Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 43 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
43
Dung lượng
429,76 KB
Nội dung
Interval Arithmetic Taylor Models Overestimation Applications IntroductiontoTaylorModelMethods Markus Neher Karlsruhe Institute of Technology Universit¨at Karlsruhe (TH) Research University - founded 1825 Institute for Applied and Numerical Mathematics May 26, 2009 TMW 09 M. NeherIntroductiontoTaylorModelMethods Interval Arithmetic Taylor Models Overestimation Applications Outline 1 Interval Arithmetic 2 Taylor Models 3 Overestimation 4 Applications TMW 09 M. NeherIntroductiontoTaylorModelMethods Interval Arithmetic Taylor Models Overestimation Applications Ranges and Inclusion Functions Dependency Wrapping Effect Interval Arithmetic TMW 09 M. NeherIntroductiontoTaylorModelMethods Interval Arithmetic Taylor Models Overestimation Applications Ranges and Inclusion Functions Dependency Wrapping Effect Why Interval Computations? Inclusion of discretization or truncation errors in numerical algorithms Newton’s method Global optimization Numerical integration . Modelling of uncertain data Bounding of roundoff errors Moore (1966): Matrix computations, ranges of functions, root-finding, integrals, initial value problems for ODEs TMW 09 M. NeherIntroductiontoTaylorModelMethods Interval Arithmetic Taylor Models Overestimation Applications Ranges and Inclusion Functions Dependency Wrapping Effect Ranges and Inclusion Functions 1 Range of f : D → E: Rg (f , D) := {f (x) | x ∈ D} 2 Inclusion function F : IR → IR of f : D ⊆ R → R: F (x) ⊇ Rg (f , x) for all x ⊆ D 3 Examples: x 1 + x , 1 − 1 1 + x , are inclusion functions for f (x) = x 1 + x = 1 − 1 1 + x e x := [e x , e x ] is an inclusion function for e x TMW 09 M. NeherIntroductiontoTaylorModelMethods Interval Arithmetic Taylor Models Overestimation Applications Ranges and Inclusion Functions Dependency Wrapping Effect Dependency f (x) = x 1 + x = 1 − 1 1 + x , x = [1, 2]: x 1 + x = [1, 2] [2, 3] = [ 1 3 , 1] 1 − 1 1 + x = 1 − 1 [2, 3] = 1 −[ 1 3 , 1 2 ] = [ 1 2 , 2 3 ] = Rg (f , x) Reduced overestimation: centered forms, etc. TMW 09 M. NeherIntroductiontoTaylorModelMethods Interval Arithmetic Taylor Models Overestimation Applications Ranges and Inclusion Functions Dependency Wrapping Effect Wrapping Effect Overestimation: Enclose non-interval shaped sets by intervals Example: f : (x, y ) → √ 2 2 (x + y, y − x) (Rotation) Interval evaluation of f on x = ([−1, 1], [−1, 1]): –2 –1 0 1 2 –2 –1 1 2 –2 –1 0 1 2 –2 –1 1 2 Rg (f , x), F (x) Rg f 2 , x , Rg (f , F(x)), F (F (x)) TMW 09 M. NeherIntroductiontoTaylorModelMethods Interval Arithmetic Taylor Models Overestimation Applications TaylorModel Arithmetic Standard Functions Taylor Models TMW 09 M. NeherIntroductiontoTaylorModelMethods Interval Arithmetic Taylor Models Overestimation Applications TaylorModel Arithmetic Standard Functions Symbolic Enhancements of IA Ultra-arithmetic (Kaucher & Miranker, 1984) Multivariate Taylor forms (Eckmann, Koch & Wittwer, 1984) Taylor models (Berz & Makino, 1990s–today) TMW 09 M. NeherIntroductiontoTaylorModelMethods Interval Arithmetic Taylor Models Overestimation Applications TaylorModel Arithmetic Standard Functions Taylor Models of Type I x ⊂ R m , f : x → R, f ∈ C n+1 , x 0 ∈ x; f (x) = p n,f (x − x 0 ) + R n,f (x − x 0 ), x ∈ x (p n,f Taylor polynomial, R n,f remainder term) Interval remainder bound of order n of f on x: ∀x ∈ x : R n,f (x − x 0 ) ∈ i n,f Taylormodel T n,f = (p n,f , i n,f ) of order n of f : ∀x ∈ x: f (x) ∈ p n,f (x − x 0 ) + i n,f TMW 09 M. NeherIntroductiontoTaylorModelMethods [...]