1. Trang chủ
  2. » Kinh Doanh - Tiếp Thị

power electronics converters applications and design third edition pdf

812 71 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Cấu trúc

  • 26932_fm

    • Front Matter

      • About the Author

      • Dedication

    • Preface

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_pref

    • Front Matter

    • Preface

      • Media-Enhanced Third Edition

      • Organization of the Book

      • Solutions Manual

      • Acknowledgments

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_toc

    • Front Matter

      • About the Author

      • Dedication

    • Preface

      • Media-Enhanced Third Edition

      • Organization of the Book

      • Solutions Manual

      • Acknowledgments

    • Table of Contents

    • Part I. Introduction

    • 1. Power Electronic Systems

      • 1.1 Introduction

      • 1.2 Power Electronics versus Linear Electronics

      • 1.3 Scope and Applications

      • 1.4 Classification of Power Processors and Converters

        • 1.4.1 Power Processors

        • 1.4.2 Power Converters

        • 1.4.3 Matrix Converter as a Power Processor

      • 1.5 About the Text

      • 1.6 Interdisciplinary Nature of Power Electronics

      • 1.7 Convention of Symbols Used

      • Problems

      • References

    • 2. Overview of Power Semiconductor Switches

      • 2.1 Introduction

      • 2.2 Diodes

      • 2.3 Thyristors

      • 2.4 Desired Characteristics in Controllable Switches

      • 2.5 Bipolar Junction Transistors and Monolithic Darlingtons

      • 2.6 Metal-Oxide-Semiconductor Field Effect Transistors

      • 2.7 Gate-Turn-off Thyristors

      • 2.8 Insulated Gate Bipolar Transistors

      • 2.9 MOS-Controlled Thyristors

      • 2.10 Comparison of Controllable Switches

      • 2.11 Drive and Snubber Circuits

      • 2.12 Justification for Using Idealized Device Characteristics

      • Summary

      • Problems

      • References

    • 3. Review of Basic Electrical and Magnetic Circuit Concepts

      • 3.1 Introduction

      • 3.2 Electric Circuits

        • 3.2.1 Definition of Steady State

        • 3.2.2 Average Power and rms Current

        • 3.2.3 Steady-State ac Waveforms with Sinusoidal Voltages and Currents

          • 3.2.3.1 Phasor Representation

          • 3.2.3.2 Power, Reactive Power, and Power Factor

          • 3.2.3.3 Three-Phase Circuits

        • 3.2.4 Nonsinusoidal Waveforms in Steady State

          • 3.2.4.1 Fourier Analysis of Repetitive Waveforms

          • 3.2.4.2 Line-Current Distortion

          • 3.2.4.3 Power and Power Factor

        • 3.2.5 Inductor and Capacitor Response

          • 3.2.5.1 Average V_L and I_c in Steady State

      • 3.3 Magnetic Circuits

        • 3.3.1 Ampere's Law

        • 3.3.2 Right-Hand Rule

        • 3.3.3 Flux Density or B-Field

        • 3.3.4 Continuity of Flux

        • 3.3.5 Magnetic Reluctance and Permeance

        • 3.3.6 Magnetic Circuit Analysis

        • 3.3.7 Faraday's Voltage Induction Law

        • 3.3.8 Self-Inductance L

        • 3.3.9 Transformers

          • 3.3.9.1 Transformers with Lossless Cores

          • 3.3.9.2 Ideal Transformers

          • 3.3.9.3 Transformers with Cores Having Hysteresis

          • 3.3.9.4 Per-Unit Leakage Inductances

      • Summary

      • Problems

      • References

    • 4. Computer Simulation of Power Electronic Converters and Systems

      • 4.1 Introduction

      • 4.2 Challenges in Computer Simulation

      • 4.3 Simulation Process

        • 4.3.1 Open-Loop, Large-Signal Simulation

        • 4.3.2 Small-Signal (Linear) Model and Controller Design

        • 4.3.3 Closed-Loop, Large-Signal System Behavior

        • 4.3.4 Switching Details

      • 4.4 Mechanics of Simulation

        • 4.4.1 Circuit-Oriented Simulators

        • 4.4.2 Equation Solvers

        • 4.4.3 Comparison of Circuit-Oriented Simulators and Equation Solvers

      • 4.5 Solution Techniques for Time-Domain Analysis

        • 4.5.1 Linear Differential Equations

        • 4.5.2 Trapezoidal Method of Integration

        • 4.5.3 Nonlinear Differential Equations

      • 4.6 Widely Used, Circuit-Oriented Simulators

        • 4.6.1 Spice

        • 4.6.2 EMTP Simulation Program

        • 4.6.3 Suitability of PSpice and EMTP

      • 4.7 Equation Solvers

      • Summary

      • Problems

      • References

    • Part II. Generic Power Electronic Converters

    • 5. Line-Frequency Diode Rectifiers: Line-Frequency ac right arrow Uncontrolled dc

      • 5.1 Introduction

      • 5.2 Basic Rectifier Concepts

        • 5.2.1 Pure Resistive Load

        • 5.2.2 Inductive Load

        • 5.2.3 Load with an Internal dc Voltage

      • 5.3 Single-Phase Diode Bridge Rectifiers

        • 5.3.1 Idealized Circuit with L_s = 0

        • 5.3.2 Effect of L_s on Current Commutation

        • 5.3.3 Constant dc-Side Voltage v_d (t) = V_d

          • 5.3.3.1 Rectifier Characteristic

        • 5.3.4 Practical Diode Bridge Rectifiers

          • 5.3.4.1 Analytical Calculations under a Highly Discontinuous Current

          • 5.3.4.2 Circuit Simulation for General Operating Conditions

          • 5.3.4.3 Line-Current Distortion

          • 5.3.4.4 Line-Voltage Distortion

      • 5.4 Voltage Doubler (Single-Phase) Rectifiers

      • 5.5 Effect of Single-Phase Rectifiers on Neutral Currents in Three-Phase, Four-Wire Systems

      • 5.6 Three-Phase, Full-Bridge Rectifiers

        • 5.6.1 Idealized Circuit with L_s = 0

        • 5.6.2 Effect of L_s on Current Commutation

        • 5.6.3 A Constant dc-Side Voltage v_d (t) = V_d

          • 5.6.3.1 Distortion in the Line-Current Waveforms

        • 5.6.4 Practical Three-Phase Diode Bridge Rectifiers

      • 5.7 Comparison of Single-Phase and Three-Phase Rectifiers

      • 5.8 Inrush Current and Overvoltages at Turn-on

      • 5.9 Concerns and Remedies for Line-Current Harmonics and Low Power Factor

      • Summary

      • Problems

      • References

      • Appendix

    • 6. Line-Frequency Phase-Controlled Rectifiers and Inverters: Line-Frequency ac left right arrow Controlled dc

      • 6.1 Introduction

      • 6.2 Thyristor Circuits and Their Control

        • 6.2.1 Basic Thyristor Circuits

        • 6.2.2 Thyristor Gate Triggering

        • 6.2.3 Practical Thyristor Converters

      • 6.3 Single-Phase Converters

        • 6.3.1 Idealized Circuit with L_s = 0 and i_d (t) = I_d

          • 6.3.1.1 dc-Side Voltage

          • 6.3.1.2 Line Current i_s

          • 6.3.1.3 Power, Power Factor, and Reactive Volt-Amperes

        • 6.3.2 Effect of L_s

          • 6.3.2.1 Input Line Current i_s

        • 6.3.3 Practical Thyristor Converters

          • 6.3.3.1 Discontinuous-Current Conduction

        • 6.3.4 Inverter Mode of Operation

          • 6.3.4.1 Inverter Start-up

        • 6.3.5 ac Voltage Waveform (Line Notching and Distortion)

      • 6.4 Three-Phase Converters

        • 6.4.1 Idealized Circuit with L_s = 0 and i_d (t) = I_d

          • 6.4.1.1 dc-Side Voltage

          • 6.4.1.2 Input Line Currents i_a , i_b , and i_c

          • 6.4.1.3 Power, Power Factor, and Reactive Volt-Amperes

        • 6.4.2 Effect of L_s

          • 6.4.2.1 Input Line Current i_s

        • 6.4.3 Practical Converter

          • 6.4.3.1 Discontinuous-Current Conduction

        • 6.4.4 Inverter Mode of Operation

          • 6.4.4.1 Inverter Start-up

        • 6.4.5 ac Voltage Waveform (Line Notching and Distortion)

          • 6.4.5.1 Line Notching

          • 6.4.5.2 Voltage Distortion

      • 6.5 Other Three-Phase Converters

      • Summary

      • Problems

      • References

      • Appendix

    • 7. dc-dc Switch-Mode Converters

      • 7.1 Introduction

      • 7.2 Control of dc-dc Converters

      • 7.3 Step-down (Buck) Converter

        • 7.3.1 Continuous-Conduction Mode

        • 7.3.2 Boundary between Continuous and Discontinuous Conduction

        • 7.3.3 Discontinuous-Conduction Mode

          • 7.3.3.1 Discontinuous-Conduction Mode with Constant V_d

          • 7.3.3.2 Discontinuous-Conduction Mode with Constant V_o

        • 7.3.4 Output Voltage Ripple

      • 7.4 Step-up (Boost) Converter

        • 7.4.1 Continuous-Conduction Mode

        • 7.4.2 Boundary between Continuous and Discontinuous Conduction

        • 7.4.3 Discontinuous-Conduction Mode

        • 7.4.4 Effect of Parasitic Elements

        • 7.4.5 Output Voltage Ripple

      • 7.5 Buck-Boost Converter

        • 7.5.1 Continuous-Conduction Mode

        • 7.5.2 Boundary between Continuous and Discontinuous Conduction

        • 7.5.3 Discontinuous-Conduction Mode

        • 7.5.4 Effect of Parasitic Elements

        • 7.5.5 Output Voltage Ripple

      • 7.6 Cúk dc-dc Converter

      • 7.7 Full-Bridge dc-dc Converter

        • 7.7.1 PWM with Bipolar Voltage Switching

        • 7.7.2 PWM with Unipolar Voltage Switching

      • 7.8 dc-dc Converter Comparison

      • Summary

      • Problems

      • References

    • 8. Switch-Mode dc-ac Inverters: dc left right arrow Sinusoidal ac

      • 8.1 Introduction

      • 8.2 Basic Concepts of Switch-Mode Inverters

        • 8.2.1 Pulse-Width-Modulated Switching Scheme

          • 8.2.1.1 Small m_f (m_f Less-Than or Equal to 21)

          • 8.2.1.2 Large m_f (m_f > 21)

          • 8.2.1.3 Overmodulation (m_a > 1.0)

        • 8.2.2 Square-Wave Switching Scheme

      • 8.3 Single-Phase Inverters

        • 8.3.1 Half-Bridge Inverters (Single Phase)

        • 8.3.2 Full-Bridge Inverters (Single Phase)

          • 8.3.2.1 PWM with Bipolar Voltage Switching

          • 8.3.2.2 PWM with Unipolar Voltage Switching

          • 8.3.2.3 Square-Wave Operation

          • 8.3.2.4 Output Control by Voltage Cancellation

          • 8.3.2.5 Switch Utilization in Full-Bridge Inverters

          • 8.3.2.6 Ripple in the Single-Phase Inverter Output

        • 8.3.3 Push-Pull Inverters

        • 8.3.4 Switch Utilization in Single-Phase Inverters

      • 8.4 Three-Phase Inverters

        • 8.4.1 PWM in Three-Phase Voltage Source Inverters

          • 8.4.1.1 Linear Modulation (m_a Less-Than or Equal to 1.0)

          • 8.4.1.2 Overmodulation (m_a > 1.0)

        • 8.4.2 Square-Wave Operation in Three-Phase Inverters

        • 8.4.3 Switch Utilization in Three-Phase Inverters

        • 8.4.4 Ripple in the Inverter Output

        • 8.4.5 dc-Side Current i_d

        • 8.4.6 Conduction of Switches in Three-Phase Inverters

          • 8.4.6.1 Square-Wave Operation

          • 8.4.6.2 PWM Operation

      • 8.5 Effect of Blanking Time on Voltage in PWM Inverters

      • 8.6 Other Inverter Switching Schemes

        • 8.6.1 Square-Wave Pulse Switching

        • 8.6.2 Programmed Harmonic Elimination Switching

        • 8.6.3 Current-Regulated (Current-Mode) Modulation

          • 8.6.3.1 Tolerance Band Control

          • 8.6.3.2 Fixed-Frequency Control

        • 8.6.4 Switching Scheme Incorporating Harmonic Neutralization by Modulation and Transformer Connections

      • 8.7 Rectifier Mode of Operation

      • Summary

      • Problems

      • References

    • 9. Resonant Converters: Zero-Voltage and/or Zero-Current Switchings

      • 9.1 Introduction

        • 9.1.1 Switch-Mode Inductive Current Switching

        • 9.1.2 Zero-Voltage and Zero-Current Switchings

      • 9.2 Classification of Resonant Converters

        • 9.2.1 Load-Resonant Converters

        • 9.2.2 Resonant-Switch Converters

        • 9.2.3 Resonant-dc-Link Converters

        • 9.2.4 High-Frequency-Link Integral-Half-Cycle Converters

      • 9.3 Basic Resonant Circuit Concepts

        • 9.3.1 Series-Resonant Circuits

          • 9.3.1.1 Undamped Series-Resonant Circuit

          • 9.3.1.2 Series-Resonant Circuit with a Capacitor-Parallel Load

          • 9.3.1.3 Frequency Characteristics of a Series-Resonant Circuit

        • 9.3.2 Parallel-Resonant Circuits

          • 9.3.2.1 Undamped Parallel-Resonant Circuit

          • 9.3.2.2 Frequency Characteristics of Parallel-Resonant Circuit

      • 9.4 Load-Resonant Converters

        • 9.4.1 Series-Loaded Resonant dc-dc Converters

          • 9.4.1.1 Discontinuous-Conduction Mode with omega _s < ½omega _0

          • 9.4.1.2 Continuous-Conduction Mode with ½omega _0 < omega _s < omega _0

          • 9.4.1.3 Continuous-Conduction Mode with omega _s > omega _0

          • 9.4.1.4 Steady-State Operating Characteristics

          • 9.4.1.5 Control of SLR dc-dc Converters

        • 9.4.2 Parallel-Loaded Resonant dc-dc Converters

          • 9.4.2.1 Discontinuous Mode of Operation

          • 9.4.2.2 Continuous Mode of Operation below omega _0

          • 9.4.2.3 Continuous Mode of Operation above omega _0

          • 9.4.2.4 Steady-State Operating Characteristics

        • 9.4.3 Hybrid-Resonant dc-dc Converter

        • 9.4.4 Current-Source, Parallel-Resonant dc-to-ac Inverters for Induction Heating

          • 9.4.4.1 Start-up

        • 9.4.5 Class E Converters

      • 9.5 Resonant-Switch Converters

        • 9.5.1 ZCS Resonant-Switch Converters

        • 9.5.2 ZVS Resonant-Switch Converters

        • 9.5.3 Comparison of ZCS and ZVS Topologies

      • 9.6 Zero-Voltage-Switching, Clamped-Voltage Topologies

        • 9.6.1 ZVS-CV dc-dc Converters

        • 9.6.2 ZVS-CV dc-to-ac Inverters

        • 9.6.3 ZVS-CV dc-dc Converter with Voltage Cancellation

      • 9.7 Resonant-dc-Link Inverters with Zero-Voltage Switchings

      • 9.8 High-Frequency-Link Integral-Half-Cycle Converters

      • Summary

      • Problems

      • References

    • Part III. Power Supply Applications

    • 10. Switching dc Power Supplies

      • 10.1 Introduction

      • 10.2 Linear Power Supplies

      • 10.3 Overview of Switching Power Supplies

      • 10.4 dc-dc Converters with Electrical Isolation

        • 10.4.1 Introduction to dc-dc Converters with Isolation

          • 10.4.1.1 Unidirectional Core Excitation

          • 10.4.1.2 Bidirectional Core Excitation

          • 10.4.1.3 Isolation Transformer Representation

          • 10.4.1.4 Control of dc-dc Converters with Isolation

        • 10.4.2 Flyback Converters (Derived from Buck-Boost Converters)

          • 10.4.2.1 Other Flyback Converter Topologies

        • 10.4.3 Forward Converter (Derived from Step-down Converter)

          • 10.4.3.1 Other Forward Converter Topologies

        • 10.4.4 Push-Pull Converter (Derived from Step-down Converter)

        • 10.4.5 Half-Bridge Converter (Derived from Step-down Converter)

        • 10.4.6 Full-Bridge Converter (Derived from Step-down Converter)

        • 10.4.7 Current-Source dc-dc Converters

        • 10.4.8 Transformer Core Selection in dc-dc Converters with Electrical Isolation

      • 10.5 Control of Switch-Mode dc Power Supplies

        • 10.5.1 Linearization of the Power Stage Including the Output Filter Using State-Space Averaging to Obtain v with Tilde_o (s)/d with Tilde (s)

        • 10.5.2 Transfer Function d with Tilde (s)/v with Tilde_c (s) of the Direct Duty Ratio Pulse-Width Modulator

        • 10.5.3 Compensation of the Feedback System Using a Direct Duty Ratio Pulse-Width Modulator

        • 10.5.4 Voltage Feed-Forward PWM Control

        • 10.5.5 Current-Mode Control

        • 10.5.6 Digital Pulse-Width Modulation Control

      • 10.6 Power Supply Protection

        • 10.6.1 Soft Start

        • 10.6.2 Voltage Protection

        • 10.6.3 Current Limiting

          • 10.6.3.1 Foldback Current Limiting

      • 10.7 Electrical Isolation in the Feedback Loop

      • 10.8 Designing to Meet the Power Supply Specifications

        • 10.8.1 Input Filter

        • 10.8.2 Input Rectifier Bridge

        • 10.8.3 Bulk Capacitor and the Hold-up Time

        • 10.8.4 Limiting Inrush (Surge) Current at Initial Turn-on

        • 10.8.5 Equivalent Series Resistance of Output Filter Capacitor

        • 10.8.6 Synchronous Rectifier to Improve Energy Efficiency

        • 10.8.7 Multiple Outputs

        • 10.8.8 EMI Considerations

      • Summary

      • Problems

      • References

    • 11. Power Conditioners and Uninterruptible Power Supplies

      • 11.1 Introduction

      • 11.2 Power Line Disturbances

        • 11.2.1 Types of Disturbances

        • 11.2.2 Sources of Disturbances

        • 11.2.3 Effect on Sensitive Equipment

      • 11.3 Power Conditioners

      • 11.4 Uninterruptible Power Supplies (UPSs)

