ab C ab D ab Câu 254 [2D3-4] Cho hàm số chẵn y f x liên tục � f 2x �1 x dx Tính 1 f x dx � A B C D 16 Câu 255 [2D3-3] Cho hàm số f x có đạo hàm liên tục đoạn 0;1 , f x f� x nhận giá trị dương �f � x � f x � 1�dx 2�f � x f x dx Tính � � � � � 0 15 Sở GD&ĐT Hà Nội A B 15 0;1 đoạn thỏa mãn f 0 , � �f x � �dx � C 17 D 19 Câu 256 [2D3-2] Họ nguyên hàm hàm số f x x x3 A 4 x 3 C B x C C C 199e 200 1 4 x 3 C D 4 x 3 C 100 Câu 257 [2D3-2] Tích phân �x.e 2x dx A 199e 200 1 B 199e 200 1 D Câu 258 [2D3-3] Cho hàm số y f x hàm lẻ liên tục 4; 4 biết 199e 200 1 �f x dx 2 f x dx f 2 x dx Tính I � � A I 10 Chuyên Biên Hòa – Hà Nam Câu 259 [2D3-2] Tìm A B I 6 C I D I 10 x cos xdx � 1 x sin x cos x C B x sin x cos x C Trang 37 / 49 272 Bài Nguyên Hàm - Tích Phân - Ứng Dụng – Trong Các Đề Thi Thử Và Chính Thức Năm 2018 1 1 C x sin x cos2 x C D x sin x cos x C 2 Câu 260 [2D3-1] Cho hàm số y f x liên tục a, b Diện tích hình phẳng H giới hạn đồ thị hàm số y f x , trục hoành hai đường thẳng x a; x b tính theo cơng thức b b � A S � �f x � �dx f x dx B S � a a b f x dx C S � a b f x dx D S � a cos xdx a b , với a , b số hữu tỉ Tính T 2a 6b Câu 261 [2D3-2] Biết � A T B T 1 C T 4 D T e3 x dx Câu 262 [2D3-1] Tính I � B I e A I e3 C e3 3 D I e Câu 263 [2D3-2] Cho hàm số y f x liên tục có đạo hàm � thỏa mãn f 2 ; 0 f x dx Tính tích phân I � f� x dx � A I 10 B I 5 C I D I 18 Câu 264 [2D3-2] Tính thể tích V vật trịn xoay tạo thành quay hình phẳng H giới hạn đường y x ; y x quanh trục Ox A V 9 10 B V 3 10 C V 10 D V 7 10 Lương Thế Vinh – Hà Nội Câu 265 [2D3-1] Khẳng định sau khẳng định sai? kf x dx � f x dx với k �� A � dx � f x dx � g x dx với f x ; g x liên tục � � B � �f x g x � � 1 x dx x C � với �1 1 D �f x dx � f x Câu 266 [2D3-2] Biết x ln x � biểu thức T a b c A T 10 dx a ln b ln c , a , b , c số nguyên Giá trị B T C T Trang 38 / 49 D T 11 272 Bài Nguyên Hàm - Tích Phân - Ứng Dụng – Trong Các Đề Thi Thử Và Chính Thức Năm 2018 Câu 267 [2D3-3] Biết f x hàm liên tục � f x dx Khi giá trị � A 27 B f x 3 dx � D C 24 b cos xdx ? Câu 268 [2D3-3].Có số thực b thuộc khoảng ;3 cho � A.8 B e Câu 269 [2D3-3] Biết C x 1 ln x dx a.e b ln �e � � x ln x � �trong a , b số nguyên Khi tỷ �e � số D a là: b A C B D Đô Lương – Nghệ An Câu 270 Phát biểu sau đúng? cos xdx 2sin x C A � cos xdx 2sin x C B � cos xdx sin x C C � cos xdx sin x C D � Câu 271 Phát biểu sau A � e x sin xdx e x cos x � e x cos xdx B � e x sin xdx e x cos x � e x cos xdx C � e x sin xdx e x cos x � e x cos xdx D � e x sin xdx e x cos x � e x cos xdx x Câu 272 Cho hàm số f x thỏa mãn f ' x 2018 ln 2018 cos x f Phát biểu sau đúng? x A f x 2018 sin x C f x B f x 2018x sin x ln 