1. Trang chủ
  2. » Luận Văn - Báo Cáo

11 introduction to taylor model methods neher

43 327 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 43
Dung lượng 429,76 KB

Nội dung

Interval Arithmetic Taylor Models Overestimation Applications Introduction to Taylor Model Methods Markus Neher Karlsruhe Institute of Technology Universit¨at Karlsruhe (TH) Research University - founded 1825 Institute for Applied and Numerical Mathematics May 26, 2009 TMW 09 M. Neher Introduction to Taylor Model Methods Interval Arithmetic Taylor Models Overestimation Applications Outline 1 Interval Arithmetic 2 Taylor Models 3 Overestimation 4 Applications TMW 09 M. Neher Introduction to Taylor Model Methods Interval Arithmetic Taylor Models Overestimation Applications Ranges and Inclusion Functions Dependency Wrapping Effect Interval Arithmetic TMW 09 M. Neher Introduction to Taylor Model Methods Interval Arithmetic Taylor Models Overestimation Applications Ranges and Inclusion Functions Dependency Wrapping Effect Why Interval Computations? Inclusion of discretization or truncation errors in numerical algorithms Newton’s method Global optimization Numerical integration . Modelling of uncertain data Bounding of roundoff errors Moore (1966): Matrix computations, ranges of functions, root-finding, integrals, initial value problems for ODEs TMW 09 M. Neher Introduction to Taylor Model Methods Interval Arithmetic Taylor Models Overestimation Applications Ranges and Inclusion Functions Dependency Wrapping Effect Ranges and Inclusion Functions 1 Range of f : D → E: Rg (f , D) := {f (x) | x ∈ D} 2 Inclusion function F : IR → IR of f : D ⊆ R → R: F (x) ⊇ Rg (f , x) for all x ⊆ D 3 Examples: x 1 + x , 1 − 1 1 + x , are inclusion functions for f (x) = x 1 + x = 1 − 1 1 + x e x := [e x , e x ] is an inclusion function for e x TMW 09 M. Neher Introduction to Taylor Model Methods Interval Arithmetic Taylor Models Overestimation Applications Ranges and Inclusion Functions Dependency Wrapping Effect Dependency f (x) = x 1 + x = 1 − 1 1 + x , x = [1, 2]: x 1 + x = [1, 2] [2, 3] = [ 1 3 , 1] 1 − 1 1 + x = 1 − 1 [2, 3] = 1 −[ 1 3 , 1 2 ] = [ 1 2 , 2 3 ] = Rg (f , x) Reduced overestimation: centered forms, etc. TMW 09 M. Neher Introduction to Taylor Model Methods Interval Arithmetic Taylor Models Overestimation Applications Ranges and Inclusion Functions Dependency Wrapping Effect Wrapping Effect Overestimation: Enclose non-interval shaped sets by intervals Example: f : (x, y ) → √ 2 2 (x + y, y − x) (Rotation) Interval evaluation of f on x = ([−1, 1], [−1, 1]): –2 –1 0 1 2 –2 –1 1 2 –2 –1 0 1 2 –2 –1 1 2 Rg (f , x), F (x) Rg  f 2 , x  , Rg (f , F(x)), F (F (x)) TMW 09 M. Neher Introduction to Taylor Model Methods Interval Arithmetic Taylor Models Overestimation Applications Taylor Model Arithmetic Standard Functions Taylor Models TMW 09 M. Neher Introduction to Taylor Model Methods Interval Arithmetic Taylor Models Overestimation Applications Taylor Model Arithmetic Standard Functions Symbolic Enhancements of IA Ultra-arithmetic (Kaucher & Miranker, 1984) Multivariate Taylor forms (Eckmann, Koch & Wittwer, 1984) Taylor models (Berz & Makino, 1990s–today) TMW 09 M. Neher Introduction to Taylor Model Methods Interval Arithmetic Taylor Models Overestimation Applications Taylor Model Arithmetic Standard Functions Taylor Models of Type I x ⊂ R m , f : x → R, f ∈ C n+1 , x 0 ∈ x; f (x) = p n,f (x − x 0 ) + R n,f (x − x 0 ), x ∈ x (p n,f Taylor polynomial, R n,f remainder term) Interval remainder bound of order n of f on x: ∀x ∈ x : R n,f (x − x 0 ) ∈ i n,f Taylor model T n,f = (p n,f , i n,f ) of order n of f : ∀x ∈ x: f (x) ∈ p n,f (x − x 0 ) + i n,f TMW 09 M. Neher Introduction to Taylor Model Methods [...]