        • 11.4.1 Rectifier

        • 11.4.2 Batteries

        • 11.4.3 Inverters

        • 11.4.4 Static Transfer Switch

      • Summary

      • Problems

      • References

    • Part IV. Motor Drive Applications

    • 12. Introduction to Motor Drives

      • 12.1 Introduction

      • 12.2 Criteria for Selecting Drive Components

        • 12.2.1 Match between the Motor and the Load

        • 12.2.2 Thermal Considerations in Selecting the Motor

        • 12.2.3 Match between the Motor and the Power Electronic Converter

          • 12.2.3.1 Current Rating

          • 12.2.3.2 Voltage Rating

          • 12.2.3.3 Switching Frequency and the Motor Inductance

        • 12.2.4 Selection of Speed and Position Sensors

        • 12.2.5 Servo Drive Control and Current Limiting

        • 12.2.6 Current Limiting in Adjustable-Speed Drives

      • Summary

      • Problems

      • References

    • 13. dc Motor Drives

      • 13.1 Introduction

      • 13.2 Equivalent Circuit of dc Motors

      • 13.3 Permanent-Magnet dc Motors

      • 13.4 dc Motors with a Separately Excited Field Winding

      • 13.5 Effect of Armature Current Waveform

        • 13.5.1 Form Factor

        • 13.5.2 Torque Pulsations

      • 13.6 dc Servo Drives

        • 13.6.1 Transfer Function Model for Small-Signal Dynamic Performance

        • 13.6.2 Power Electronic Converter

        • 13.6.3 Ripple in the Armature Current i_a

        • 13.6.4 Control of Servo Drives

        • 13.6.5 Nonlinearity due to Blanking Time

        • 13.6.6 Selection of Servo Drive Parameters

      • 13.7 Adjustable-Speed dc Drives

        • 13.7.1 Switch-Mode dc-dc Converter

        • 13.7.2 Line-Frequency Controlled Converters

        • 13.7.3 Effect of Discontinuous Armature Current

        • 13.7.4 Control of Adjustable-Speed Drives

        • 13.7.5 Field Weakening in Adjustable-Speed dc Motor Drives

        • 13.7.6 Power Factor of the Line Current in Adjustable-Speed Drives

      • Summary

      • Problems

      • References

    • 14. Induction Motor Drives

      • 14.1 Introduction

      • 14.2 Basic Principles of Induction Motor Operation

      • 14.3 Induction Motor Characteristics at Rated (Line) Frequency and Rated Voltage

      • 14.4 Speed Control by Varying Stator Frequency and Voltage

        • 14.4.1 Torque-Speed Characteristics

        • 14.4.2 Start-up Considerations

        • 14.4.3 Voltage Boost Required at Low Frequencies

        • 14.4.4 Induction Motor Capability: Below and above the Rated Speed

          • 14.4.4.1 Below the Rated Speed: Constant-Torque Region

          • 14.4.4.2 Beyond the Rated Speed: Constant-Power Region

          • 14.4.4.3 High-Speed Operation: Constant-f_sl Region

          • 14.4.4.4 Higher Voltage Operation

        • 14.4.5 Braking in Induction Motors

      • 14.5 Impact of Nonsinusoidal Excitation on Induction Motors

        • 14.5.1 Harmonic Motor Currents

        • 14.5.2 Harmonic Losses

        • 14.5.3 Torque Pulsations

      • 14.6 Variable-Frequency Converter Classifications

      • 14.7 Variable-Frequency PWM-VSI Drives

        • 14.7.1 Impact of PWM-VSI Harmonics

        • 14.7.2 Input Power Factor and Current Waveform

        • 14.7.3 Electromagnetic Braking

        • 14.7.4 Adjustable-Speed Control of PWM-VSI Drives

        • 14.7.5 Induction Motor Servo Drives

      • 14.8 Variable-Frequency Square-Wave VSI Drives

      • 14.9 Variable-Frequency CSI Drives

      • 14.10 Comparison of Variable-Frequency Drives

      • 14.11 Line-Frequency Variable-Voltage Drives

      • 14.12 Reduced Voltage Starting ("Soft Start") of Induction Motors

      • 14.13 Speed Control by Static Slip Power Recovery

      • Summary

      • Problems

      • References

    • 15. Synchronous Motor Drives

      • 15.1 Introduction

      • 15.2 Basic Principles of Synchronous Motor Operation

      • 15.3 Synchronous Servomotor Drives with Sinusoidal Waveforms

      • 15.4 Synchronous Servomotor Drives with Trapezoidal Waveforms

      • 15.5 Load-Commutated Inverter Drives

      • 15.6 Cycloconverters

      • Summary

      • Problems

      • References

    • Part V. Other Applications

    • 16. Residential and Industrial Applications

      • 16.1 Introduction

      • 16.2 Residential Applications

        • 16.2.1 Space Heating and Air Conditioning

        • 16.2.2 High-Frequency Fluorescent Lighting

        • 16.2.3 Induction Cooking

      • 16.3 Industrial Applications

        • 16.3.1 Induction Heating

        • 16.3.2 Electric Welding

        • 16.3.3 Integral Half-Cycle Controllers

      • Summary

      • Problems

      • References

    • 17. Electric Utility Applications

      • 17.1 Introduction

      • 17.2 High-Voltage dc Transmission

        • 17.2.1 Twelve-Pulse Line-Frequency Converters

        • 17.2.2 Reactive Power Drawn by Converters

          • 17.2.2.1 Rectifier Mode of Operation

          • 17.2.2.2 Inverter Mode of Operation

        • 17.2.3 Control of HVDC Converters

        • 17.2.4 Harmonic Filters and Power Factor Correction Capacitors

          • 17.2.4.1 dc-Side Harmonic Filters

          • 17.2.4.2 ac-Side Harmonic Filters and Power Factor Correction Capacitors

      • 17.3 Static var Compensators

        • 17.3.1 Thyristor-Controlled Inductors

        • 17.3.2 Thyristor-Switched Capacitors

        • 17.3.3 Instantaneous var Control Using Switching Converters with Minimum Energy Storage

      • 17.4 Interconnection of Renewable Energy Sources and Energy Storage Systems to the Utility Grid

        • 17.4.1 Photovoltaic Array Interconnection

          • 17.4.1.1 Single-Phase Interconnection

          • 17.4.1.2 Three-Phase Interconnection

        • 17.4.2 Wind and Small Hydro Interconnection

        • 17.4.3 Minnesota Interface: A New Topology Utility Interface for Photovoltaic, Wind, and Fuel Cell Systems