2018 2018x sin x ln 2018 x D f x 2018 sin x Ninh Giang – Hải Dương Câu 273 nguyên hàm hàm số f x x ln x x2 x2 4x ln x C x2 x2 4x C � f x dx ln x C 2 A f x dx � x2 x2 x ln x C x2 x2 x D � f x dx ln x C 2 B f x dx � Trang 39 / 49 272 Bài Nguyên Hàm - Tích Phân - Ứng Dụng – Trong Các Đề Thi Thử Và Chính Thức Năm 2018 e I dx bằng: Câu 274 Tích phân � x3 �3 e � e 3 � A ln � B ln e C ln e D ln � � � � �4 � x x 3 dx Bằng cách đặt: u x , khẳng định sau ? Câu 276 Xét I � A I u du 16 � B I u du 12 � u du C I � D 3x Cho F x nguyên hàm f x e thỏa mãn F Mệnh đề sau đúng? 3x 3x 3x 3x A F x e B F x e C F x e D F x e 3 3 3 x Câu 277 Tập hợp nghiệm bất phương trình A �; � Giả sử �t B �;0 t 1 dt (ẩn x ) là: C �; � \ 0 9 D 0; � f x dx 37 � g x dx 16 Khi đó, I � f x 3g ( x )� � � �dx bằng: � A I 26 B I 58 Câu 278 Biết D I 122 C I 143 dx a ln b ln a, b �Z Mệnh đề sau ? � x 3x A a 2b B 2a b THPT Đức Thọ - Hà Tĩnh C a b D a b Câu 279 Tính thể tích V vật thể trịn xoay sinh cho hình phẳng giới hạn đường y y , x , x a , (a 1) quay xung quanh trục Ox � 1� � A V � � a� , x � 1� 1 � B V � � a� � 1� � D V � � a� � 1� 1 � C V � � a� Câu 280 Biết F x nguyên hàm của hàm số f x sin x đồ thị hàm số y F x qua � � điểm M 0;1 Tính F � � �2 � � � A F � � �2 � Câu 281 Cho � � D F � � �2 � � � C F � � �2 � � � B F � � 1 �2 � 4 2 f x dx 10 � g x dx Tính I � � f x 5g x � � �dx � A I B I 15 C I Câu 282 Đường thẳng tiệm cận ngang đồ thị hàm số y A x B y C y Trang 40 / 49 D I 10 x 3 ? 2x D x 272 Bài Nguyên Hàm - Tích Phân - Ứng Dụng – Trong Các Đề Thi Thử Và Chính Thức Năm 2018 Câu 283 Khi đổi biến x tan t , tích phân I dx trở thành tích phân nào? � x 3 B I dt � A I 3dt � C I 3tdt � D I 1dt � t ln x3 x dx a ln b ln c , với a, b, c �� Tính S a.b c Câu 284 Biết � B S 23 A S 60 Câu 285 Cho C S 12 x f x f x dx a Tính I = � � A I 2a D S 2 1 dx theo a C I B I 4a a D I a THPT Kinh Môn – Hải Dương Câu 286 [2D3-2] Kết �2 x dx A B C D Câu 287 [2D3-1] Cho hàm số f x liên tục đoạn 0;10 10 �f x dx 10 f x dx � f x dx f x dx Tính P � � A P B P 4 C P D P 10 Câu 288 [2D3-1] Nguyên hàm hàm số f x x là: A x 9x C B x x C C x C D x x C Câu 289 [2D3-3] Cho hàm số f x liên tục � f 16 , f x dx Tính � x f � x dx tích phân I � A I 13 THPT Lê Xoay – Vĩnh Phúc B I 12 C I 20 D I Câu 290 [2D3-1] Trong khẳng định sau, khẳng định sai? x n 1 C ( C số; n ��) n 1 e x dx e x C ( C số) D � dx x 2C ( C số) A � B 0dx C ( C số) C � x n dx � dx a b ln với a, b �� Mệnh đề sau đúng? Câu 291 [2D3-3] Cho tích phân I � 3 2x 1 A a b B a b C a b Trang 41 / 49 D a b 272 Bài Nguyên Hàm - Tích Phân - Ứng Dụng – Trong Các Đề Thi Thử Và Chính Thức Năm 2018 f x dx F x C Khi với a �0 , a , b số