... TMA: Wrapping TMW 09 M Neher Introduction to Taylor Model Methods Interval Arithmetic Taylor Models Overestimation Applications Global Optimization Verified Integration of ODEs Taylor Models Revisited Applications TMW 09 M Neher Introduction to Taylor Model Methods Interval Arithmetic Taylor Models Overestimation Applications Global Optimization Verified Integration of ODEs Taylor Models Revisited Global... Optimization: Challenges TMW 09 M Neher Introduction to Taylor Model Methods Interval Arithmetic Taylor Models Overestimation Applications Global Optimization Verified Integration of ODEs Taylor Models Revisited Global Optimization: Branch-and-Bound Method M M I1 c1 TMW 09 I2 I3 c2 M Neher c3 I4 c4 Introduction to Taylor Model Methods Interval Arithmetic Taylor Models Overestimation Applications... M Neher Introduction to Taylor Model Methods n +i Interval Arithmetic Taylor Models Overestimation Applications Dependency Wrapping Overestimation TMW 09 M Neher Introduction to Taylor Model Methods Interval Arithmetic Taylor Models Overestimation Applications Dependency Wrapping Overestimation Sources of overestimation: data errors discretization or truncation erors dependency problem: lack of IA to. .. + [−0.281, 0.281] TMW 09 M Neher Introduction to Taylor Model Methods Interval Arithmetic Taylor Models Overestimation Applications Taylor Model Arithmetic Standard Functions TM Arithmetic: Polynomials, Standard Functions If Tn,f = (pn,f , in,f ) is a Taylor model for f , then Tn,P aν f ν aν f ν is a Taylor model for Standard functions: ϕ ∈ {exp, ln, sin, cos, } Taylor model for ϕ(f ): Special treatment... 09 M Neher Introduction to Taylor Model Methods Interval Arithmetic Taylor Models Overestimation Applications Dependency Wrapping IA vs TMA: Dependency TMA (Taylor models of order 3): f (x) = x 2 + cos x + sin x − e x ∈ x2 + 1 − = − x2 x3 x2 x3 + i1 + x − + i2 − 1 − x − − − i3 2 6 2 6 x3 + i1 + i2 + i3 3 ⊆ [−0.376, 0.082] Range: TMW 09 Rg (f , x) = [−0.337, 0] M Neher Introduction to Taylor Model Methods. .. Methods Interval Arithmetic Taylor Models Overestimation Applications Taylor Model Arithmetic Standard Functions TM Arithmetic Paradigm for TMA: pn,f is processed symbolically to order n Higher order terms are enclosed into the remainder interval TMW 09 M Neher Introduction to Taylor Model Methods Interval Arithmetic Taylor Models Overestimation Applications Taylor Model Arithmetic Standard Functions... x } Range of a TM: Rg (U) = {z = p(x) + ξ | x ∈ x, ξ ∈ i} TMW 09 M Neher Introduction to Taylor Model Methods Interval Arithmetic Taylor Models Overestimation Applications Global Optimization Verified Integration of ODEs Taylor Models Revisited Taylor Models of Type II Taylor model: U := pn (x) + i, x ∈ x, x ∈ IRm , i ∈ IRm (pn : vector of m-variate polynomials of order n) Function set: U = {f ∈ C 0... 09 2 0 0 1 1 5 · x y = + 2 0 0 1 M Neher 1 + 2x 5+y · [−1, 1] [−1, 1] , x, y ∈ [−1, 1] = [−1, 3] [4, 6] Introduction to Taylor Model Methods Interval Arithmetic Taylor Models Overestimation Applications Global Optimization Verified Integration of ODEs Taylor Models Revisited Taylor Models of Type II Taylor model: U := pn (x) + i, x ∈ x, x ∈ IRm , i ∈ IRm (pn : vector of m-variate polynomials of order... Taylor Models Overestimation Applications Taylor Model Arithmetic Standard Functions Taylor Models: Example 1 x = [− 1 , 2 ], x0 = 0: 2 1 1 e x = 1 + x + x 2 + x 3e ξ , 2 6 1 1 cos x = 1 − x 2 + x 3 sin ξ, 2 6 x, ξ ∈ x, x, ξ ∈ x, 1 T2,e x = 1 + x + 2 x 2 + [−0.035, 0.035], 1 T2,cos x = 1 − 2 x 2 + [−0.010, 0.010], TMW 09 M Neher x ∈ x, x ∈x Introduction to Taylor Model Methods Interval Arithmetic Taylor. .. Taylor model for ϕ(f ): Special treatment of the constant part in pn,f Evaluate pn,ϕ for the non-constant part of Tn,f TMW 09 M Neher Introduction to Taylor Model Methods Interval Arithmetic Taylor Models Overestimation Applications Taylor Model Arithmetic Standard Functions Taylor Model for Exponential Function x ∈ x, c := f (x0 ), h(x) := f (x) − c: pn,f (x − x0 ) = pn,h (x − x0 ) + c, in,h = in,f exp

Ngày đăng: 12/01/2014, 21:59

TỪ KHÓA LIÊN QUAN