        • 17.4.4 Interconnection of Energy Storage Systems for Utility Load Leveling

      • 17.5 Active Filters

      • Summary

      • Problems

      • References

    • 18. Optimizing the Utility Interface with Power Electronic Systems

      • 18.1 Introduction

      • 18.2 Generation of Current Harmonics

      • 18.3 Current Harmonics and Power Factor

      • 18.4 Harmonic Standards and Recommended Practices

      • 18.5 Need for Improved Utility Interface

      • 18.6 Improved Single-Phase Utility Interface

        • 18.6.1 Passive Circuits

        • 18.6.2 Active Shaping of the Input Line Current

        • 18.6.3 Interface for a Bidirectional Power Flow

      • 18.7 Improved Three-Phase Utility Interface

        • 18.7.1 Minnesota Rectifier

      • 18.8 Electromagnetic Interference

        • 18.8.1 Generation of EMI

        • 18.8.2 EMI Standards

        • 18.8.3 Reduction of EMI

      • Summary

      • Problems

      • References

    • Part VI. Semiconductor Devices

    • 19. Basic Semiconductor Physics

      • 19.1 Introduction

      • 19.2 Conduction Processes in Semiconductors

        • 19.2.1 Metals, Insulators, and Semiconductors

        • 19.2.2 Electrons and Holes

        • 19.2.3 Doped Semiconductors

        • 19.2.4 Recombination

        • 19.2.5 Drift and Diffusion

      • 19.3 pn Junctions

        • 19.3.1 Potential Barrier at Thermal Equilibrium

        • 19.3.2 Forward and Reverse Bias

      • 19.4 Charge Control Description of pn-Junction Operation

      • 19.5 Avalanche Breakdown

        • 19.5.1 Impact Ionization

        • 19.5.2 Breakdown Voltage Estimate

      • Summary

      • Problems

      • References

    • 20. Power Diodes

      • 20.1 Introduction

      • 20.2 Basic Structure and I-V Characteristics

      • 20.3 Breakdown Voltage Considerations

        • 20.3.1 Breakdown Voltage of Non-Punch-through Diodes

        • 20.3.2 Breakdown Voltage of Punch-through Diode

        • 20.3.3 Depletion Layer Boundary Control

      • 20.4 On-State Losses

        • 20.4.1 Conductivity Modulation

        • 20.4.2 Impact on On-State Losses

      • 20.5 Switching Characteristics

        • 20.5.1 Observed Switching Waveforms

        • 20.5.2 Turn-on Transient

        • 20.5.3 Turn-off Transient

        • 20.5.4 Reverse Recovery

      • 20.6 Schottky Diodes

        • 20.6.1 Structure and I-V Characteristics

        • 20.6.2 Principle of Operation

        • 20.6.3 Ohmic Contacts

        • 20.6.4 Breakdown Voltage

        • 20.6.5 Switching Characteristics

      • Summary

      • Problems

      • References

    • 21. Bipolar Junction Transistors

      • 21.1 Introduction

      • 21.2 Vertical Power Transistor Structures

      • 21.3 I-V Characteristics

      • 21.4 Physics of BJT Operation

        • 21.4.1 Basic Gain Mechanism and Beta

        • 21.4.2 Quasi-Saturation

      • 21.5 Switching Characteristics

        • 21.5.1 BJT Turn-on

        • 21.5.2 Transistor Turn-off

        • 21.5.3 Switching of Monolithic Darlingtons

      • 21.6 Breakdown Voltages

      • 21.7 Second Breakdown

      • 21.8 On-State Losses

      • 21.9 Safe Operating Areas

      • Summary

      • Problems

      • References

    • 22. Power MOSFETs

      • 22.1 Introduction

      • 22.2 Basic Structure

      • 22.3 I-V Characteristics

      • 22.4 Physics of Device Operation

        • 22.4.1 Inversion Layers and the Field Effect

        • 22.4.2 Gate Control of Drain Current Flow

      • 22.5 Switching Characteristics

        • 22.5.1 MOSFET Circuit Models

        • 22.5.2 Switching Waveforms

      • 22.6 Operating Limitations and Safe Operating Areas

        • 22.6.1 Voltage Breakdown

        • 22.6.2 On-State Conduction Losses

        • 22.6.3 Paralleling of MOSFETs

        • 22.6.4 Parasitic BJT

        • 22.6.5 Safe Operating Area

      • Summary

      • Problems

      • References

    • 23. Thyristors

      • 23.1 Introduction

      • 23.2 Basic Structure

      • 23.3 I-V Characteristics

      • 23.4 Physics of Device Operation

        • 23.4.1 Blocking States

        • 23.4.2 Turn-on Process

        • 23.4.3 On-State Operation

        • 23.4.4 Turn-off Process

      • 23.5 Switching Characteristics

        • 23.5.1 Turn-on Transient and di/dt Limitations

        • 23.5.2 Turn-off Transient

        • 23.5.3 Turn-off Time and Reapplied dv_F /dt Limitations

      • 23.6 Methods of Improving di/dt and dv/dt Ratings

        • 23.6.1 Improvements in di/dt

        • 23.6.2 Cathode Shorts

      • Summary

      • Problems

      • References

    • 24. Gate Turn-off Thyristors

      • 24.1 Introduction

      • 24.2 Basic Structure and I-V Characteristics

      • 24.3 Physics of Turn-off Operation

        • 24.3.1 Turn-off Gain

        • 24.3.2 Required Structural Modifications and Performance Compromises

      • 24.4 GTO Switching Characteristics

        • 24.4.1 Inclusion of Snubber and Drive Circuits

        • 24.4.2 GTO Turn-on Transient

        • 24.4.3 GTO Turn-off Transient

        • 24.4.4 Minimum on- and Off-State Times

        • 24.4.5 Maximum Controllable Anode Current

      • 24.5 Overcurrent Protection of GTOs

      • Summary

      • Problems

      • References

    • 25. Insulated Gate Bipolar Transistors

      • 25.1 Introduction

      • 25.2 Basic Structure

      • 25.3 I-V Characteristics

      • 25.4 Physics of Device Operation

        • 25.4.1 Blocking State Operation

        • 25.4.2 On-State Operation

      • 25.5 Latchup in IGBTs

        • 25.5.1 Causes of Latchup

        • 25.5.2 Avoidance of Latchup

      • 25.6 Switching Characteristics

        • 25.6.1 Turn-on Transient

        • 25.6.2 Turn-off Transient

        • 25.6.3 NPT versus PT Structures

      • 25.7 Device Limits and SOAs

      • Summary

      • Problems

      • References

    • 26. Emerging Devices and Circuits

      • 26.1 Introduction

      • 26.2 Power Junction Field Effect Transistors

        • 26.2.1 Basic Structure and I-V Characteristics

        • 26.2.2 Physics of Device Operation

        • 26.2.3 Switching Characteristics

      • 26.3 Field-Controlled Thyristor

        • 26.3.1 Basic Structure and I-V Characteristic

        • 26.3.2 Physical Description of FCT Operation

        • 26.3.3 Switching Characteristics

      • 26.4 JFET-Based Devices versus other Power Devices

      • 26.5 MOS-Controlled Thyristors

        • 26.5.1 Basic Structure

        • 26.5.2 MOSFET-Controlled Turn-on and Turn-off

        • 26.5.3 Rationale of Off-FET Placement in the MCT Structure

        • 26.5.4 MCT Switching Behavior

        • 26.5.5 Device Limits and Safe Operating Area

      • 26.6 Power Integrated Circuits

        • 26.6.1 Types of Power Integrated Circuits

        • 26.6.2 Challenges Facing PIC Commercialization

        • 26.6.3 Progress in Resolving Challenges

      • 26.7 New Semiconductor Materials for Power Devices

        • 26.7.1 Properties of Candidate Replacement Materials for Silicon

        • 26.7.2 Comparative Estimates of Power Device Performance Using other Materials

        • 26.7.3 Challenges in Using New Semiconductor Materials

        • 26.7.4 Future Trends

      • Summary

      • Problems

      • References

    • Part VII. Practical Converter Design Considerations

    • 27. Snubber Circuits

      • 27.1 Function and Types of Snubber Circuits

      • 27.2 Diode Snubbers

        • 27.2.1 Capacitive Snubber

        • 27.2.2 Effect of Adding a Snubber Resistance

        • 27.2.3 Implementation

      • 27.3 Snubber Circuits for Thyristors

      • 27.4 Need for Snubbers with Transistors

      • 27.5 Turn-off Snubber

      • 27.6 Overvoltage Snubber

      • 27.7 Turn-on Snubber

      • 27.8 Snubbers for Bridge Circuit Configurations

      • 27.9 GTO Snubber Considerations

      • Summary

      • Problems

      • References

    • 28. Gate and Base Drive Circuits

      • 28.1 Preliminary Design Considerations

      • 28.2 dc-Coupled Drive Circuits

        • 28.2.1 dc-Coupled Drive Circuits with Unipolar Output

        • 28.2.2 dc-Coupled Drive Circuits with Bipolar Output

      • 28.3 Electrically Isolated Drive Circuits

        • 28.3.1 Need for and Types of Electrical Isolation

        • 28.3.2 Optocoupler Isolated Drive Circuits

        • 28.3.3 Transformer-Isolated Drive Circuits Providing Both Signal and Power

      • 28.4 Cascode-Connected Drive Circuits

        • 28.4.1 Open-Emitter BJT Drive Circuit

        • 28.4.2 Cascode Drive Circuits for Normally on Power Devices

      • 28.5 Thyristor Drive Circuits

        • 28.5.1 Gate Current Pulse Requirements

        • 28.5.2 Gate Pulse Amplifiers

        • 28.5.3 Commutation Circuits

      • 28.6 Power Device Protection in Drive Circuits

        • 28.6.1 Overcurrent Protection

        • 28.6.2 Blanking Times for Bridge Circuits

        • 28.6.3 "Smart" Drive Circuits for Snubberless Switching

      • 28.7 Circuit Layout Considerations

        • 28.7.1 Minimizing Stray Inductance in Drive Circuits

        • 28.7.2 Shielding and Partitioning of Drive Circuits

        • 28.7.3 Reduction of Stray Inductance in Bus Bars

        • 28.7.4 Current Measurements

        • 28.7.5 Capacitor Selection

          • 28.7.5.1 Aluminum Electrolytic Capacitors

          • 28.7.5.2 Metallized Polypropylene Capacitors and Ceramic Capacitors

      • Summary

      • Problems

      • References

    • 29. Component Temperature Control and Heat Sinks

      • 29.1 Control of Semiconductor Device Temperatures

      • 29.2 Heat Transfer by Conduction

        • 29.2.1 Thermal Resistance

        • 29.2.2 Transient Thermal Impedance

      • 29.3 Heat Sinks

      • 29.4 Heat Transfer by Radiation and Convection

        • 29.4.1 Thermal Resistance due to Radiative Heat Transfer

        • 29.4.2 Thermal Resistance due to Convective Heat Transfer

        • 29.4.3 Example Heat Sink-Ambient Calculation

      • Summary

      • Problems

      • References

    • 30. Design of Magnetic Components

      • 30.1 Magnetic Materials and Cores

        • 30.1.1 Magnetic Core Materials

        • 30.1.2 Hysteresis Loss

        • 30.1.3 Skin Effect Limitations

        • 30.1.4 Eddy Current Loss in Laminated Cores

        • 30.1.5 Core Shapes and Optimum Dimensions

      • 30.2 Copper Windings

        • 30.2.1 Copper Fill Factor

        • 30.2.2 Winding Loss due to dc Resistance of Windings

        • 30.2.3 Skin Effect in Copper Windings

      • 30.3 Thermal Considerations

      • 30.4 Analysis of a Specific Inductor Design

        • 30.4.1 Inductor Parameters

        • 30.4.2 Characteristics of the Inductor

          • 30.4.2.1 Copper Fill Factor k_cu

          • 30.4.2.2 Current Density J and Winding Losses P_w

          • 30.4.2.3 Flux Densities and Core Losses

        • 30.4.3 Inductance L

        • 30.4.4 Temperatures in the Inductor

        • 30.4.5 Effect of an Overcurrent on the Hot Spot Temperature

      • 30.5 Inductor Design Procedures

        • 30.5.1 Inductor Design Foundation: The Stored Energy Relation

        • 30.5.2 Single-Pass Inductor Design Procedure Outline

        • 30.5.3 Iterative Inductor Design Procedure

        • 30.5.4 Inductor Design Example

      • 30.6 Analysis of a Specific Transformer Design

        • 30.6.1 Transformer Parameters

        • 30.6.2 Transformer Electrical Characteristics

          • 30.6.2.1 Areas of Primary and Secondary Conductors, A_pri and A_sec

          • 30.6.2.2 Winding Loss P_w

          • 30.6.2.3 Flux Density and Core Loss

          • 30.6.2.4 Leakage Inductance

        • 30.6.3 Temperature in the Transformer

        • 30.6.4 Effect of Overcurrents on Transformer Temperatures

      • 30.7 Eddy Currents

        • 30.7.1 Proximity Effect

        • 30.7.2 Optimum Conductor Size and Minimum Winding Loss

        • 30.7.3 Reduction of Loss in the Inductor Winding

        • 30.7.4 Sectioning Transformer Windings to Reduce Eddy Current Loss

        • 30.7.5 Optimization of Solid Conductor Windings

      • 30.8 Transformer Leakage Inductance

      • 30.9 Transformer Design Procedure

        • 30.9.1 Transformer Design Foundation: The Volt-Ampere Rating

        • 30.9.2 Single-Pass Transformer Design Procedure

        • 30.9.3 Transformer Design Example

      • 30.10 Comparison of Transformer and Inductor Sizes

      • Summary

      • Problems

      • References

    • Index

      • A

      • B

      • C

      • D

      • E

      • F

      • G

      • H

      • I

      • J

      • K

      • L

      • M

      • N

      • O

      • P

      • Q

      • R

      • S

      • T

      • U

      • V

      • W

      • Z

    • Contents of CD-ROM

      • Chapter Slides

        • Chapter 1

        • Chapter 2

        • Chapter 3

        • Chapter 4

        • Chapter 5

        • Chapter 6

        • Chapter 7

        • Chapter 8

        • Chapter 9

        • Chapter 10

        • Chapter 11

        • Chapter 12

        • Chapter 13

        • Chapter 14

        • Chapter 15

        • Chapter 16

        • Chapter 17

        • Chapter 18

        • Chapter 19

        • Chapter 20

        • Chapter 21

        • Chapter 22

        • Chapter 23

        • Chapter 24

        • Chapter 25

        • Chapter 26

        • Chapter 27

        • Chapter 28

        • Chapter 29

        • Chapter 30

      • New Problems

        • Supplemental Problems to Chapters 1-18

        • Supplemental Problems to Chapters 19-30

      • PSpice-Based Examples

        • Read Me - PSpice

        • PSpice Quick Setup and User Guide

        • PSpice Examples

      • Transformer and Inductor Design

        • Read Me - Magnetic Components

  • 26932_01

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • 1. Power Electronic Systems

      • 1.1 Introduction

      • 1.2 Power Electronics versus Linear Electronics

      • 1.3 Scope and Applications

      • 1.4 Classification of Power Processors and Converters

        • 1.4.1 Power Processors

        • 1.4.2 Power Converters

        • 1.4.3 Matrix Converter as a Power Processor

      • 1.5 About the Text

      • 1.6 Interdisciplinary Nature of Power Electronics

      • 1.7 Convention of Symbols Used

      • Problems

      • References

    • 2. Overview of Power Semiconductor Switches

      • 2.1 Introduction

      • 2.2 Diodes

      • 2.3 Thyristors

      • 2.4 Desired Characteristics in Controllable Switches

      • 2.5 Bipolar Junction Transistors and Monolithic Darlingtons

      • 2.6 Metal-Oxide-Semiconductor Field Effect Transistors

      • 2.7 Gate-Turn-off Thyristors

      • 2.8 Insulated Gate Bipolar Transistors

      • 2.9 MOS-Controlled Thyristors

      • 2.10 Comparison of Controllable Switches

      • 2.11 Drive and Snubber Circuits

      • 2.12 Justification for Using Idealized Device Characteristics

      • Summary

      • Problems

      • References

    • 3. Review of Basic Electrical and Magnetic Circuit Concepts

      • 3.1 Introduction

      • 3.2 Electric Circuits

        • 3.2.1 Definition of Steady State

        • 3.2.2 Average Power and rms Current

        • 3.2.3 Steady-State ac Waveforms with Sinusoidal Voltages and Currents

          • 3.2.3.1 Phasor Representation

          • 3.2.3.2 Power, Reactive Power, and Power Factor

          • 3.2.3.3 Three-Phase Circuits

        • 3.2.4 Nonsinusoidal Waveforms in Steady State

          • 3.2.4.1 Fourier Analysis of Repetitive Waveforms

          • 3.2.4.2 Line-Current Distortion

          • 3.2.4.3 Power and Power Factor

        • 3.2.5 Inductor and Capacitor Response

          • 3.2.5.1 Average V_L and I_c in Steady State

      • 3.3 Magnetic Circuits

        • 3.3.1 Ampere's Law

        • 3.3.2 Right-Hand Rule

        • 3.3.3 Flux Density or B-Field

        • 3.3.4 Continuity of Flux

        • 3.3.5 Magnetic Reluctance and Permeance

        • 3.3.6 Magnetic Circuit Analysis

        • 3.3.7 Faraday's Voltage Induction Law

        • 3.3.8 Self-Inductance L

        • 3.3.9 Transformers

          • 3.3.9.1 Transformers with Lossless Cores

          • 3.3.9.2 Ideal Transformers

          • 3.3.9.3 Transformers with Cores Having Hysteresis

          • 3.3.9.4 Per-Unit Leakage Inductances

      • Summary

      • Problems

      • References

    • 4. Computer Simulation of Power Electronic Converters and Systems

      • 4.1 Introduction

      • 4.2 Challenges in Computer Simulation

      • 4.3 Simulation Process

        • 4.3.1 Open-Loop, Large-Signal Simulation

        • 4.3.2 Small-Signal (Linear) Model and Controller Design

        • 4.3.3 Closed-Loop, Large-Signal System Behavior

        • 4.3.4 Switching Details

      • 4.4 Mechanics of Simulation

        • 4.4.1 Circuit-Oriented Simulators

        • 4.4.2 Equation Solvers

        • 4.4.3 Comparison of Circuit-Oriented Simulators and Equation Solvers

      • 4.5 Solution Techniques for Time-Domain Analysis

        • 4.5.1 Linear Differential Equations

        • 4.5.2 Trapezoidal Method of Integration

        • 4.5.3 Nonlinear Differential Equations

      • 4.6 Widely Used, Circuit-Oriented Simulators

        • 4.6.1 Spice

        • 4.6.2 EMTP Simulation Program

        • 4.6.3 Suitability of PSpice and EMTP

      • 4.7 Equation Solvers

      • Summary

      • Problems

      • References

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_02

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • 1. Power Electronic Systems

      • 1.1 Introduction

      • 1.2 Power Electronics versus Linear Electronics

      • 1.3 Scope and Applications

      • 1.4 Classification of Power Processors and Converters

        • 1.4.1 Power Processors

        • 1.4.2 Power Converters

        • 1.4.3 Matrix Converter as a Power Processor

      • 1.5 About the Text

      • 1.6 Interdisciplinary Nature of Power Electronics

      • 1.7 Convention of Symbols Used

      • Problems

      • References

    • 2. Overview of Power Semiconductor Switches

      • 2.1 Introduction

      • 2.2 Diodes

      • 2.3 Thyristors

      • 2.4 Desired Characteristics in Controllable Switches

      • 2.5 Bipolar Junction Transistors and Monolithic Darlingtons

      • 2.6 Metal-Oxide-Semiconductor Field Effect Transistors

      • 2.7 Gate-Turn-off Thyristors

      • 2.8 Insulated Gate Bipolar Transistors

      • 2.9 MOS-Controlled Thyristors

      • 2.10 Comparison of Controllable Switches

      • 2.11 Drive and Snubber Circuits

      • 2.12 Justification for Using Idealized Device Characteristics

      • Summary

      • Problems

      • References

    • 3. Review of Basic Electrical and Magnetic Circuit Concepts

      • 3.1 Introduction

      • 3.2 Electric Circuits

        • 3.2.1 Definition of Steady State

        • 3.2.2 Average Power and rms Current

        • 3.2.3 Steady-State ac Waveforms with Sinusoidal Voltages and Currents

          • 3.2.3.1 Phasor Representation

          • 3.2.3.2 Power, Reactive Power, and Power Factor

          • 3.2.3.3 Three-Phase Circuits

        • 3.2.4 Nonsinusoidal Waveforms in Steady State

          • 3.2.4.1 Fourier Analysis of Repetitive Waveforms

          • 3.2.4.2 Line-Current Distortion

          • 3.2.4.3 Power and Power Factor

        • 3.2.5 Inductor and Capacitor Response

          • 3.2.5.1 Average V_L and I_c in Steady State

      • 3.3 Magnetic Circuits

        • 3.3.1 Ampere's Law

        • 3.3.2 Right-Hand Rule

        • 3.3.3 Flux Density or B-Field

        • 3.3.4 Continuity of Flux

        • 3.3.5 Magnetic Reluctance and Permeance

        • 3.3.6 Magnetic Circuit Analysis

        • 3.3.7 Faraday's Voltage Induction Law

        • 3.3.8 Self-Inductance L

        • 3.3.9 Transformers

          • 3.3.9.1 Transformers with Lossless Cores

          • 3.3.9.2 Ideal Transformers

          • 3.3.9.3 Transformers with Cores Having Hysteresis

          • 3.3.9.4 Per-Unit Leakage Inductances

      • Summary

      • Problems

      • References

    • 4. Computer Simulation of Power Electronic Converters and Systems

      • 4.1 Introduction

      • 4.2 Challenges in Computer Simulation

      • 4.3 Simulation Process

        • 4.3.1 Open-Loop, Large-Signal Simulation

        • 4.3.2 Small-Signal (Linear) Model and Controller Design

        • 4.3.3 Closed-Loop, Large-Signal System Behavior

        • 4.3.4 Switching Details

      • 4.4 Mechanics of Simulation

        • 4.4.1 Circuit-Oriented Simulators

        • 4.4.2 Equation Solvers

        • 4.4.3 Comparison of Circuit-Oriented Simulators and Equation Solvers

      • 4.5 Solution Techniques for Time-Domain Analysis

        • 4.5.1 Linear Differential Equations

        • 4.5.2 Trapezoidal Method of Integration

        • 4.5.3 Nonlinear Differential Equations

      • 4.6 Widely Used, Circuit-Oriented Simulators

        • 4.6.1 Spice

        • 4.6.2 EMTP Simulation Program

        • 4.6.3 Suitability of PSpice and EMTP

      • 4.7 Equation Solvers

      • Summary

      • Problems

      • References

    • Part II. Generic Power Electronic Converters

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_03a

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • 1. Power Electronic Systems

      • 1.1 Introduction

      • 1.2 Power Electronics versus Linear Electronics

      • 1.3 Scope and Applications

      • 1.4 Classification of Power Processors and Converters

        • 1.4.1 Power Processors

        • 1.4.2 Power Converters

        • 1.4.3 Matrix Converter as a Power Processor

      • 1.5 About the Text

      • 1.6 Interdisciplinary Nature of Power Electronics

      • 1.7 Convention of Symbols Used

      • Problems

      • References

    • 2. Overview of Power Semiconductor Switches

      • 2.1 Introduction

      • 2.2 Diodes

      • 2.3 Thyristors

      • 2.4 Desired Characteristics in Controllable Switches

      • 2.5 Bipolar Junction Transistors and Monolithic Darlingtons

      • 2.6 Metal-Oxide-Semiconductor Field Effect Transistors

      • 2.7 Gate-Turn-off Thyristors

      • 2.8 Insulated Gate Bipolar Transistors

      • 2.9 MOS-Controlled Thyristors

      • 2.10 Comparison of Controllable Switches

      • 2.11 Drive and Snubber Circuits

      • 2.12 Justification for Using Idealized Device Characteristics

      • Summary

      • Problems

      • References

    • 3. Review of Basic Electrical and Magnetic Circuit Concepts

      • 3.1 Introduction

      • 3.2 Electric Circuits

        • 3.2.1 Definition of Steady State

        • 3.2.2 Average Power and rms Current

        • 3.2.3 Steady-State ac Waveforms with Sinusoidal Voltages and Currents

          • 3.2.3.1 Phasor Representation

          • 3.2.3.2 Power, Reactive Power, and Power Factor

          • 3.2.3.3 Three-Phase Circuits

        • 3.2.4 Nonsinusoidal Waveforms in Steady State

          • 3.2.4.1 Fourier Analysis of Repetitive Waveforms

          • 3.2.4.2 Line-Current Distortion

          • 3.2.4.3 Power and Power Factor

        • 3.2.5 Inductor and Capacitor Response

          • 3.2.5.1 Average V_L and I_c in Steady State

      • 3.3 Magnetic Circuits

        • 3.3.1 Ampere's Law

        • 3.3.2 Right-Hand Rule

        • 3.3.3 Flux Density or B-Field

        • 3.3.4 Continuity of Flux

        • 3.3.5 Magnetic Reluctance and Permeance

        • 3.3.6 Magnetic Circuit Analysis

        • 3.3.7 Faraday's Voltage Induction Law

        • 3.3.8 Self-Inductance L

        • 3.3.9 Transformers

          • 3.3.9.1 Transformers with Lossless Cores

          • 3.3.9.2 Ideal Transformers

          • 3.3.9.3 Transformers with Cores Having Hysteresis

          • 3.3.9.4 Per-Unit Leakage Inductances

      • Summary

      • Problems

      • References

    • 4. Computer Simulation of Power Electronic Converters and Systems

      • 4.1 Introduction

      • 4.2 Challenges in Computer Simulation

      • 4.3 Simulation Process

        • 4.3.1 Open-Loop, Large-Signal Simulation

        • 4.3.2 Small-Signal (Linear) Model and Controller Design

        • 4.3.3 Closed-Loop, Large-Signal System Behavior

        • 4.3.4 Switching Details

      • 4.4 Mechanics of Simulation

        • 4.4.1 Circuit-Oriented Simulators

        • 4.4.2 Equation Solvers

        • 4.4.3 Comparison of Circuit-Oriented Simulators and Equation Solvers

      • 4.5 Solution Techniques for Time-Domain Analysis

        • 4.5.1 Linear Differential Equations

        • 4.5.2 Trapezoidal Method of Integration

        • 4.5.3 Nonlinear Differential Equations

      • 4.6 Widely Used, Circuit-Oriented Simulators

        • 4.6.1 Spice

        • 4.6.2 EMTP Simulation Program

        • 4.6.3 Suitability of PSpice and EMTP

      • 4.7 Equation Solvers

      • Summary

      • Problems

      • References

    • Part II. Generic Power Electronic Converters

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_03b

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • 1. Power Electronic Systems

      • 1.1 Introduction

      • 1.2 Power Electronics versus Linear Electronics

      • 1.3 Scope and Applications

      • 1.4 Classification of Power Processors and Converters

        • 1.4.1 Power Processors

        • 1.4.2 Power Converters

        • 1.4.3 Matrix Converter as a Power Processor

      • 1.5 About the Text

      • 1.6 Interdisciplinary Nature of Power Electronics

      • 1.7 Convention of Symbols Used

      • Problems

      • References

    • 2. Overview of Power Semiconductor Switches

      • 2.1 Introduction

      • 2.2 Diodes

      • 2.3 Thyristors

      • 2.4 Desired Characteristics in Controllable Switches

      • 2.5 Bipolar Junction Transistors and Monolithic Darlingtons

      • 2.6 Metal-Oxide-Semiconductor Field Effect Transistors

      • 2.7 Gate-Turn-off Thyristors

      • 2.8 Insulated Gate Bipolar Transistors

      • 2.9 MOS-Controlled Thyristors

      • 2.10 Comparison of Controllable Switches

      • 2.11 Drive and Snubber Circuits

      • 2.12 Justification for Using Idealized Device Characteristics

      • Summary

      • Problems

      • References

    • 3. Review of Basic Electrical and Magnetic Circuit Concepts

      • 3.1 Introduction

      • 3.2 Electric Circuits

        • 3.2.1 Definition of Steady State

        • 3.2.2 Average Power and rms Current

        • 3.2.3 Steady-State ac Waveforms with Sinusoidal Voltages and Currents

          • 3.2.3.1 Phasor Representation

          • 3.2.3.2 Power, Reactive Power, and Power Factor

          • 3.2.3.3 Three-Phase Circuits

        • 3.2.4 Nonsinusoidal Waveforms in Steady State

          • 3.2.4.1 Fourier Analysis of Repetitive Waveforms

          • 3.2.4.2 Line-Current Distortion

          • 3.2.4.3 Power and Power Factor

        • 3.2.5 Inductor and Capacitor Response

          • 3.2.5.1 Average V_L and I_c in Steady State

      • 3.3 Magnetic Circuits

        • 3.3.1 Ampere's Law

        • 3.3.2 Right-Hand Rule

        • 3.3.3 Flux Density or B-Field

        • 3.3.4 Continuity of Flux

        • 3.3.5 Magnetic Reluctance and Permeance

        • 3.3.6 Magnetic Circuit Analysis

        • 3.3.7 Faraday's Voltage Induction Law

        • 3.3.8 Self-Inductance L

        • 3.3.9 Transformers

          • 3.3.9.1 Transformers with Lossless Cores

          • 3.3.9.2 Ideal Transformers

          • 3.3.9.3 Transformers with Cores Having Hysteresis

          • 3.3.9.4 Per-Unit Leakage Inductances

      • Summary

      • Problems

      • References

    • 4. Computer Simulation of Power Electronic Converters and Systems

      • 4.1 Introduction

      • 4.2 Challenges in Computer Simulation

      • 4.3 Simulation Process

        • 4.3.1 Open-Loop, Large-Signal Simulation

        • 4.3.2 Small-Signal (Linear) Model and Controller Design

        • 4.3.3 Closed-Loop, Large-Signal System Behavior

        • 4.3.4 Switching Details

      • 4.4 Mechanics of Simulation

        • 4.4.1 Circuit-Oriented Simulators

        • 4.4.2 Equation Solvers

        • 4.4.3 Comparison of Circuit-Oriented Simulators and Equation Solvers

      • 4.5 Solution Techniques for Time-Domain Analysis

        • 4.5.1 Linear Differential Equations

        • 4.5.2 Trapezoidal Method of Integration

        • 4.5.3 Nonlinear Differential Equations

      • 4.6 Widely Used, Circuit-Oriented Simulators

        • 4.6.1 Spice

        • 4.6.2 EMTP Simulation Program

        • 4.6.3 Suitability of PSpice and EMTP

      • 4.7 Equation Solvers

      • Summary

      • Problems

      • References

    • Part II. Generic Power Electronic Converters

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_04

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • 1. Power Electronic Systems