ta có � f ax b dx Câu 292 [2D3-1] Cho � f ax b dx F ax b C � a f ax b dx F ax b C C � A f ax b dx F ax b C � ab f ax b dx aF ax b C D � B Câu 293 [2D3-2] Tất nguyên hàm hàm số f x cos x A F x sin x C B F x sin x D F x sin x C C F x sin x C Phan Chu Trinh – Đắk Lăk Câu 294 [2D3-1] Diện tích S hình phẳng giới hạn đồ thị hàm số y f x , liên tục [a ; b] trục hoành hai đường thẳng x a , x b a b cho công thức: b b f x dx A S � f x dx B S π � a a b f x dx C S π � a b f x dx D S � a e x ln xdx Câu 295 [2D3-2] Tính tích phân I � A I B I e 2 2 C I e2 D I e2 Câu 296 [2D3-1] Họ nguyên hàm hàm số f x e x cos x 2018 là: A F x e x sin x 2018 x C B F x e x sin x 2018 x C C F x e x sin x 2018 x D F x e x sin x 2018 C Câu 297 [2D3-2] Cho H hình phẳng giới hạn y x , y x trục hồnh (hình vẽ) Diện tích H bằng: A 10 B Câu 298 [2D3-3] Biết 16 C dx � x x x 1 x D a b c với a , b , c số nguyên dương Tính P a b c Trang 42 / 49 272 Bài Nguyên Hàm - Tích Phân - Ứng Dụng – Trong Các Đề Thi Thử Và Chính Thức Năm 2018 A P 44 B P 42 C P 46 D P 48 Câu 299 [2D3-3] Cho hàm số f x xác định �\ 1;1 thỏa mãn: f � x x 1 � � �1 � � f � � Tính T f 2 f f Biết f 3 f 3 f � � � �2 � 9 A T ln B T ln C T ln D T ln 5 5 Câu 300 [2D3-4] Cho hàm số f x có đạo hàm liên tục đoạn 0;1 thỏa mãn 1 � x � x 1 e x f x dx �f � �dx � � 0 e 1 Trần Phú - Đà Nẵng A e2 f 1 Tính B e2 f x dx � C e D e 2 Câu 301 [2D3-1] Họ nguyên hàm hàm số f x 3x sin x A x cos x C B x sin x C C x cos x C D Câu 302 [2D3-1] Cho hàm số f x liên tục a; b F x nguyên hàm f x Tìm khẳng định sai b A a f x dx F a F b � B a C b a a b a b f x dx � f x dx � Câu 303 [2D3-3] Biết x f x dx � D f x dx F b F a � a 5x e x �x e x dx ae b ln ae c với a , b , c số nguyên e số logarit tự nhiên Tính S 2a b c A S 10 B S C S D S 2018 Câu 304 [2D3-1] Tích phân I �2 dx x A 22018 B 22018 ln C 22018 ln D 22018 �1 � Câu 305 [2D3-2] Cho hàm số f x xác định �\ � �thỏa mãn f � x 2x 1 �2 f Giá trị biểu thức f 1 f 3 A ln15 B ln15 C ln15 Trang 43 / 49 D ln15 272 Bài Nguyên Hàm - Tích Phân - Ứng Dụng – Trong Các Đề Thi Thử Và Chính Thức Năm 2018 �� 0; Câu 306 [2D3-3] Cho hàm số y f x có đạo hàm liên tục � thỏa mãn � 4� � � � f � � , �4 � f x 0 Tích phân sin x f � � dx � sin x.tan x f x � � � �dx � x dx cos x A B Câu 307 [2D3-2] Cho hình 23 H C 1 bằng: D hình phẳng giới hạn parabol y x x , đường cong y x3 trục hồnh (phần tơ đậm hình vẽ) Tính diện tích S hình H A S 11 Trần Phú – Hà Tĩnh B S 12 C S 20 D S 11 Câu 238 [2D3-1] Diện tích S hình phẳng giới hạn đồ thị hàm số f x liên tục, trục hoành hai đường thẳng x a , x b tình cơng thức đây? b b A f x dx B � f x dx � a b C a b �f x dx D a f x dx � a Câu 239 [2D3-1] Khẳng định