... TMA: Wrapping TMW 09 M NeherIntroductiontoTaylorModelMethods Interval Arithmetic Taylor Models Overestimation Applications Global Optimization Verified Integration of ODEs Taylor Models Revisited Applications TMW 09 M NeherIntroductiontoTaylorModelMethods Interval Arithmetic Taylor Models Overestimation Applications Global Optimization Verified Integration of ODEs Taylor Models Revisited Global... Optimization: Challenges TMW 09 M NeherIntroductiontoTaylorModelMethods Interval Arithmetic Taylor Models Overestimation Applications Global Optimization Verified Integration of ODEs Taylor Models Revisited Global Optimization: Branch-and-Bound Method M M I1 c1 TMW 09 I2 I3 c2 M Neher c3 I4 c4 IntroductiontoTaylorModelMethods Interval Arithmetic Taylor Models Overestimation Applications... M NeherIntroductiontoTaylorModelMethods n +i Interval Arithmetic Taylor Models Overestimation Applications Dependency Wrapping Overestimation TMW 09 M NeherIntroductiontoTaylorModelMethods Interval Arithmetic Taylor Models Overestimation Applications Dependency Wrapping Overestimation Sources of overestimation: data errors discretization or truncation erors dependency problem: lack of IA to. .. + [−0.281, 0.281] TMW 09 M NeherIntroductiontoTaylorModelMethods Interval Arithmetic Taylor Models Overestimation Applications TaylorModel Arithmetic Standard Functions TM Arithmetic: Polynomials, Standard Functions If Tn,f = (pn,f , in,f ) is a Taylormodel for f , then Tn,P aν f ν aν f ν is a Taylormodel for Standard functions: ϕ ∈ {exp, ln, sin, cos, } Taylormodel for ϕ(f ): Special treatment... 09 M NeherIntroductiontoTaylorModelMethods Interval Arithmetic Taylor Models Overestimation Applications Dependency Wrapping IA vs TMA: Dependency TMA (Taylor models of order 3): f (x) = x 2 + cos x + sin x − e x ∈ x2 + 1 − = − x2 x3 x2 x3 + i1 + x − + i2 − 1 − x − − − i3 2 6 2 6 x3 + i1 + i2 + i3 3 ⊆ [−0.376, 0.082] Range: TMW 09 Rg (f , x) = [−0.337, 0] M NeherIntroductiontoTaylorModel Methods. .. Methods Interval Arithmetic Taylor Models Overestimation Applications TaylorModel Arithmetic Standard Functions TM Arithmetic Paradigm for TMA: pn,f is processed symbolically to order n Higher order terms are enclosed into the remainder interval TMW 09 M NeherIntroductionto Taylor Model Methods Interval Arithmetic Taylor Models Overestimation Applications Taylor Model Arithmetic Standard Functions... x } Range of a TM: Rg (U) = {z = p(x) + ξ | x ∈ x, ξ ∈ i} TMW 09 M NeherIntroductionto Taylor Model Methods Interval Arithmetic Taylor Models Overestimation Applications Global Optimization Verified Integration of ODEs Taylor Models Revisited Taylor Models of Type II Taylor model: U := pn (x) + i, x ∈ x, x ∈ IRm , i ∈ IRm (pn : vector of m-variate polynomials of order n) Function set: U = {f ∈ C 0... 09 2 0 0 1 1 5 · x y = + 2 0 0 1 M Neher 1 + 2x 5+y · [−1, 1] [−1, 1] , x, y ∈ [−1, 1] = [−1, 3] [4, 6] Introductionto Taylor Model Methods Interval Arithmetic Taylor Models Overestimation Applications Global Optimization Verified Integration of ODEs Taylor Models Revisited Taylor Models of Type II Taylor model: U := pn (x) + i, x ∈ x, x ∈ IRm , i ∈ IRm (pn : vector of m-variate polynomials of order... Taylor Models Overestimation Applications TaylorModel Arithmetic Standard Functions Taylor Models: Example 1 x = [− 1 , 2 ], x0 = 0: 2 1 1 e x = 1 + x + x 2 + x 3e ξ , 2 6 1 1 cos x = 1 − x 2 + x 3 sin ξ, 2 6 x, ξ ∈ x, x, ξ ∈ x, 1 T2,e x = 1 + x + 2 x 2 + [−0.035, 0.035], 1 T2,cos x = 1 − 2 x 2 + [−0.010, 0.010], TMW 09 M Neher x ∈ x, x ∈x IntroductiontoTaylorModelMethods Interval Arithmetic Taylor. .. Taylormodel for ϕ(f ): Special treatment of the constant part in pn,f Evaluate pn,ϕ for the non-constant part of Tn,f TMW 09 M NeherIntroductiontoTaylorModelMethods Interval Arithmetic Taylor Models Overestimation Applications TaylorModel Arithmetic Standard Functions TaylorModel for Exponential Function x ∈ x, c := f (x0 ), h(x) := f (x) − c: pn,f (x − x0 ) = pn,h (x − x0 ) + c, in,h = in,f exp