      • 1.1 Introduction

      • 1.2 Power Electronics versus Linear Electronics

      • 1.3 Scope and Applications

      • 1.4 Classification of Power Processors and Converters

        • 1.4.1 Power Processors

        • 1.4.2 Power Converters

        • 1.4.3 Matrix Converter as a Power Processor

      • 1.5 About the Text

      • 1.6 Interdisciplinary Nature of Power Electronics

      • 1.7 Convention of Symbols Used

      • Problems

      • References

    • 2. Overview of Power Semiconductor Switches

      • 2.1 Introduction

      • 2.2 Diodes

      • 2.3 Thyristors

      • 2.4 Desired Characteristics in Controllable Switches

      • 2.5 Bipolar Junction Transistors and Monolithic Darlingtons

      • 2.6 Metal-Oxide-Semiconductor Field Effect Transistors

      • 2.7 Gate-Turn-off Thyristors

      • 2.8 Insulated Gate Bipolar Transistors

      • 2.9 MOS-Controlled Thyristors

      • 2.10 Comparison of Controllable Switches

      • 2.11 Drive and Snubber Circuits

      • 2.12 Justification for Using Idealized Device Characteristics

      • Summary

      • Problems

      • References

    • 3. Review of Basic Electrical and Magnetic Circuit Concepts

      • 3.1 Introduction

      • 3.2 Electric Circuits

        • 3.2.1 Definition of Steady State

        • 3.2.2 Average Power and rms Current

        • 3.2.3 Steady-State ac Waveforms with Sinusoidal Voltages and Currents

          • 3.2.3.1 Phasor Representation

          • 3.2.3.2 Power, Reactive Power, and Power Factor

          • 3.2.3.3 Three-Phase Circuits

        • 3.2.4 Nonsinusoidal Waveforms in Steady State

          • 3.2.4.1 Fourier Analysis of Repetitive Waveforms

          • 3.2.4.2 Line-Current Distortion

          • 3.2.4.3 Power and Power Factor

        • 3.2.5 Inductor and Capacitor Response

          • 3.2.5.1 Average V_L and I_c in Steady State

      • 3.3 Magnetic Circuits

        • 3.3.1 Ampere's Law

        • 3.3.2 Right-Hand Rule

        • 3.3.3 Flux Density or B-Field

        • 3.3.4 Continuity of Flux

        • 3.3.5 Magnetic Reluctance and Permeance

        • 3.3.6 Magnetic Circuit Analysis

        • 3.3.7 Faraday's Voltage Induction Law

        • 3.3.8 Self-Inductance L

        • 3.3.9 Transformers

          • 3.3.9.1 Transformers with Lossless Cores

          • 3.3.9.2 Ideal Transformers

          • 3.3.9.3 Transformers with Cores Having Hysteresis

          • 3.3.9.4 Per-Unit Leakage Inductances

      • Summary

      • Problems

      • References

    • 4. Computer Simulation of Power Electronic Converters and Systems

      • 4.1 Introduction

      • 4.2 Challenges in Computer Simulation

      • 4.3 Simulation Process

        • 4.3.1 Open-Loop, Large-Signal Simulation

        • 4.3.2 Small-Signal (Linear) Model and Controller Design

        • 4.3.3 Closed-Loop, Large-Signal System Behavior

        • 4.3.4 Switching Details

      • 4.4 Mechanics of Simulation

        • 4.4.1 Circuit-Oriented Simulators

        • 4.4.2 Equation Solvers

        • 4.4.3 Comparison of Circuit-Oriented Simulators and Equation Solvers

      • 4.5 Solution Techniques for Time-Domain Analysis

        • 4.5.1 Linear Differential Equations

        • 4.5.2 Trapezoidal Method of Integration

        • 4.5.3 Nonlinear Differential Equations

      • 4.6 Widely Used, Circuit-Oriented Simulators

        • 4.6.1 Spice

        • 4.6.2 EMTP Simulation Program

        • 4.6.3 Suitability of PSpice and EMTP

      • 4.7 Equation Solvers

      • Summary

      • Problems

      • References

    • Part II. Generic Power Electronic Converters

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_05a

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • 5. Line-Frequency Diode Rectifiers: Line-Frequency ac right arrow Uncontrolled dc

      • 5.1 Introduction

      • 5.2 Basic Rectifier Concepts

        • 5.2.1 Pure Resistive Load

        • 5.2.2 Inductive Load

        • 5.2.3 Load with an Internal dc Voltage

      • 5.3 Single-Phase Diode Bridge Rectifiers

        • 5.3.1 Idealized Circuit with L_s = 0

        • 5.3.2 Effect of L_s on Current Commutation

        • 5.3.3 Constant dc-Side Voltage v_d (t) = V_d

          • 5.3.3.1 Rectifier Characteristic

        • 5.3.4 Practical Diode Bridge Rectifiers

          • 5.3.4.1 Analytical Calculations under a Highly Discontinuous Current

          • 5.3.4.2 Circuit Simulation for General Operating Conditions

          • 5.3.4.3 Line-Current Distortion

          • 5.3.4.4 Line-Voltage Distortion

      • 5.4 Voltage Doubler (Single-Phase) Rectifiers

      • 5.5 Effect of Single-Phase Rectifiers on Neutral Currents in Three-Phase, Four-Wire Systems

      • 5.6 Three-Phase, Full-Bridge Rectifiers

        • 5.6.1 Idealized Circuit with L_s = 0

        • 5.6.2 Effect of L_s on Current Commutation

        • 5.6.3 A Constant dc-Side Voltage v_d (t) = V_d

          • 5.6.3.1 Distortion in the Line-Current Waveforms

        • 5.6.4 Practical Three-Phase Diode Bridge Rectifiers

      • 5.7 Comparison of Single-Phase and Three-Phase Rectifiers

      • 5.8 Inrush Current and Overvoltages at Turn-on

      • 5.9 Concerns and Remedies for Line-Current Harmonics and Low Power Factor

      • Summary

      • Problems

      • References

      • Appendix

    • 6. Line-Frequency Phase-Controlled Rectifiers and Inverters: Line-Frequency ac left right arrow Controlled dc

      • 6.1 Introduction

      • 6.2 Thyristor Circuits and Their Control

        • 6.2.1 Basic Thyristor Circuits

        • 6.2.2 Thyristor Gate Triggering

        • 6.2.3 Practical Thyristor Converters

      • 6.3 Single-Phase Converters

        • 6.3.1 Idealized Circuit with L_s = 0 and i_d (t) = I_d

          • 6.3.1.1 dc-Side Voltage

          • 6.3.1.2 Line Current i_s

          • 6.3.1.3 Power, Power Factor, and Reactive Volt-Amperes

        • 6.3.2 Effect of L_s

          • 6.3.2.1 Input Line Current i_s

        • 6.3.3 Practical Thyristor Converters

          • 6.3.3.1 Discontinuous-Current Conduction

        • 6.3.4 Inverter Mode of Operation

          • 6.3.4.1 Inverter Start-up

        • 6.3.5 ac Voltage Waveform (Line Notching and Distortion)

      • 6.4 Three-Phase Converters

        • 6.4.1 Idealized Circuit with L_s = 0 and i_d (t) = I_d

          • 6.4.1.1 dc-Side Voltage

          • 6.4.1.2 Input Line Currents i_a , i_b , and i_c

          • 6.4.1.3 Power, Power Factor, and Reactive Volt-Amperes

        • 6.4.2 Effect of L_s

          • 6.4.2.1 Input Line Current i_s

        • 6.4.3 Practical Converter

          • 6.4.3.1 Discontinuous-Current Conduction

        • 6.4.4 Inverter Mode of Operation

          • 6.4.4.1 Inverter Start-up

        • 6.4.5 ac Voltage Waveform (Line Notching and Distortion)

          • 6.4.5.1 Line Notching

          • 6.4.5.2 Voltage Distortion

      • 6.5 Other Three-Phase Converters

      • Summary

      • Problems

      • References

      • Appendix

    • 7. dc-dc Switch-Mode Converters

      • 7.1 Introduction

      • 7.2 Control of dc-dc Converters

      • 7.3 Step-down (Buck) Converter

        • 7.3.1 Continuous-Conduction Mode

        • 7.3.2 Boundary between Continuous and Discontinuous Conduction

        • 7.3.3 Discontinuous-Conduction Mode

          • 7.3.3.1 Discontinuous-Conduction Mode with Constant V_d

          • 7.3.3.2 Discontinuous-Conduction Mode with Constant V_o

        • 7.3.4 Output Voltage Ripple

      • 7.4 Step-up (Boost) Converter

        • 7.4.1 Continuous-Conduction Mode

        • 7.4.2 Boundary between Continuous and Discontinuous Conduction

        • 7.4.3 Discontinuous-Conduction Mode

        • 7.4.4 Effect of Parasitic Elements

        • 7.4.5 Output Voltage Ripple

      • 7.5 Buck-Boost Converter

        • 7.5.1 Continuous-Conduction Mode

        • 7.5.2 Boundary between Continuous and Discontinuous Conduction

        • 7.5.3 Discontinuous-Conduction Mode

        • 7.5.4 Effect of Parasitic Elements

        • 7.5.5 Output Voltage Ripple

      • 7.6 Cúk dc-dc Converter

      • 7.7 Full-Bridge dc-dc Converter

        • 7.7.1 PWM with Bipolar Voltage Switching

        • 7.7.2 PWM with Unipolar Voltage Switching

      • 7.8 dc-dc Converter Comparison

      • Summary

      • Problems

      • References

    • 8. Switch-Mode dc-ac Inverters: dc left right arrow Sinusoidal ac

      • 8.1 Introduction

      • 8.2 Basic Concepts of Switch-Mode Inverters

        • 8.2.1 Pulse-Width-Modulated Switching Scheme

          • 8.2.1.1 Small m_f (m_f Less-Than or Equal to 21)

          • 8.2.1.2 Large m_f (m_f > 21)

          • 8.2.1.3 Overmodulation (m_a > 1.0)

        • 8.2.2 Square-Wave Switching Scheme

      • 8.3 Single-Phase Inverters

        • 8.3.1 Half-Bridge Inverters (Single Phase)

        • 8.3.2 Full-Bridge Inverters (Single Phase)

          • 8.3.2.1 PWM with Bipolar Voltage Switching

          • 8.3.2.2 PWM with Unipolar Voltage Switching

          • 8.3.2.3 Square-Wave Operation

          • 8.3.2.4 Output Control by Voltage Cancellation

          • 8.3.2.5 Switch Utilization in Full-Bridge Inverters

          • 8.3.2.6 Ripple in the Single-Phase Inverter Output

        • 8.3.3 Push-Pull Inverters

        • 8.3.4 Switch Utilization in Single-Phase Inverters

      • 8.4 Three-Phase Inverters

        • 8.4.1 PWM in Three-Phase Voltage Source Inverters

          • 8.4.1.1 Linear Modulation (m_a Less-Than or Equal to 1.0)

          • 8.4.1.2 Overmodulation (m_a > 1.0)

        • 8.4.2 Square-Wave Operation in Three-Phase Inverters

        • 8.4.3 Switch Utilization in Three-Phase Inverters

        • 8.4.4 Ripple in the Inverter Output

        • 8.4.5 dc-Side Current i_d

        • 8.4.6 Conduction of Switches in Three-Phase Inverters

          • 8.4.6.1 Square-Wave Operation

          • 8.4.6.2 PWM Operation

      • 8.5 Effect of Blanking Time on Voltage in PWM Inverters

      • 8.6 Other Inverter Switching Schemes

        • 8.6.1 Square-Wave Pulse Switching

        • 8.6.2 Programmed Harmonic Elimination Switching

        • 8.6.3 Current-Regulated (Current-Mode) Modulation

          • 8.6.3.1 Tolerance Band Control

          • 8.6.3.2 Fixed-Frequency Control

        • 8.6.4 Switching Scheme Incorporating Harmonic Neutralization by Modulation and Transformer Connections

      • 8.7 Rectifier Mode of Operation

      • Summary

      • Problems

      • References

    • 9. Resonant Converters: Zero-Voltage and/or Zero-Current Switchings

      • 9.1 Introduction

        • 9.1.1 Switch-Mode Inductive Current Switching

        • 9.1.2 Zero-Voltage and Zero-Current Switchings

      • 9.2 Classification of Resonant Converters

        • 9.2.1 Load-Resonant Converters

        • 9.2.2 Resonant-Switch Converters

        • 9.2.3 Resonant-dc-Link Converters

        • 9.2.4 High-Frequency-Link Integral-Half-Cycle Converters

      • 9.3 Basic Resonant Circuit Concepts

        • 9.3.1 Series-Resonant Circuits

          • 9.3.1.1 Undamped Series-Resonant Circuit

          • 9.3.1.2 Series-Resonant Circuit with a Capacitor-Parallel Load

          • 9.3.1.3 Frequency Characteristics of a Series-Resonant Circuit

        • 9.3.2 Parallel-Resonant Circuits

          • 9.3.2.1 Undamped Parallel-Resonant Circuit

          • 9.3.2.2 Frequency Characteristics of Parallel-Resonant Circuit

      • 9.4 Load-Resonant Converters

        • 9.4.1 Series-Loaded Resonant dc-dc Converters

          • 9.4.1.1 Discontinuous-Conduction Mode with omega _s < ½omega _0

          • 9.4.1.2 Continuous-Conduction Mode with ½omega _0 < omega _s < omega _0

          • 9.4.1.3 Continuous-Conduction Mode with omega _s > omega _0

          • 9.4.1.4 Steady-State Operating Characteristics

          • 9.4.1.5 Control of SLR dc-dc Converters

        • 9.4.2 Parallel-Loaded Resonant dc-dc Converters

          • 9.4.2.1 Discontinuous Mode of Operation

          • 9.4.2.2 Continuous Mode of Operation below omega _0

          • 9.4.2.3 Continuous Mode of Operation above omega _0

          • 9.4.2.4 Steady-State Operating Characteristics

        • 9.4.3 Hybrid-Resonant dc-dc Converter

        • 9.4.4 Current-Source, Parallel-Resonant dc-to-ac Inverters for Induction Heating

          • 9.4.4.1 Start-up

        • 9.4.5 Class E Converters

      • 9.5 Resonant-Switch Converters

        • 9.5.1 ZCS Resonant-Switch Converters

        • 9.5.2 ZVS Resonant-Switch Converters

        • 9.5.3 Comparison of ZCS and ZVS Topologies

      • 9.6 Zero-Voltage-Switching, Clamped-Voltage Topologies

        • 9.6.1 ZVS-CV dc-dc Converters

        • 9.6.2 ZVS-CV dc-to-ac Inverters

        • 9.6.3 ZVS-CV dc-dc Converter with Voltage Cancellation

      • 9.7 Resonant-dc-Link Inverters with Zero-Voltage Switchings

      • 9.8 High-Frequency-Link Integral-Half-Cycle Converters

      • Summary

      • Problems

      • References

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_05b

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • 5. Line-Frequency Diode Rectifiers: Line-Frequency ac right arrow Uncontrolled dc

      • 5.1 Introduction

      • 5.2 Basic Rectifier Concepts

        • 5.2.1 Pure Resistive Load

        • 5.2.2 Inductive Load

        • 5.2.3 Load with an Internal dc Voltage

      • 5.3 Single-Phase Diode Bridge Rectifiers

        • 5.3.1 Idealized Circuit with L_s = 0

        • 5.3.2 Effect of L_s on Current Commutation

        • 5.3.3 Constant dc-Side Voltage v_d (t) = V_d

          • 5.3.3.1 Rectifier Characteristic

        • 5.3.4 Practical Diode Bridge Rectifiers

          • 5.3.4.1 Analytical Calculations under a Highly Discontinuous Current

          • 5.3.4.2 Circuit Simulation for General Operating Conditions

          • 5.3.4.3 Line-Current Distortion

          • 5.3.4.4 Line-Voltage Distortion

      • 5.4 Voltage Doubler (Single-Phase) Rectifiers

      • 5.5 Effect of Single-Phase Rectifiers on Neutral Currents in Three-Phase, Four-Wire Systems

      • 5.6 Three-Phase, Full-Bridge Rectifiers

        • 5.6.1 Idealized Circuit with L_s = 0

        • 5.6.2 Effect of L_s on Current Commutation

        • 5.6.3 A Constant dc-Side Voltage v_d (t) = V_d

          • 5.6.3.1 Distortion in the Line-Current Waveforms

        • 5.6.4 Practical Three-Phase Diode Bridge Rectifiers

      • 5.7 Comparison of Single-Phase and Three-Phase Rectifiers

      • 5.8 Inrush Current and Overvoltages at Turn-on

      • 5.9 Concerns and Remedies for Line-Current Harmonics and Low Power Factor

      • Summary

      • Problems

      • References

      • Appendix

    • 6. Line-Frequency Phase-Controlled Rectifiers and Inverters: Line-Frequency ac left right arrow Controlled dc