sau sai ? A C b b b a a a b b c a c a b b a a � f x dx � g x dx B � �f x g x � �dx � f x dx � f x dx � f x dx � b a f x dx � f x dx � a D b f x dx � f t dt � Câu 240 [2D3-1] Họ nguyên hàm hàm số f x x x A 20 x3 12 x C B x5 x3 x C C 20 x5 12 x3 x C D x4 x2 x C Câu 241 [2D3-2] Biết tích phân x 1 ln xdx a ln b � với a , b �Z Tổng 2a b A B C 10 Trang 44 / 49 D 13 272 Bài Nguyên Hàm - Tích Phân - Ứng Dụng – Trong Các Đề Thi Thử Và Chính Thức Năm 2018 11 1 x f 3x 1 dx f x dx 18 Tính I � Câu 242 [2D3-2] Biết � A I B I C I D I 10 Đề Thi THPT Quốc Gia 2018 mã đề 101 Câu 243 Gọi S diện tích hình phẳng giới hạn đường y e x , y , x , x Mệnh đề đúng? e x dx A S π � 2 e x dx C S π � e x dx B S � 0 e x dx D S � Câu 244: Nguyên hàm hàm số f x x x A x x C B x C C x x C D x x C C e5 e D e e e3 x 1dx Câu 245 : � 1 A e e B e e dx a ln b ln c ln11 , với a, b, c số hữu tỉ Mệnh đề Câu 246: Cho � 16 x x đúng? A a b c B a b c C a b 3c D a b 3c Câu 247: Cho hai hàm số f x ax bx cx g x dx ex a, b, c, d , e �� Biết 55 đồ thị hàm số y f x y g x cắt ba điểm có hoành độ 3; 1;1 (tham khảo hình vẽ) Hình phẳng giới hạn hai đồ thị cho có diện tích A B C D 2 f x � x �R , f 1 Giá trị f (1) Câu 248: Cho hàm số f x thỏa mãn f , f � x 2x � � � bằng: 35 19 A 36 B C 36 D 15 Đề Thi THPT Quốc Gia 2018 mã đề 102 Câu 249: Gọi S diện tích hình phẳng giới hạn đường y x , y , x 0, x Mệnh đề đúng? 2 dx A S � x 2 dx B S � 2x 2 dx C S � Trang 45 / 49 2x 2 x dx D S � 272 Bài Nguyên Hàm - Tích Phân - Ứng Dụng – Trong Các Đề Thi Thử Và Chính Thức Năm 2018 Câu 250: Nguyên hàm hàm số f x x x A x x C B x C C x5 x C D x x C Câu 251: �e x +1 dx A ( e - e) B e - e 21 Câu 252: Cho �x C ( e + e) D e3 - e dx = a ln + b ln + c ln với a, b, c số hữu tỉ Mệnh đề x +4 đúng? A a + b =- 2c B a + b = c C a - b =- c D a - b =- 2c 2 Câu 253: Cho hai hàm số f x ax bx cx g x dx ex a, b, c, d , e �� Biết đồ thị hàm số y f x y g x cắt ba điểm có hồnh độ 2; 1;1 (tham khảo hình vẽ) Hình phẳng giới hạn hai đồ thị cho có diện tích A 37 B 13 C Câu 254: Cho hàm số f x thỏa mãn f f 1 D 37 12 f x � f � với x �� Giá trị x x � � � 11 2 B C D 6 Đề Thi THPT Quốc Gia 2018 mã đề 103 Câu 256: Cho hình phẳng ( H ) giới hạn đường y x 3, y 0, x 0, x Gọi V thể tích khối trịn xoay tạo thành quay ( H ) xung quanh trục Ox Mệnh đề ? A 2 x 3 dx B V � x 3 dx A V � 2 0 x 3 dx C V � V � x 3 dx Câu 257: Tích phân dx � 3x 2 Trang 46 / 49 D 272 Bài Nguyên Hàm - Tích Phân - Ứng Dụng – Trong Các Đề Thi Thử Và Chính Thức Năm 2018 A ln B ln C ln D ln 3 e (1 x ln x)dx ae be c với a, b, c số hữu tỉ Mệnh đề ? Câu 258: Cho � A 11 năm B 10 năm C 13 năm D 12 năm ( x) x f ( x) với x �� Giá trị f (1) Câu 259: Cho