      • 6.1 Introduction

      • 6.2 Thyristor Circuits and Their Control

        • 6.2.1 Basic Thyristor Circuits

        • 6.2.2 Thyristor Gate Triggering

        • 6.2.3 Practical Thyristor Converters

      • 6.3 Single-Phase Converters

        • 6.3.1 Idealized Circuit with L_s = 0 and i_d (t) = I_d

          • 6.3.1.1 dc-Side Voltage

          • 6.3.1.2 Line Current i_s

          • 6.3.1.3 Power, Power Factor, and Reactive Volt-Amperes

        • 6.3.2 Effect of L_s

          • 6.3.2.1 Input Line Current i_s

        • 6.3.3 Practical Thyristor Converters

          • 6.3.3.1 Discontinuous-Current Conduction

        • 6.3.4 Inverter Mode of Operation

          • 6.3.4.1 Inverter Start-up

        • 6.3.5 ac Voltage Waveform (Line Notching and Distortion)

      • 6.4 Three-Phase Converters

        • 6.4.1 Idealized Circuit with L_s = 0 and i_d (t) = I_d

          • 6.4.1.1 dc-Side Voltage

          • 6.4.1.2 Input Line Currents i_a , i_b , and i_c

          • 6.4.1.3 Power, Power Factor, and Reactive Volt-Amperes

        • 6.4.2 Effect of L_s

          • 6.4.2.1 Input Line Current i_s

        • 6.4.3 Practical Converter

          • 6.4.3.1 Discontinuous-Current Conduction

        • 6.4.4 Inverter Mode of Operation

          • 6.4.4.1 Inverter Start-up

        • 6.4.5 ac Voltage Waveform (Line Notching and Distortion)

          • 6.4.5.1 Line Notching

          • 6.4.5.2 Voltage Distortion

      • 6.5 Other Three-Phase Converters

      • Summary

      • Problems

      • References

      • Appendix

    • 7. dc-dc Switch-Mode Converters

      • 7.1 Introduction

      • 7.2 Control of dc-dc Converters

      • 7.3 Step-down (Buck) Converter

        • 7.3.1 Continuous-Conduction Mode

        • 7.3.2 Boundary between Continuous and Discontinuous Conduction

        • 7.3.3 Discontinuous-Conduction Mode

          • 7.3.3.1 Discontinuous-Conduction Mode with Constant V_d

          • 7.3.3.2 Discontinuous-Conduction Mode with Constant V_o

        • 7.3.4 Output Voltage Ripple

      • 7.4 Step-up (Boost) Converter

        • 7.4.1 Continuous-Conduction Mode

        • 7.4.2 Boundary between Continuous and Discontinuous Conduction

        • 7.4.3 Discontinuous-Conduction Mode

        • 7.4.4 Effect of Parasitic Elements

        • 7.4.5 Output Voltage Ripple

      • 7.5 Buck-Boost Converter

        • 7.5.1 Continuous-Conduction Mode

        • 7.5.2 Boundary between Continuous and Discontinuous Conduction

        • 7.5.3 Discontinuous-Conduction Mode

        • 7.5.4 Effect of Parasitic Elements

        • 7.5.5 Output Voltage Ripple

      • 7.6 Cúk dc-dc Converter

      • 7.7 Full-Bridge dc-dc Converter

        • 7.7.1 PWM with Bipolar Voltage Switching

        • 7.7.2 PWM with Unipolar Voltage Switching

      • 7.8 dc-dc Converter Comparison

      • Summary

      • Problems

      • References

    • 8. Switch-Mode dc-ac Inverters: dc left right arrow Sinusoidal ac

      • 8.1 Introduction

      • 8.2 Basic Concepts of Switch-Mode Inverters

        • 8.2.1 Pulse-Width-Modulated Switching Scheme

          • 8.2.1.1 Small m_f (m_f Less-Than or Equal to 21)

          • 8.2.1.2 Large m_f (m_f > 21)

          • 8.2.1.3 Overmodulation (m_a > 1.0)

        • 8.2.2 Square-Wave Switching Scheme

      • 8.3 Single-Phase Inverters

        • 8.3.1 Half-Bridge Inverters (Single Phase)

        • 8.3.2 Full-Bridge Inverters (Single Phase)

          • 8.3.2.1 PWM with Bipolar Voltage Switching

          • 8.3.2.2 PWM with Unipolar Voltage Switching

          • 8.3.2.3 Square-Wave Operation

          • 8.3.2.4 Output Control by Voltage Cancellation

          • 8.3.2.5 Switch Utilization in Full-Bridge Inverters

          • 8.3.2.6 Ripple in the Single-Phase Inverter Output

        • 8.3.3 Push-Pull Inverters

        • 8.3.4 Switch Utilization in Single-Phase Inverters

      • 8.4 Three-Phase Inverters

        • 8.4.1 PWM in Three-Phase Voltage Source Inverters

          • 8.4.1.1 Linear Modulation (m_a Less-Than or Equal to 1.0)

          • 8.4.1.2 Overmodulation (m_a > 1.0)

        • 8.4.2 Square-Wave Operation in Three-Phase Inverters

        • 8.4.3 Switch Utilization in Three-Phase Inverters

        • 8.4.4 Ripple in the Inverter Output

        • 8.4.5 dc-Side Current i_d

        • 8.4.6 Conduction of Switches in Three-Phase Inverters

          • 8.4.6.1 Square-Wave Operation

          • 8.4.6.2 PWM Operation

      • 8.5 Effect of Blanking Time on Voltage in PWM Inverters

      • 8.6 Other Inverter Switching Schemes

        • 8.6.1 Square-Wave Pulse Switching

        • 8.6.2 Programmed Harmonic Elimination Switching

        • 8.6.3 Current-Regulated (Current-Mode) Modulation

          • 8.6.3.1 Tolerance Band Control

          • 8.6.3.2 Fixed-Frequency Control

        • 8.6.4 Switching Scheme Incorporating Harmonic Neutralization by Modulation and Transformer Connections

      • 8.7 Rectifier Mode of Operation

      • Summary

      • Problems

      • References

    • 9. Resonant Converters: Zero-Voltage and/or Zero-Current Switchings

      • 9.1 Introduction

        • 9.1.1 Switch-Mode Inductive Current Switching

        • 9.1.2 Zero-Voltage and Zero-Current Switchings

      • 9.2 Classification of Resonant Converters

        • 9.2.1 Load-Resonant Converters

        • 9.2.2 Resonant-Switch Converters

        • 9.2.3 Resonant-dc-Link Converters

        • 9.2.4 High-Frequency-Link Integral-Half-Cycle Converters

      • 9.3 Basic Resonant Circuit Concepts

        • 9.3.1 Series-Resonant Circuits

          • 9.3.1.1 Undamped Series-Resonant Circuit

          • 9.3.1.2 Series-Resonant Circuit with a Capacitor-Parallel Load

          • 9.3.1.3 Frequency Characteristics of a Series-Resonant Circuit

        • 9.3.2 Parallel-Resonant Circuits

          • 9.3.2.1 Undamped Parallel-Resonant Circuit

          • 9.3.2.2 Frequency Characteristics of Parallel-Resonant Circuit

      • 9.4 Load-Resonant Converters

        • 9.4.1 Series-Loaded Resonant dc-dc Converters

          • 9.4.1.1 Discontinuous-Conduction Mode with omega _s < ½omega _0

          • 9.4.1.2 Continuous-Conduction Mode with ½omega _0 < omega _s < omega _0

          • 9.4.1.3 Continuous-Conduction Mode with omega _s > omega _0

          • 9.4.1.4 Steady-State Operating Characteristics

          • 9.4.1.5 Control of SLR dc-dc Converters

        • 9.4.2 Parallel-Loaded Resonant dc-dc Converters

          • 9.4.2.1 Discontinuous Mode of Operation

          • 9.4.2.2 Continuous Mode of Operation below omega _0

          • 9.4.2.3 Continuous Mode of Operation above omega _0

          • 9.4.2.4 Steady-State Operating Characteristics

        • 9.4.3 Hybrid-Resonant dc-dc Converter

        • 9.4.4 Current-Source, Parallel-Resonant dc-to-ac Inverters for Induction Heating

          • 9.4.4.1 Start-up

        • 9.4.5 Class E Converters

      • 9.5 Resonant-Switch Converters

        • 9.5.1 ZCS Resonant-Switch Converters

        • 9.5.2 ZVS Resonant-Switch Converters

        • 9.5.3 Comparison of ZCS and ZVS Topologies

      • 9.6 Zero-Voltage-Switching, Clamped-Voltage Topologies

        • 9.6.1 ZVS-CV dc-dc Converters

        • 9.6.2 ZVS-CV dc-to-ac Inverters

        • 9.6.3 ZVS-CV dc-dc Converter with Voltage Cancellation

      • 9.7 Resonant-dc-Link Inverters with Zero-Voltage Switchings

      • 9.8 High-Frequency-Link Integral-Half-Cycle Converters

      • Summary

      • Problems

      • References

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_07a

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • 5. Line-Frequency Diode Rectifiers: Line-Frequency ac right arrow Uncontrolled dc

      • 5.1 Introduction

      • 5.2 Basic Rectifier Concepts

        • 5.2.1 Pure Resistive Load

        • 5.2.2 Inductive Load

        • 5.2.3 Load with an Internal dc Voltage

      • 5.3 Single-Phase Diode Bridge Rectifiers

        • 5.3.1 Idealized Circuit with L_s = 0

        • 5.3.2 Effect of L_s on Current Commutation

        • 5.3.3 Constant dc-Side Voltage v_d (t) = V_d

          • 5.3.3.1 Rectifier Characteristic

        • 5.3.4 Practical Diode Bridge Rectifiers

          • 5.3.4.1 Analytical Calculations under a Highly Discontinuous Current

          • 5.3.4.2 Circuit Simulation for General Operating Conditions

          • 5.3.4.3 Line-Current Distortion

          • 5.3.4.4 Line-Voltage Distortion

      • 5.4 Voltage Doubler (Single-Phase) Rectifiers

      • 5.5 Effect of Single-Phase Rectifiers on Neutral Currents in Three-Phase, Four-Wire Systems

      • 5.6 Three-Phase, Full-Bridge Rectifiers

        • 5.6.1 Idealized Circuit with L_s = 0

        • 5.6.2 Effect of L_s on Current Commutation

        • 5.6.3 A Constant dc-Side Voltage v_d (t) = V_d

          • 5.6.3.1 Distortion in the Line-Current Waveforms

        • 5.6.4 Practical Three-Phase Diode Bridge Rectifiers

      • 5.7 Comparison of Single-Phase and Three-Phase Rectifiers

      • 5.8 Inrush Current and Overvoltages at Turn-on

      • 5.9 Concerns and Remedies for Line-Current Harmonics and Low Power Factor

      • Summary

      • Problems

      • References

      • Appendix

    • 6. Line-Frequency Phase-Controlled Rectifiers and Inverters: Line-Frequency ac left right arrow Controlled dc

      • 6.1 Introduction

      • 6.2 Thyristor Circuits and Their Control

        • 6.2.1 Basic Thyristor Circuits

        • 6.2.2 Thyristor Gate Triggering

        • 6.2.3 Practical Thyristor Converters

      • 6.3 Single-Phase Converters

        • 6.3.1 Idealized Circuit with L_s = 0 and i_d (t) = I_d

          • 6.3.1.1 dc-Side Voltage

          • 6.3.1.2 Line Current i_s

          • 6.3.1.3 Power, Power Factor, and Reactive Volt-Amperes

        • 6.3.2 Effect of L_s

          • 6.3.2.1 Input Line Current i_s

        • 6.3.3 Practical Thyristor Converters

          • 6.3.3.1 Discontinuous-Current Conduction

        • 6.3.4 Inverter Mode of Operation

          • 6.3.4.1 Inverter Start-up

        • 6.3.5 ac Voltage Waveform (Line Notching and Distortion)

      • 6.4 Three-Phase Converters

        • 6.4.1 Idealized Circuit with L_s = 0 and i_d (t) = I_d

          • 6.4.1.1 dc-Side Voltage

          • 6.4.1.2 Input Line Currents i_a , i_b , and i_c

          • 6.4.1.3 Power, Power Factor, and Reactive Volt-Amperes

        • 6.4.2 Effect of L_s

          • 6.4.2.1 Input Line Current i_s

        • 6.4.3 Practical Converter

          • 6.4.3.1 Discontinuous-Current Conduction

        • 6.4.4 Inverter Mode of Operation

          • 6.4.4.1 Inverter Start-up

        • 6.4.5 ac Voltage Waveform (Line Notching and Distortion)

          • 6.4.5.1 Line Notching

          • 6.4.5.2 Voltage Distortion

      • 6.5 Other Three-Phase Converters

      • Summary

      • Problems

      • References

      • Appendix

    • 7. dc-dc Switch-Mode Converters

      • 7.1 Introduction

      • 7.2 Control of dc-dc Converters

      • 7.3 Step-down (Buck) Converter

        • 7.3.1 Continuous-Conduction Mode

        • 7.3.2 Boundary between Continuous and Discontinuous Conduction

        • 7.3.3 Discontinuous-Conduction Mode

          • 7.3.3.1 Discontinuous-Conduction Mode with Constant V_d

          • 7.3.3.2 Discontinuous-Conduction Mode with Constant V_o

        • 7.3.4 Output Voltage Ripple

      • 7.4 Step-up (Boost) Converter

        • 7.4.1 Continuous-Conduction Mode

        • 7.4.2 Boundary between Continuous and Discontinuous Conduction

        • 7.4.3 Discontinuous-Conduction Mode

        • 7.4.4 Effect of Parasitic Elements

        • 7.4.5 Output Voltage Ripple

      • 7.5 Buck-Boost Converter

        • 7.5.1 Continuous-Conduction Mode

        • 7.5.2 Boundary between Continuous and Discontinuous Conduction

        • 7.5.3 Discontinuous-Conduction Mode

        • 7.5.4 Effect of Parasitic Elements

        • 7.5.5 Output Voltage Ripple

      • 7.6 Cúk dc-dc Converter

      • 7.7 Full-Bridge dc-dc Converter

        • 7.7.1 PWM with Bipolar Voltage Switching

        • 7.7.2 PWM with Unipolar Voltage Switching

      • 7.8 dc-dc Converter Comparison

      • Summary

      • Problems

      • References

    • 8. Switch-Mode dc-ac Inverters: dc left right arrow Sinusoidal ac

      • 8.1 Introduction

      • 8.2 Basic Concepts of Switch-Mode Inverters

        • 8.2.1 Pulse-Width-Modulated Switching Scheme

          • 8.2.1.1 Small m_f (m_f Less-Than or Equal to 21)

          • 8.2.1.2 Large m_f (m_f > 21)

          • 8.2.1.3 Overmodulation (m_a > 1.0)

        • 8.2.2 Square-Wave Switching Scheme

      • 8.3 Single-Phase Inverters

        • 8.3.1 Half-Bridge Inverters (Single Phase)

        • 8.3.2 Full-Bridge Inverters (Single Phase)

          • 8.3.2.1 PWM with Bipolar Voltage Switching

          • 8.3.2.2 PWM with Unipolar Voltage Switching

          • 8.3.2.3 Square-Wave Operation

          • 8.3.2.4 Output Control by Voltage Cancellation

          • 8.3.2.5 Switch Utilization in Full-Bridge Inverters

          • 8.3.2.6 Ripple in the Single-Phase Inverter Output

        • 8.3.3 Push-Pull Inverters

        • 8.3.4 Switch Utilization in Single-Phase Inverters

      • 8.4 Three-Phase Inverters

        • 8.4.1 PWM in Three-Phase Voltage Source Inverters

          • 8.4.1.1 Linear Modulation (m_a Less-Than or Equal to 1.0)

          • 8.4.1.2 Overmodulation (m_a > 1.0)

        • 8.4.2 Square-Wave Operation in Three-Phase Inverters

        • 8.4.3 Switch Utilization in Three-Phase Inverters

        • 8.4.4 Ripple in the Inverter Output

        • 8.4.5 dc-Side Current i_d

        • 8.4.6 Conduction of Switches in Three-Phase Inverters

          • 8.4.6.1 Square-Wave Operation

          • 8.4.6.2 PWM Operation

      • 8.5 Effect of Blanking Time on Voltage in PWM Inverters

      • 8.6 Other Inverter Switching Schemes

        • 8.6.1 Square-Wave Pulse Switching

        • 8.6.2 Programmed Harmonic Elimination Switching

        • 8.6.3 Current-Regulated (Current-Mode) Modulation

          • 8.6.3.1 Tolerance Band Control

          • 8.6.3.2 Fixed-Frequency Control

        • 8.6.4 Switching Scheme Incorporating Harmonic Neutralization by Modulation and Transformer Connections

      • 8.7 Rectifier Mode of Operation

      • Summary

      • Problems

      • References

    • 9. Resonant Converters: Zero-Voltage and/or Zero-Current Switchings

      • 9.1 Introduction

        • 9.1.1 Switch-Mode Inductive Current Switching

        • 9.1.2 Zero-Voltage and Zero-Current Switchings

      • 9.2 Classification of Resonant Converters

        • 9.2.1 Load-Resonant Converters

        • 9.2.2 Resonant-Switch Converters

        • 9.2.3 Resonant-dc-Link Converters

        • 9.2.4 High-Frequency-Link Integral-Half-Cycle Converters

      • 9.3 Basic Resonant Circuit Concepts

        • 9.3.1 Series-Resonant Circuits

          • 9.3.1.1 Undamped Series-Resonant Circuit

          • 9.3.1.2 Series-Resonant Circuit with a Capacitor-Parallel Load

          • 9.3.1.3 Frequency Characteristics of a Series-Resonant Circuit

        • 9.3.2 Parallel-Resonant Circuits

          • 9.3.2.1 Undamped Parallel-Resonant Circuit

          • 9.3.2.2 Frequency Characteristics of Parallel-Resonant Circuit

      • 9.4 Load-Resonant Converters

        • 9.4.1 Series-Loaded Resonant dc-dc Converters

          • 9.4.1.1 Discontinuous-Conduction Mode with omega _s < ½omega _0

          • 9.4.1.2 Continuous-Conduction Mode with ½omega _0 < omega _s < omega _0

          • 9.4.1.3 Continuous-Conduction Mode with omega _s > omega _0

          • 9.4.1.4 Steady-State Operating Characteristics

          • 9.4.1.5 Control of SLR dc-dc Converters

        • 9.4.2 Parallel-Loaded Resonant dc-dc Converters

          • 9.4.2.1 Discontinuous Mode of Operation

          • 9.4.2.2 Continuous Mode of Operation below omega _0

          • 9.4.2.3 Continuous Mode of Operation above omega _0

          • 9.4.2.4 Steady-State Operating Characteristics

        • 9.4.3 Hybrid-Resonant dc-dc Converter

        • 9.4.4 Current-Source, Parallel-Resonant dc-to-ac Inverters for Induction Heating

          • 9.4.4.1 Start-up

        • 9.4.5 Class E Converters

      • 9.5 Resonant-Switch Converters

        • 9.5.1 ZCS Resonant-Switch Converters

        • 9.5.2 ZVS Resonant-Switch Converters

        • 9.5.3 Comparison of ZCS and ZVS Topologies

      • 9.6 Zero-Voltage-Switching, Clamped-Voltage Topologies

        • 9.6.1 ZVS-CV dc-dc Converters

        • 9.6.2 ZVS-CV dc-to-ac Inverters

        • 9.6.3 ZVS-CV dc-dc Converter with Voltage Cancellation

      • 9.7 Resonant-dc-Link Inverters with Zero-Voltage Switchings

      • 9.8 High-Frequency-Link Integral-Half-Cycle Converters

      • Summary

      • Problems

      • References

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_06a

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • 5. Line-Frequency Diode Rectifiers: Line-Frequency ac right arrow Uncontrolled dc

      • 5.1 Introduction

      • 5.2 Basic Rectifier Concepts

        • 5.2.1 Pure Resistive Load

        • 5.2.2 Inductive Load

        • 5.2.3 Load with an Internal dc Voltage

      • 5.3 Single-Phase Diode Bridge Rectifiers

        • 5.3.1 Idealized Circuit with L_s = 0

        • 5.3.2 Effect of L_s on Current Commutation

        • 5.3.3 Constant dc-Side Voltage v_d (t) = V_d

          • 5.3.3.1 Rectifier Characteristic

        • 5.3.4 Practical Diode Bridge Rectifiers

          • 5.3.4.1 Analytical Calculations under a Highly Discontinuous Current

          • 5.3.4.2 Circuit Simulation for General Operating Conditions

          • 5.3.4.3 Line-Current Distortion

          • 5.3.4.4 Line-Voltage Distortion

      • 5.4 Voltage Doubler (Single-Phase) Rectifiers

      • 5.5 Effect of Single-Phase Rectifiers on Neutral Currents in Three-Phase, Four-Wire Systems

      • 5.6 Three-Phase, Full-Bridge Rectifiers

        • 5.6.1 Idealized Circuit with L_s = 0

        • 5.6.2 Effect of L_s on Current Commutation

        • 5.6.3 A Constant dc-Side Voltage v_d (t) = V_d

          • 5.6.3.1 Distortion in the Line-Current Waveforms

        • 5.6.4 Practical Three-Phase Diode Bridge Rectifiers

      • 5.7 Comparison of Single-Phase and Three-Phase Rectifiers

      • 5.8 Inrush Current and Overvoltages at Turn-on

      • 5.9 Concerns and Remedies for Line-Current Harmonics and Low Power Factor

      • Summary

      • Problems

      • References

      • Appendix

    • 6. Line-Frequency Phase-Controlled Rectifiers and Inverters: Line-Frequency ac left right arrow Controlled dc

      • 6.1 Introduction

      • 6.2 Thyristor Circuits and Their Control

        • 6.2.1 Basic Thyristor Circuits

        • 6.2.2 Thyristor Gate Triggering

        • 6.2.3 Practical Thyristor Converters

      • 6.3 Single-Phase Converters

        • 6.3.1 Idealized Circuit with L_s = 0 and i_d (t) = I_d

          • 6.3.1.1 dc-Side Voltage

          • 6.3.1.2 Line Current i_s

          • 6.3.1.3 Power, Power Factor, and Reactive Volt-Amperes

        • 6.3.2 Effect of L_s

          • 6.3.2.1 Input Line Current i_s

        • 6.3.3 Practical Thyristor Converters

          • 6.3.3.1 Discontinuous-Current Conduction

        • 6.3.4 Inverter Mode of Operation

          • 6.3.4.1 Inverter Start-up

        • 6.3.5 ac Voltage Waveform (Line Notching and Distortion)

      • 6.4 Three-Phase Converters

        • 6.4.1 Idealized Circuit with L_s = 0 and i_d (t) = I_d

          • 6.4.1.1 dc-Side Voltage

          • 6.4.1.2 Input Line Currents i_a , i_b , and i_c

          • 6.4.1.3 Power, Power Factor, and Reactive Volt-Amperes

        • 6.4.2 Effect of L_s

          • 6.4.2.1 Input Line Current i_s

        • 6.4.3 Practical Converter

          • 6.4.3.1 Discontinuous-Current Conduction

        • 6.4.4 Inverter Mode of Operation

          • 6.4.4.1 Inverter Start-up

        • 6.4.5 ac Voltage Waveform (Line Notching and Distortion)

          • 6.4.5.1 Line Notching

          • 6.4.5.2 Voltage Distortion

      • 6.5 Other Three-Phase Converters

      • Summary

      • Problems

      • References

      • Appendix

    • 7. dc-dc Switch-Mode Converters

      • 7.1 Introduction

      • 7.2 Control of dc-dc Converters

      • 7.3 Step-down (Buck) Converter

        • 7.3.1 Continuous-Conduction Mode

        • 7.3.2 Boundary between Continuous and Discontinuous Conduction

        • 7.3.3 Discontinuous-Conduction Mode

          • 7.3.3.1 Discontinuous-Conduction Mode with Constant V_d

          • 7.3.3.2 Discontinuous-Conduction Mode with Constant V_o

        • 7.3.4 Output Voltage Ripple

      • 7.4 Step-up (Boost) Converter

        • 7.4.1 Continuous-Conduction Mode

        • 7.4.2 Boundary between Continuous and Discontinuous Conduction

        • 7.4.3 Discontinuous-Conduction Mode

        • 7.4.4 Effect of Parasitic Elements

        • 7.4.5 Output Voltage Ripple

      • 7.5 Buck-Boost Converter

        • 7.5.1 Continuous-Conduction Mode

        • 7.5.2 Boundary between Continuous and Discontinuous Conduction

        • 7.5.3 Discontinuous-Conduction Mode

        • 7.5.4 Effect of Parasitic Elements

        • 7.5.5 Output Voltage Ripple

      • 7.6 Cúk dc-dc Converter

      • 7.7 Full-Bridge dc-dc Converter

        • 7.7.1 PWM with Bipolar Voltage Switching

        • 7.7.2 PWM with Unipolar Voltage Switching

      • 7.8 dc-dc Converter Comparison

      • Summary

      • Problems

      • References

    • 8. Switch-Mode dc-ac Inverters: dc left right arrow Sinusoidal ac

      • 8.1 Introduction

      • 8.2 Basic Concepts of Switch-Mode Inverters

        • 8.2.1 Pulse-Width-Modulated Switching Scheme

          • 8.2.1.1 Small m_f (m_f Less-Than or Equal to 21)

          • 8.2.1.2 Large m_f (m_f > 21)

          • 8.2.1.3 Overmodulation (m_a > 1.0)

        • 8.2.2 Square-Wave Switching Scheme

      • 8.3 Single-Phase Inverters

        • 8.3.1 Half-Bridge Inverters (Single Phase)

        • 8.3.2 Full-Bridge Inverters (Single Phase)

          • 8.3.2.1 PWM with Bipolar Voltage Switching

          • 8.3.2.2 PWM with Unipolar Voltage Switching

          • 8.3.2.3 Square-Wave Operation

          • 8.3.2.4 Output Control by Voltage Cancellation

          • 8.3.2.5 Switch Utilization in Full-Bridge Inverters

          • 8.3.2.6 Ripple in the Single-Phase Inverter Output

        • 8.3.3 Push-Pull Inverters

        • 8.3.4 Switch Utilization in Single-Phase Inverters

      • 8.4 Three-Phase Inverters

        • 8.4.1 PWM in Three-Phase Voltage Source Inverters

          • 8.4.1.1 Linear Modulation (m_a Less-Than or Equal to 1.0)

          • 8.4.1.2 Overmodulation (m_a > 1.0)

        • 8.4.2 Square-Wave Operation in Three-Phase Inverters

        • 8.4.3 Switch Utilization in Three-Phase Inverters

        • 8.4.4 Ripple in the Inverter Output

        • 8.4.5 dc-Side Current i_d

        • 8.4.6 Conduction of Switches in Three-Phase Inverters

          • 8.4.6.1 Square-Wave Operation

          • 8.4.6.2 PWM Operation

      • 8.5 Effect of Blanking Time on Voltage in PWM Inverters

      • 8.6 Other Inverter Switching Schemes

        • 8.6.1 Square-Wave Pulse Switching

        • 8.6.2 Programmed Harmonic Elimination Switching

        • 8.6.3 Current-Regulated (Current-Mode) Modulation

          • 8.6.3.1 Tolerance Band Control

          • 8.6.3.2 Fixed-Frequency Control

        • 8.6.4 Switching Scheme Incorporating Harmonic Neutralization by Modulation and Transformer Connections

      • 8.7 Rectifier Mode of Operation

      • Summary

      • Problems

      • References

    • 9. Resonant Converters: Zero-Voltage and/or Zero-Current Switchings

      • 9.1 Introduction

        • 9.1.1 Switch-Mode Inductive Current Switching

        • 9.1.2 Zero-Voltage and Zero-Current Switchings

      • 9.2 Classification of Resonant Converters

        • 9.2.1 Load-Resonant Converters

        • 9.2.2 Resonant-Switch Converters

        • 9.2.3 Resonant-dc-Link Converters

        • 9.2.4 High-Frequency-Link Integral-Half-Cycle Converters

      • 9.3 Basic Resonant Circuit Concepts

        • 9.3.1 Series-Resonant Circuits

          • 9.3.1.1 Undamped Series-Resonant Circuit

          • 9.3.1.2 Series-Resonant Circuit with a Capacitor-Parallel Load

          • 9.3.1.3 Frequency Characteristics of a Series-Resonant Circuit

        • 9.3.2 Parallel-Resonant Circuits

          • 9.3.2.1 Undamped Parallel-Resonant Circuit

          • 9.3.2.2 Frequency Characteristics of Parallel-Resonant Circuit

      • 9.4 Load-Resonant Converters

        • 9.4.1 Series-Loaded Resonant dc-dc Converters

          • 9.4.1.1 Discontinuous-Conduction Mode with omega _s < ½omega _0

          • 9.4.1.2 Continuous-Conduction Mode with ½omega _0 < omega _s < omega _0

          • 9.4.1.3 Continuous-Conduction Mode with omega _s > omega _0

          • 9.4.1.4 Steady-State Operating Characteristics

          • 9.4.1.5 Control of SLR dc-dc Converters

        • 9.4.2 Parallel-Loaded Resonant dc-dc Converters

          • 9.4.2.1 Discontinuous Mode of Operation

          • 9.4.2.2 Continuous Mode of Operation below omega _0

          • 9.4.2.3 Continuous Mode of Operation above omega _0

          • 9.4.2.4 Steady-State Operating Characteristics

        • 9.4.3 Hybrid-Resonant dc-dc Converter

        • 9.4.4 Current-Source, Parallel-Resonant dc-to-ac Inverters for Induction Heating

          • 9.4.4.1 Start-up

        • 9.4.5 Class E Converters

      • 9.5 Resonant-Switch Converters

        • 9.5.1 ZCS Resonant-Switch Converters

        • 9.5.2 ZVS Resonant-Switch Converters

        • 9.5.3 Comparison of ZCS and ZVS Topologies

      • 9.6 Zero-Voltage-Switching, Clamped-Voltage Topologies

        • 9.6.1 ZVS-CV dc-dc Converters

        • 9.6.2 ZVS-CV dc-to-ac Inverters

        • 9.6.3 ZVS-CV dc-dc Converter with Voltage Cancellation

      • 9.7 Resonant-dc-Link Inverters with Zero-Voltage Switchings

      • 9.8 High-Frequency-Link Integral-Half-Cycle Converters

      • Summary

      • Problems

      • References

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_06b

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • 5. Line-Frequency Diode Rectifiers: Line-Frequency ac right arrow Uncontrolled dc

      • 5.1 Introduction

      • 5.2 Basic Rectifier Concepts

        • 5.2.1 Pure Resistive Load

        • 5.2.2 Inductive Load

        • 5.2.3 Load with an Internal dc Voltage

      • 5.3 Single-Phase Diode Bridge Rectifiers

        • 5.3.1 Idealized Circuit with L_s = 0

        • 5.3.2 Effect of L_s on Current Commutation

        • 5.3.3 Constant dc-Side Voltage v_d (t) = V_d

          • 5.3.3.1 Rectifier Characteristic

        • 5.3.4 Practical Diode Bridge Rectifiers

          • 5.3.4.1 Analytical Calculations under a Highly Discontinuous Current

          • 5.3.4.2 Circuit Simulation for General Operating Conditions

          • 5.3.4.3 Line-Current Distortion

          • 5.3.4.4 Line-Voltage Distortion

      • 5.4 Voltage Doubler (Single-Phase) Rectifiers

      • 5.5 Effect of Single-Phase Rectifiers on Neutral Currents in Three-Phase, Four-Wire Systems

      • 5.6 Three-Phase, Full-Bridge Rectifiers

        • 5.6.1 Idealized Circuit with L_s = 0

        • 5.6.2 Effect of L_s on Current Commutation

        • 5.6.3 A Constant dc-Side Voltage v_d (t) = V_d

          • 5.6.3.1 Distortion in the Line-Current Waveforms

        • 5.6.4 Practical Three-Phase Diode Bridge Rectifiers

      • 5.7 Comparison of Single-Phase and Three-Phase Rectifiers

      • 5.8 Inrush Current and Overvoltages at Turn-on

      • 5.9 Concerns and Remedies for Line-Current Harmonics and Low Power Factor

      • Summary

      • Problems

      • References

      • Appendix

    • 6. Line-Frequency Phase-Controlled Rectifiers and Inverters: Line-Frequency ac left right arrow Controlled dc

      • 6.1 Introduction

      • 6.2 Thyristor Circuits and Their Control

        • 6.2.1 Basic Thyristor Circuits

        • 6.2.2 Thyristor Gate Triggering

        • 6.2.3 Practical Thyristor Converters

      • 6.3 Single-Phase Converters

        • 6.3.1 Idealized Circuit with L_s = 0 and i_d (t) = I_d

          • 6.3.1.1 dc-Side Voltage

          • 6.3.1.2 Line Current i_s

          • 6.3.1.3 Power, Power Factor, and Reactive Volt-Amperes

        • 6.3.2 Effect of L_s

          • 6.3.2.1 Input Line Current i_s

        • 6.3.3 Practical Thyristor Converters

          • 6.3.3.1 Discontinuous-Current Conduction

        • 6.3.4 Inverter Mode of Operation

          • 6.3.4.1 Inverter Start-up

        • 6.3.5 ac Voltage Waveform (Line Notching and Distortion)

      • 6.4 Three-Phase Converters

        • 6.4.1 Idealized Circuit with L_s = 0 and i_d (t) = I_d

          • 6.4.1.1 dc-Side Voltage

          • 6.4.1.2 Input Line Currents i_a , i_b , and i_c

          • 6.4.1.3 Power, Power Factor, and Reactive Volt-Amperes

        • 6.4.2 Effect of L_s

          • 6.4.2.1 Input Line Current i_s

        • 6.4.3 Practical Converter

          • 6.4.3.1 Discontinuous-Current Conduction

        • 6.4.4 Inverter Mode of Operation

          • 6.4.4.1 Inverter Start-up

        • 6.4.5 ac Voltage Waveform (Line Notching and Distortion)

          • 6.4.5.1 Line Notching

          • 6.4.5.2 Voltage Distortion

      • 6.5 Other Three-Phase Converters

      • Summary

      • Problems

      • References

      • Appendix

    • 7. dc-dc Switch-Mode Converters

      • 7.1 Introduction

      • 7.2 Control of dc-dc Converters

      • 7.3 Step-down (Buck) Converter

        • 7.3.1 Continuous-Conduction Mode

        • 7.3.2 Boundary between Continuous and Discontinuous Conduction

        • 7.3.3 Discontinuous-Conduction Mode

          • 7.3.3.1 Discontinuous-Conduction Mode with Constant V_d

          • 7.3.3.2 Discontinuous-Conduction Mode with Constant V_o

        • 7.3.4 Output Voltage Ripple

      • 7.4 Step-up (Boost) Converter

        • 7.4.1 Continuous-Conduction Mode

        • 7.4.2 Boundary between Continuous and Discontinuous Conduction

        • 7.4.3 Discontinuous-Conduction Mode

        • 7.4.4 Effect of Parasitic Elements

        • 7.4.5 Output Voltage Ripple

      • 7.5 Buck-Boost Converter

        • 7.5.1 Continuous-Conduction Mode

        • 7.5.2 Boundary between Continuous and Discontinuous Conduction

        • 7.5.3 Discontinuous-Conduction Mode

        • 7.5.4 Effect of Parasitic Elements

        • 7.5.5 Output Voltage Ripple

      • 7.6 Cúk dc-dc Converter

      • 7.7 Full-Bridge dc-dc Converter

        • 7.7.1 PWM with Bipolar Voltage Switching

        • 7.7.2 PWM with Unipolar Voltage Switching

      • 7.8 dc-dc Converter Comparison

      • Summary

      • Problems

      • References

    • 8. Switch-Mode dc-ac Inverters: dc left right arrow Sinusoidal ac

      • 8.1 Introduction

      • 8.2 Basic Concepts of Switch-Mode Inverters

        • 8.2.1 Pulse-Width-Modulated Switching Scheme

          • 8.2.1.1 Small m_f (m_f Less-Than or Equal to 21)