hàm số f ( x ) thỏa mãn f (2) f � 25 41 391 A B C D 400 10 400 40 Câu 260: Cho hai hàm số f ( x) ax bx cx g ( x) dx ex (a, b, c, d , e ��) Biết đồ thị hàm số y f ( x) y g ( x) cắt ba điểm có hồnh độ 3 ; 1 ; (tham khảo hình vẽ bên) Hình phẳng giới hạn hai đồ thị cho có diện tích 253 125 253 A B C 12 12 48 Đề Thi THPT Quốc Gia 2018 mã đề 104 Câu 261: Nguyên hàm hàm số f x x x D 125 48 x x C C x x C D x3 x C Câu 262: Cho hình phẳng H giới hạn đường thẳng y x , y , x , x Gọi V thể A x x C B tích khối trịn xoay tạo thành quay H xung quanh trục Ox Mệnh đề ? A V � x dx 2 Câu 263: Phương trình dx Câu 264: � 2x A ln x1 B V � x dx 2 C V � x dx 2 D V � x dx 125 có nghiệm B ln 35 C ln D ln e Câu 265: Cho x ln x dx a.e b.e c với a , b , c số hữu tỉ Mệnh đề đúng? � A a b c B a b c C a b c Trang 47 / 49 D a b c 272 Bài Nguyên Hàm - Tích Phân - Ứng Dụng – Trong Các Đề Thi Thử Và Chính Thức Năm 2018 3 2 Câu 266: Cho hai hàm số f x ax bx cx g x dx ex a, b, c, d , e �� Biết đồ 4 thị hàm số y f x y g x cắt ba điểm có hoành độ 2 ; ; (tham khảo hình vẽ) Hình phẳng giới hạn hai đồ thị cho có diện tích A 253 48 125 24 B C Câu 267: Cho hàm số f x thỏa mãn f 125 48 D 253 24 f x � f � với x �� Giá trị f 1 x x3 � � � A 35 Dề minh họa 2018 B 71 20 C 79 20 D Câu 268: Cho hàm số y f ( x) liên tục đoạn [a; b] Gọi D hình phẳng giới hạn đồ thị hàm số y f ( x) , trục hoành hai đường thẳng x a , x b (a b) Thể tích khối tròn xoay tạo thành quay D quanh trục hồnh tính theo cơng thức b b A V � f ( x)dx B V 2 a b � f ( x)dx C b � V f ( x)dx a D � V f ( x)dx a a Câu 269: Họ nguyên hàm hàm số f ( x) 3x A x3 C B Câu 270: Tích phân dx � x3 x3 xC A C 6x C D x3 x C 16 5 B log C ln D 225 3 15 hình phẳng giới hạn parabol y 3x , cung trịn có phương trình y x (với �x �2 ) trục hoành (phần tơ đậm hình vẽ) Diện tích ( H ) Cho hình A (H ) 4 12 B 4 12 Câu 271: Biết � ( x 1) C dx x x x 1 A P 24 4 2 D a b c với a, b, c số nguyên dương Tính P a b c C P 18 B P 12 D P 46 Câu 272: Cho hàm số f ( x) có đạo hàm liên tục đoạn [0;1] thỏa mãn f (1) , ( x ) dx f� � 1 x f ( x)dx Tích phân � f ( x)dx � A B Trang 48 / 49 C D 272 Bài Nguyên Hàm - Tích Phân - Ứng Dụng – Trong Các Đề Thi Thử Và Chính Thức Năm 2018 Trang 49 / 49 ... mãn f ' x 2018 ln 2018 cos x f Phát biểu sau đúng? x A f x 2018 sin x C f x B f x 2018x sin x ln 2018 2018x sin x ln 2018 x D f x 2018 sin x... 2018 x 1 A f x � B f x dx 2018 x 1 � 2018 x 1 dx 2018 C f x � D f x dx 2018 x 1 � 2018 C 2017 x 1 x 1 2017 C 2017 C 2017 2017 2018. .. Với a , b , c số nguyên Tính x 1 B S 22018 Câu 207: [2D3-2] Tính tích phân I dx �x C S D S C I 2018. ln C I 2018 A I 2018. ln B I 22018 Câu 208: [2D3-3] Cho hàm số y f