          • 8.2.1.2 Large m_f (m_f > 21)

          • 8.2.1.3 Overmodulation (m_a > 1.0)

        • 8.2.2 Square-Wave Switching Scheme

      • 8.3 Single-Phase Inverters

        • 8.3.1 Half-Bridge Inverters (Single Phase)

        • 8.3.2 Full-Bridge Inverters (Single Phase)

          • 8.3.2.1 PWM with Bipolar Voltage Switching

          • 8.3.2.2 PWM with Unipolar Voltage Switching

          • 8.3.2.3 Square-Wave Operation

          • 8.3.2.4 Output Control by Voltage Cancellation

          • 8.3.2.5 Switch Utilization in Full-Bridge Inverters

          • 8.3.2.6 Ripple in the Single-Phase Inverter Output

        • 8.3.3 Push-Pull Inverters

        • 8.3.4 Switch Utilization in Single-Phase Inverters

      • 8.4 Three-Phase Inverters

        • 8.4.1 PWM in Three-Phase Voltage Source Inverters

          • 8.4.1.1 Linear Modulation (m_a Less-Than or Equal to 1.0)

          • 8.4.1.2 Overmodulation (m_a > 1.0)

        • 8.4.2 Square-Wave Operation in Three-Phase Inverters

        • 8.4.3 Switch Utilization in Three-Phase Inverters

        • 8.4.4 Ripple in the Inverter Output

        • 8.4.5 dc-Side Current i_d

        • 8.4.6 Conduction of Switches in Three-Phase Inverters

          • 8.4.6.1 Square-Wave Operation

          • 8.4.6.2 PWM Operation

      • 8.5 Effect of Blanking Time on Voltage in PWM Inverters

      • 8.6 Other Inverter Switching Schemes

        • 8.6.1 Square-Wave Pulse Switching

        • 8.6.2 Programmed Harmonic Elimination Switching

        • 8.6.3 Current-Regulated (Current-Mode) Modulation

          • 8.6.3.1 Tolerance Band Control

          • 8.6.3.2 Fixed-Frequency Control

        • 8.6.4 Switching Scheme Incorporating Harmonic Neutralization by Modulation and Transformer Connections

      • 8.7 Rectifier Mode of Operation

      • Summary

      • Problems

      • References

    • 9. Resonant Converters: Zero-Voltage and/or Zero-Current Switchings

      • 9.1 Introduction

        • 9.1.1 Switch-Mode Inductive Current Switching

        • 9.1.2 Zero-Voltage and Zero-Current Switchings

      • 9.2 Classification of Resonant Converters

        • 9.2.1 Load-Resonant Converters

        • 9.2.2 Resonant-Switch Converters

        • 9.2.3 Resonant-dc-Link Converters

        • 9.2.4 High-Frequency-Link Integral-Half-Cycle Converters

      • 9.3 Basic Resonant Circuit Concepts

        • 9.3.1 Series-Resonant Circuits

          • 9.3.1.1 Undamped Series-Resonant Circuit

          • 9.3.1.2 Series-Resonant Circuit with a Capacitor-Parallel Load

          • 9.3.1.3 Frequency Characteristics of a Series-Resonant Circuit

        • 9.3.2 Parallel-Resonant Circuits

          • 9.3.2.1 Undamped Parallel-Resonant Circuit

          • 9.3.2.2 Frequency Characteristics of Parallel-Resonant Circuit

      • 9.4 Load-Resonant Converters

        • 9.4.1 Series-Loaded Resonant dc-dc Converters

          • 9.4.1.1 Discontinuous-Conduction Mode with omega _s < ½omega _0

          • 9.4.1.2 Continuous-Conduction Mode with ½omega _0 < omega _s < omega _0

          • 9.4.1.3 Continuous-Conduction Mode with omega _s > omega _0

          • 9.4.1.4 Steady-State Operating Characteristics

          • 9.4.1.5 Control of SLR dc-dc Converters

        • 9.4.2 Parallel-Loaded Resonant dc-dc Converters

          • 9.4.2.1 Discontinuous Mode of Operation

          • 9.4.2.2 Continuous Mode of Operation below omega _0

          • 9.4.2.3 Continuous Mode of Operation above omega _0

          • 9.4.2.4 Steady-State Operating Characteristics

        • 9.4.3 Hybrid-Resonant dc-dc Converter

        • 9.4.4 Current-Source, Parallel-Resonant dc-to-ac Inverters for Induction Heating

          • 9.4.4.1 Start-up

        • 9.4.5 Class E Converters

      • 9.5 Resonant-Switch Converters

        • 9.5.1 ZCS Resonant-Switch Converters

        • 9.5.2 ZVS Resonant-Switch Converters

        • 9.5.3 Comparison of ZCS and ZVS Topologies

      • 9.6 Zero-Voltage-Switching, Clamped-Voltage Topologies

        • 9.6.1 ZVS-CV dc-dc Converters

        • 9.6.2 ZVS-CV dc-to-ac Inverters

        • 9.6.3 ZVS-CV dc-dc Converter with Voltage Cancellation

      • 9.7 Resonant-dc-Link Inverters with Zero-Voltage Switchings

      • 9.8 High-Frequency-Link Integral-Half-Cycle Converters

      • Summary

      • Problems

      • References

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_07b

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • 5. Line-Frequency Diode Rectifiers: Line-Frequency ac right arrow Uncontrolled dc

      • 5.1 Introduction

      • 5.2 Basic Rectifier Concepts

        • 5.2.1 Pure Resistive Load

        • 5.2.2 Inductive Load

        • 5.2.3 Load with an Internal dc Voltage

      • 5.3 Single-Phase Diode Bridge Rectifiers

        • 5.3.1 Idealized Circuit with L_s = 0

        • 5.3.2 Effect of L_s on Current Commutation

        • 5.3.3 Constant dc-Side Voltage v_d (t) = V_d

          • 5.3.3.1 Rectifier Characteristic

        • 5.3.4 Practical Diode Bridge Rectifiers

          • 5.3.4.1 Analytical Calculations under a Highly Discontinuous Current

          • 5.3.4.2 Circuit Simulation for General Operating Conditions

          • 5.3.4.3 Line-Current Distortion

          • 5.3.4.4 Line-Voltage Distortion

      • 5.4 Voltage Doubler (Single-Phase) Rectifiers

      • 5.5 Effect of Single-Phase Rectifiers on Neutral Currents in Three-Phase, Four-Wire Systems

      • 5.6 Three-Phase, Full-Bridge Rectifiers

        • 5.6.1 Idealized Circuit with L_s = 0

        • 5.6.2 Effect of L_s on Current Commutation

        • 5.6.3 A Constant dc-Side Voltage v_d (t) = V_d

          • 5.6.3.1 Distortion in the Line-Current Waveforms

        • 5.6.4 Practical Three-Phase Diode Bridge Rectifiers

      • 5.7 Comparison of Single-Phase and Three-Phase Rectifiers

      • 5.8 Inrush Current and Overvoltages at Turn-on

      • 5.9 Concerns and Remedies for Line-Current Harmonics and Low Power Factor

      • Summary

      • Problems

      • References

      • Appendix

    • 6. Line-Frequency Phase-Controlled Rectifiers and Inverters: Line-Frequency ac left right arrow Controlled dc

      • 6.1 Introduction

      • 6.2 Thyristor Circuits and Their Control

        • 6.2.1 Basic Thyristor Circuits

        • 6.2.2 Thyristor Gate Triggering

        • 6.2.3 Practical Thyristor Converters

      • 6.3 Single-Phase Converters

        • 6.3.1 Idealized Circuit with L_s = 0 and i_d (t) = I_d

          • 6.3.1.1 dc-Side Voltage

          • 6.3.1.2 Line Current i_s

          • 6.3.1.3 Power, Power Factor, and Reactive Volt-Amperes

        • 6.3.2 Effect of L_s

          • 6.3.2.1 Input Line Current i_s

        • 6.3.3 Practical Thyristor Converters

          • 6.3.3.1 Discontinuous-Current Conduction

        • 6.3.4 Inverter Mode of Operation

          • 6.3.4.1 Inverter Start-up

        • 6.3.5 ac Voltage Waveform (Line Notching and Distortion)

      • 6.4 Three-Phase Converters

        • 6.4.1 Idealized Circuit with L_s = 0 and i_d (t) = I_d

          • 6.4.1.1 dc-Side Voltage

          • 6.4.1.2 Input Line Currents i_a , i_b , and i_c

          • 6.4.1.3 Power, Power Factor, and Reactive Volt-Amperes

        • 6.4.2 Effect of L_s

          • 6.4.2.1 Input Line Current i_s

        • 6.4.3 Practical Converter

          • 6.4.3.1 Discontinuous-Current Conduction

        • 6.4.4 Inverter Mode of Operation

          • 6.4.4.1 Inverter Start-up

        • 6.4.5 ac Voltage Waveform (Line Notching and Distortion)

          • 6.4.5.1 Line Notching

          • 6.4.5.2 Voltage Distortion

      • 6.5 Other Three-Phase Converters

      • Summary

      • Problems

      • References

      • Appendix

    • 7. dc-dc Switch-Mode Converters

      • 7.1 Introduction

      • 7.2 Control of dc-dc Converters

      • 7.3 Step-down (Buck) Converter

        • 7.3.1 Continuous-Conduction Mode

        • 7.3.2 Boundary between Continuous and Discontinuous Conduction

        • 7.3.3 Discontinuous-Conduction Mode

          • 7.3.3.1 Discontinuous-Conduction Mode with Constant V_d

          • 7.3.3.2 Discontinuous-Conduction Mode with Constant V_o

        • 7.3.4 Output Voltage Ripple

      • 7.4 Step-up (Boost) Converter

        • 7.4.1 Continuous-Conduction Mode

        • 7.4.2 Boundary between Continuous and Discontinuous Conduction

        • 7.4.3 Discontinuous-Conduction Mode

        • 7.4.4 Effect of Parasitic Elements

        • 7.4.5 Output Voltage Ripple

      • 7.5 Buck-Boost Converter

        • 7.5.1 Continuous-Conduction Mode

        • 7.5.2 Boundary between Continuous and Discontinuous Conduction

        • 7.5.3 Discontinuous-Conduction Mode

        • 7.5.4 Effect of Parasitic Elements

        • 7.5.5 Output Voltage Ripple

      • 7.6 Cúk dc-dc Converter

      • 7.7 Full-Bridge dc-dc Converter

        • 7.7.1 PWM with Bipolar Voltage Switching

        • 7.7.2 PWM with Unipolar Voltage Switching

      • 7.8 dc-dc Converter Comparison

      • Summary

      • Problems

      • References

    • 8. Switch-Mode dc-ac Inverters: dc left right arrow Sinusoidal ac

      • 8.1 Introduction

      • 8.2 Basic Concepts of Switch-Mode Inverters

        • 8.2.1 Pulse-Width-Modulated Switching Scheme

          • 8.2.1.1 Small m_f (m_f Less-Than or Equal to 21)

          • 8.2.1.2 Large m_f (m_f > 21)

          • 8.2.1.3 Overmodulation (m_a > 1.0)

        • 8.2.2 Square-Wave Switching Scheme

      • 8.3 Single-Phase Inverters

        • 8.3.1 Half-Bridge Inverters (Single Phase)

        • 8.3.2 Full-Bridge Inverters (Single Phase)

          • 8.3.2.1 PWM with Bipolar Voltage Switching

          • 8.3.2.2 PWM with Unipolar Voltage Switching

          • 8.3.2.3 Square-Wave Operation

          • 8.3.2.4 Output Control by Voltage Cancellation

          • 8.3.2.5 Switch Utilization in Full-Bridge Inverters

          • 8.3.2.6 Ripple in the Single-Phase Inverter Output

        • 8.3.3 Push-Pull Inverters

        • 8.3.4 Switch Utilization in Single-Phase Inverters

      • 8.4 Three-Phase Inverters

        • 8.4.1 PWM in Three-Phase Voltage Source Inverters

          • 8.4.1.1 Linear Modulation (m_a Less-Than or Equal to 1.0)

          • 8.4.1.2 Overmodulation (m_a > 1.0)

        • 8.4.2 Square-Wave Operation in Three-Phase Inverters

        • 8.4.3 Switch Utilization in Three-Phase Inverters

        • 8.4.4 Ripple in the Inverter Output

        • 8.4.5 dc-Side Current i_d

        • 8.4.6 Conduction of Switches in Three-Phase Inverters

          • 8.4.6.1 Square-Wave Operation

          • 8.4.6.2 PWM Operation

      • 8.5 Effect of Blanking Time on Voltage in PWM Inverters

      • 8.6 Other Inverter Switching Schemes

        • 8.6.1 Square-Wave Pulse Switching

        • 8.6.2 Programmed Harmonic Elimination Switching

        • 8.6.3 Current-Regulated (Current-Mode) Modulation

          • 8.6.3.1 Tolerance Band Control

          • 8.6.3.2 Fixed-Frequency Control

        • 8.6.4 Switching Scheme Incorporating Harmonic Neutralization by Modulation and Transformer Connections

      • 8.7 Rectifier Mode of Operation

      • Summary

      • Problems

      • References

    • 9. Resonant Converters: Zero-Voltage and/or Zero-Current Switchings

      • 9.1 Introduction

        • 9.1.1 Switch-Mode Inductive Current Switching

        • 9.1.2 Zero-Voltage and Zero-Current Switchings

      • 9.2 Classification of Resonant Converters

        • 9.2.1 Load-Resonant Converters

        • 9.2.2 Resonant-Switch Converters

        • 9.2.3 Resonant-dc-Link Converters

        • 9.2.4 High-Frequency-Link Integral-Half-Cycle Converters

      • 9.3 Basic Resonant Circuit Concepts

        • 9.3.1 Series-Resonant Circuits

          • 9.3.1.1 Undamped Series-Resonant Circuit

          • 9.3.1.2 Series-Resonant Circuit with a Capacitor-Parallel Load

          • 9.3.1.3 Frequency Characteristics of a Series-Resonant Circuit

        • 9.3.2 Parallel-Resonant Circuits

          • 9.3.2.1 Undamped Parallel-Resonant Circuit

          • 9.3.2.2 Frequency Characteristics of Parallel-Resonant Circuit

      • 9.4 Load-Resonant Converters

        • 9.4.1 Series-Loaded Resonant dc-dc Converters

          • 9.4.1.1 Discontinuous-Conduction Mode with omega _s < ½omega _0

          • 9.4.1.2 Continuous-Conduction Mode with ½omega _0 < omega _s < omega _0

          • 9.4.1.3 Continuous-Conduction Mode with omega _s > omega _0

          • 9.4.1.4 Steady-State Operating Characteristics

          • 9.4.1.5 Control of SLR dc-dc Converters

        • 9.4.2 Parallel-Loaded Resonant dc-dc Converters

          • 9.4.2.1 Discontinuous Mode of Operation

          • 9.4.2.2 Continuous Mode of Operation below omega _0

          • 9.4.2.3 Continuous Mode of Operation above omega _0

          • 9.4.2.4 Steady-State Operating Characteristics

        • 9.4.3 Hybrid-Resonant dc-dc Converter

        • 9.4.4 Current-Source, Parallel-Resonant dc-to-ac Inverters for Induction Heating

          • 9.4.4.1 Start-up

        • 9.4.5 Class E Converters

      • 9.5 Resonant-Switch Converters

        • 9.5.1 ZCS Resonant-Switch Converters

        • 9.5.2 ZVS Resonant-Switch Converters

        • 9.5.3 Comparison of ZCS and ZVS Topologies

      • 9.6 Zero-Voltage-Switching, Clamped-Voltage Topologies

        • 9.6.1 ZVS-CV dc-dc Converters

        • 9.6.2 ZVS-CV dc-to-ac Inverters

        • 9.6.3 ZVS-CV dc-dc Converter with Voltage Cancellation

      • 9.7 Resonant-dc-Link Inverters with Zero-Voltage Switchings

      • 9.8 High-Frequency-Link Integral-Half-Cycle Converters

      • Summary

      • Problems

      • References

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_08a

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • 5. Line-Frequency Diode Rectifiers: Line-Frequency ac right arrow Uncontrolled dc

      • 5.1 Introduction

      • 5.2 Basic Rectifier Concepts

        • 5.2.1 Pure Resistive Load

        • 5.2.2 Inductive Load

        • 5.2.3 Load with an Internal dc Voltage

      • 5.3 Single-Phase Diode Bridge Rectifiers

        • 5.3.1 Idealized Circuit with L_s = 0

        • 5.3.2 Effect of L_s on Current Commutation

        • 5.3.3 Constant dc-Side Voltage v_d (t) = V_d

          • 5.3.3.1 Rectifier Characteristic

        • 5.3.4 Practical Diode Bridge Rectifiers

          • 5.3.4.1 Analytical Calculations under a Highly Discontinuous Current

          • 5.3.4.2 Circuit Simulation for General Operating Conditions

          • 5.3.4.3 Line-Current Distortion

          • 5.3.4.4 Line-Voltage Distortion

      • 5.4 Voltage Doubler (Single-Phase) Rectifiers

      • 5.5 Effect of Single-Phase Rectifiers on Neutral Currents in Three-Phase, Four-Wire Systems

      • 5.6 Three-Phase, Full-Bridge Rectifiers

        • 5.6.1 Idealized Circuit with L_s = 0

        • 5.6.2 Effect of L_s on Current Commutation

        • 5.6.3 A Constant dc-Side Voltage v_d (t) = V_d

          • 5.6.3.1 Distortion in the Line-Current Waveforms

        • 5.6.4 Practical Three-Phase Diode Bridge Rectifiers

      • 5.7 Comparison of Single-Phase and Three-Phase Rectifiers

      • 5.8 Inrush Current and Overvoltages at Turn-on

      • 5.9 Concerns and Remedies for Line-Current Harmonics and Low Power Factor

      • Summary

      • Problems

      • References

      • Appendix

    • 6. Line-Frequency Phase-Controlled Rectifiers and Inverters: Line-Frequency ac left right arrow Controlled dc

      • 6.1 Introduction

      • 6.2 Thyristor Circuits and Their Control

        • 6.2.1 Basic Thyristor Circuits

        • 6.2.2 Thyristor Gate Triggering

        • 6.2.3 Practical Thyristor Converters

      • 6.3 Single-Phase Converters

        • 6.3.1 Idealized Circuit with L_s = 0 and i_d (t) = I_d

          • 6.3.1.1 dc-Side Voltage

          • 6.3.1.2 Line Current i_s

          • 6.3.1.3 Power, Power Factor, and Reactive Volt-Amperes

        • 6.3.2 Effect of L_s

          • 6.3.2.1 Input Line Current i_s

        • 6.3.3 Practical Thyristor Converters

          • 6.3.3.1 Discontinuous-Current Conduction

        • 6.3.4 Inverter Mode of Operation

          • 6.3.4.1 Inverter Start-up

        • 6.3.5 ac Voltage Waveform (Line Notching and Distortion)

      • 6.4 Three-Phase Converters

        • 6.4.1 Idealized Circuit with L_s = 0 and i_d (t) = I_d

          • 6.4.1.1 dc-Side Voltage

          • 6.4.1.2 Input Line Currents i_a , i_b , and i_c

          • 6.4.1.3 Power, Power Factor, and Reactive Volt-Amperes

        • 6.4.2 Effect of L_s

          • 6.4.2.1 Input Line Current i_s

        • 6.4.3 Practical Converter

          • 6.4.3.1 Discontinuous-Current Conduction

        • 6.4.4 Inverter Mode of Operation

          • 6.4.4.1 Inverter Start-up

        • 6.4.5 ac Voltage Waveform (Line Notching and Distortion)

          • 6.4.5.1 Line Notching

          • 6.4.5.2 Voltage Distortion

      • 6.5 Other Three-Phase Converters

      • Summary

      • Problems

      • References

      • Appendix

    • 7. dc-dc Switch-Mode Converters

      • 7.1 Introduction

      • 7.2 Control of dc-dc Converters

      • 7.3 Step-down (Buck) Converter

        • 7.3.1 Continuous-Conduction Mode

        • 7.3.2 Boundary between Continuous and Discontinuous Conduction

        • 7.3.3 Discontinuous-Conduction Mode

          • 7.3.3.1 Discontinuous-Conduction Mode with Constant V_d

          • 7.3.3.2 Discontinuous-Conduction Mode with Constant V_o

        • 7.3.4 Output Voltage Ripple

      • 7.4 Step-up (Boost) Converter

        • 7.4.1 Continuous-Conduction Mode

        • 7.4.2 Boundary between Continuous and Discontinuous Conduction

        • 7.4.3 Discontinuous-Conduction Mode

        • 7.4.4 Effect of Parasitic Elements

        • 7.4.5 Output Voltage Ripple

      • 7.5 Buck-Boost Converter

        • 7.5.1 Continuous-Conduction Mode

        • 7.5.2 Boundary between Continuous and Discontinuous Conduction

        • 7.5.3 Discontinuous-Conduction Mode

        • 7.5.4 Effect of Parasitic Elements

        • 7.5.5 Output Voltage Ripple

      • 7.6 Cúk dc-dc Converter

      • 7.7 Full-Bridge dc-dc Converter

        • 7.7.1 PWM with Bipolar Voltage Switching

        • 7.7.2 PWM with Unipolar Voltage Switching

      • 7.8 dc-dc Converter Comparison

      • Summary

      • Problems

      • References

    • 8. Switch-Mode dc-ac Inverters: dc left right arrow Sinusoidal ac

      • 8.1 Introduction

      • 8.2 Basic Concepts of Switch-Mode Inverters

        • 8.2.1 Pulse-Width-Modulated Switching Scheme

          • 8.2.1.1 Small m_f (m_f Less-Than or Equal to 21)

          • 8.2.1.2 Large m_f (m_f > 21)

          • 8.2.1.3 Overmodulation (m_a > 1.0)

        • 8.2.2 Square-Wave Switching Scheme

      • 8.3 Single-Phase Inverters

        • 8.3.1 Half-Bridge Inverters (Single Phase)

        • 8.3.2 Full-Bridge Inverters (Single Phase)

          • 8.3.2.1 PWM with Bipolar Voltage Switching

          • 8.3.2.2 PWM with Unipolar Voltage Switching

          • 8.3.2.3 Square-Wave Operation

          • 8.3.2.4 Output Control by Voltage Cancellation

          • 8.3.2.5 Switch Utilization in Full-Bridge Inverters

          • 8.3.2.6 Ripple in the Single-Phase Inverter Output

        • 8.3.3 Push-Pull Inverters

        • 8.3.4 Switch Utilization in Single-Phase Inverters

      • 8.4 Three-Phase Inverters

        • 8.4.1 PWM in Three-Phase Voltage Source Inverters

          • 8.4.1.1 Linear Modulation (m_a Less-Than or Equal to 1.0)

          • 8.4.1.2 Overmodulation (m_a > 1.0)

        • 8.4.2 Square-Wave Operation in Three-Phase Inverters

        • 8.4.3 Switch Utilization in Three-Phase Inverters

        • 8.4.4 Ripple in the Inverter Output

        • 8.4.5 dc-Side Current i_d

        • 8.4.6 Conduction of Switches in Three-Phase Inverters

          • 8.4.6.1 Square-Wave Operation

          • 8.4.6.2 PWM Operation

      • 8.5 Effect of Blanking Time on Voltage in PWM Inverters

      • 8.6 Other Inverter Switching Schemes

        • 8.6.1 Square-Wave Pulse Switching

        • 8.6.2 Programmed Harmonic Elimination Switching

        • 8.6.3 Current-Regulated (Current-Mode) Modulation

          • 8.6.3.1 Tolerance Band Control

          • 8.6.3.2 Fixed-Frequency Control

        • 8.6.4 Switching Scheme Incorporating Harmonic Neutralization by Modulation and Transformer Connections

      • 8.7 Rectifier Mode of Operation

      • Summary

      • Problems

      • References

    • 9. Resonant Converters: Zero-Voltage and/or Zero-Current Switchings

      • 9.1 Introduction

        • 9.1.1 Switch-Mode Inductive Current Switching

        • 9.1.2 Zero-Voltage and Zero-Current Switchings

      • 9.2 Classification of Resonant Converters

        • 9.2.1 Load-Resonant Converters

        • 9.2.2 Resonant-Switch Converters

        • 9.2.3 Resonant-dc-Link Converters

        • 9.2.4 High-Frequency-Link Integral-Half-Cycle Converters

      • 9.3 Basic Resonant Circuit Concepts

        • 9.3.1 Series-Resonant Circuits

          • 9.3.1.1 Undamped Series-Resonant Circuit

          • 9.3.1.2 Series-Resonant Circuit with a Capacitor-Parallel Load

          • 9.3.1.3 Frequency Characteristics of a Series-Resonant Circuit

        • 9.3.2 Parallel-Resonant Circuits

          • 9.3.2.1 Undamped Parallel-Resonant Circuit

          • 9.3.2.2 Frequency Characteristics of Parallel-Resonant Circuit

      • 9.4 Load-Resonant Converters

        • 9.4.1 Series-Loaded Resonant dc-dc Converters

          • 9.4.1.1 Discontinuous-Conduction Mode with omega _s < ½omega _0

          • 9.4.1.2 Continuous-Conduction Mode with ½omega _0 < omega _s < omega _0

          • 9.4.1.3 Continuous-Conduction Mode with omega _s > omega _0

          • 9.4.1.4 Steady-State Operating Characteristics

          • 9.4.1.5 Control of SLR dc-dc Converters

        • 9.4.2 Parallel-Loaded Resonant dc-dc Converters

          • 9.4.2.1 Discontinuous Mode of Operation

          • 9.4.2.2 Continuous Mode of Operation below omega _0

          • 9.4.2.3 Continuous Mode of Operation above omega _0

          • 9.4.2.4 Steady-State Operating Characteristics

        • 9.4.3 Hybrid-Resonant dc-dc Converter

        • 9.4.4 Current-Source, Parallel-Resonant dc-to-ac Inverters for Induction Heating

          • 9.4.4.1 Start-up

        • 9.4.5 Class E Converters

      • 9.5 Resonant-Switch Converters

        • 9.5.1 ZCS Resonant-Switch Converters

        • 9.5.2 ZVS Resonant-Switch Converters

        • 9.5.3 Comparison of ZCS and ZVS Topologies

      • 9.6 Zero-Voltage-Switching, Clamped-Voltage Topologies

        • 9.6.1 ZVS-CV dc-dc Converters

        • 9.6.2 ZVS-CV dc-to-ac Inverters

        • 9.6.3 ZVS-CV dc-dc Converter with Voltage Cancellation

      • 9.7 Resonant-dc-Link Inverters with Zero-Voltage Switchings

      • 9.8 High-Frequency-Link Integral-Half-Cycle Converters

      • Summary

      • Problems

      • References

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_08b

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • 5. Line-Frequency Diode Rectifiers: Line-Frequency ac right arrow Uncontrolled dc

      • 5.1 Introduction

      • 5.2 Basic Rectifier Concepts

        • 5.2.1 Pure Resistive Load

        • 5.2.2 Inductive Load

        • 5.2.3 Load with an Internal dc Voltage

      • 5.3 Single-Phase Diode Bridge Rectifiers

        • 5.3.1 Idealized Circuit with L_s = 0

        • 5.3.2 Effect of L_s on Current Commutation

        • 5.3.3 Constant dc-Side Voltage v_d (t) = V_d

          • 5.3.3.1 Rectifier Characteristic

        • 5.3.4 Practical Diode Bridge Rectifiers

          • 5.3.4.1 Analytical Calculations under a Highly Discontinuous Current

          • 5.3.4.2 Circuit Simulation for General Operating Conditions

          • 5.3.4.3 Line-Current Distortion

          • 5.3.4.4 Line-Voltage Distortion

      • 5.4 Voltage Doubler (Single-Phase) Rectifiers

      • 5.5 Effect of Single-Phase Rectifiers on Neutral Currents in Three-Phase, Four-Wire Systems

      • 5.6 Three-Phase, Full-Bridge Rectifiers

        • 5.6.1 Idealized Circuit with L_s = 0

        • 5.6.2 Effect of L_s on Current Commutation

        • 5.6.3 A Constant dc-Side Voltage v_d (t) = V_d

          • 5.6.3.1 Distortion in the Line-Current Waveforms

        • 5.6.4 Practical Three-Phase Diode Bridge Rectifiers

      • 5.7 Comparison of Single-Phase and Three-Phase Rectifiers

      • 5.8 Inrush Current and Overvoltages at Turn-on

      • 5.9 Concerns and Remedies for Line-Current Harmonics and Low Power Factor

      • Summary

      • Problems

      • References

      • Appendix

    • 6. Line-Frequency Phase-Controlled Rectifiers and Inverters: Line-Frequency ac left right arrow Controlled dc

      • 6.1 Introduction

      • 6.2 Thyristor Circuits and Their Control

        • 6.2.1 Basic Thyristor Circuits

        • 6.2.2 Thyristor Gate Triggering

        • 6.2.3 Practical Thyristor Converters

      • 6.3 Single-Phase Converters

        • 6.3.1 Idealized Circuit with L_s = 0 and i_d (t) = I_d

          • 6.3.1.1 dc-Side Voltage

          • 6.3.1.2 Line Current i_s

          • 6.3.1.3 Power, Power Factor, and Reactive Volt-Amperes

        • 6.3.2 Effect of L_s

          • 6.3.2.1 Input Line Current i_s

        • 6.3.3 Practical Thyristor Converters

          • 6.3.3.1 Discontinuous-Current Conduction

        • 6.3.4 Inverter Mode of Operation

          • 6.3.4.1 Inverter Start-up

        • 6.3.5 ac Voltage Waveform (Line Notching and Distortion)

      • 6.4 Three-Phase Converters

        • 6.4.1 Idealized Circuit with L_s = 0 and i_d (t) = I_d

          • 6.4.1.1 dc-Side Voltage

          • 6.4.1.2 Input Line Currents i_a , i_b , and i_c

          • 6.4.1.3 Power, Power Factor, and Reactive Volt-Amperes

        • 6.4.2 Effect of L_s

          • 6.4.2.1 Input Line Current i_s

        • 6.4.3 Practical Converter

          • 6.4.3.1 Discontinuous-Current Conduction

        • 6.4.4 Inverter Mode of Operation

          • 6.4.4.1 Inverter Start-up

        • 6.4.5 ac Voltage Waveform (Line Notching and Distortion)

          • 6.4.5.1 Line Notching

          • 6.4.5.2 Voltage Distortion

      • 6.5 Other Three-Phase Converters

      • Summary

      • Problems

      • References

      • Appendix

    • 7. dc-dc Switch-Mode Converters

      • 7.1 Introduction

      • 7.2 Control of dc-dc Converters

      • 7.3 Step-down (Buck) Converter

        • 7.3.1 Continuous-Conduction Mode

        • 7.3.2 Boundary between Continuous and Discontinuous Conduction

        • 7.3.3 Discontinuous-Conduction Mode

          • 7.3.3.1 Discontinuous-Conduction Mode with Constant V_d

          • 7.3.3.2 Discontinuous-Conduction Mode with Constant V_o

        • 7.3.4 Output Voltage Ripple

      • 7.4 Step-up (Boost) Converter

        • 7.4.1 Continuous-Conduction Mode

        • 7.4.2 Boundary between Continuous and Discontinuous Conduction

        • 7.4.3 Discontinuous-Conduction Mode

        • 7.4.4 Effect of Parasitic Elements

        • 7.4.5 Output Voltage Ripple

      • 7.5 Buck-Boost Converter

        • 7.5.1 Continuous-Conduction Mode

        • 7.5.2 Boundary between Continuous and Discontinuous Conduction

        • 7.5.3 Discontinuous-Conduction Mode

        • 7.5.4 Effect of Parasitic Elements

        • 7.5.5 Output Voltage Ripple

      • 7.6 Cúk dc-dc Converter

      • 7.7 Full-Bridge dc-dc Converter

        • 7.7.1 PWM with Bipolar Voltage Switching

        • 7.7.2 PWM with Unipolar Voltage Switching

      • 7.8 dc-dc Converter Comparison

      • Summary

      • Problems

      • References

    • 8. Switch-Mode dc-ac Inverters: dc left right arrow Sinusoidal ac

      • 8.1 Introduction

      • 8.2 Basic Concepts of Switch-Mode Inverters

        • 8.2.1 Pulse-Width-Modulated Switching Scheme

          • 8.2.1.1 Small m_f (m_f Less-Than or Equal to 21)

          • 8.2.1.2 Large m_f (m_f > 21)

          • 8.2.1.3 Overmodulation (m_a > 1.0)

        • 8.2.2 Square-Wave Switching Scheme

      • 8.3 Single-Phase Inverters

        • 8.3.1 Half-Bridge Inverters (Single Phase)

        • 8.3.2 Full-Bridge Inverters (Single Phase)

          • 8.3.2.1 PWM with Bipolar Voltage Switching

          • 8.3.2.2 PWM with Unipolar Voltage Switching

          • 8.3.2.3 Square-Wave Operation

          • 8.3.2.4 Output Control by Voltage Cancellation

          • 8.3.2.5 Switch Utilization in Full-Bridge Inverters

          • 8.3.2.6 Ripple in the Single-Phase Inverter Output

        • 8.3.3 Push-Pull Inverters

        • 8.3.4 Switch Utilization in Single-Phase Inverters

      • 8.4 Three-Phase Inverters

        • 8.4.1 PWM in Three-Phase Voltage Source Inverters

          • 8.4.1.1 Linear Modulation (m_a Less-Than or Equal to 1.0)

          • 8.4.1.2 Overmodulation (m_a > 1.0)

        • 8.4.2 Square-Wave Operation in Three-Phase Inverters

        • 8.4.3 Switch Utilization in Three-Phase Inverters

        • 8.4.4 Ripple in the Inverter Output

        • 8.4.5 dc-Side Current i_d

        • 8.4.6 Conduction of Switches in Three-Phase Inverters

          • 8.4.6.1 Square-Wave Operation

          • 8.4.6.2 PWM Operation

      • 8.5 Effect of Blanking Time on Voltage in PWM Inverters

      • 8.6 Other Inverter Switching Schemes

        • 8.6.1 Square-Wave Pulse Switching

        • 8.6.2 Programmed Harmonic Elimination Switching

        • 8.6.3 Current-Regulated (Current-Mode) Modulation

          • 8.6.3.1 Tolerance Band Control

          • 8.6.3.2 Fixed-Frequency Control

        • 8.6.4 Switching Scheme Incorporating Harmonic Neutralization by Modulation and Transformer Connections

      • 8.7 Rectifier Mode of Operation

      • Summary

      • Problems

      • References

    • 9. Resonant Converters: Zero-Voltage and/or Zero-Current Switchings

      • 9.1 Introduction

        • 9.1.1 Switch-Mode Inductive Current Switching

        • 9.1.2 Zero-Voltage and Zero-Current Switchings

      • 9.2 Classification of Resonant Converters

        • 9.2.1 Load-Resonant Converters

        • 9.2.2 Resonant-Switch Converters

        • 9.2.3 Resonant-dc-Link Converters

        • 9.2.4 High-Frequency-Link Integral-Half-Cycle Converters

      • 9.3 Basic Resonant Circuit Concepts

        • 9.3.1 Series-Resonant Circuits

          • 9.3.1.1 Undamped Series-Resonant Circuit

          • 9.3.1.2 Series-Resonant Circuit with a Capacitor-Parallel Load

          • 9.3.1.3 Frequency Characteristics of a Series-Resonant Circuit

        • 9.3.2 Parallel-Resonant Circuits

          • 9.3.2.1 Undamped Parallel-Resonant Circuit

          • 9.3.2.2 Frequency Characteristics of Parallel-Resonant Circuit

      • 9.4 Load-Resonant Converters

        • 9.4.1 Series-Loaded Resonant dc-dc Converters

          • 9.4.1.1 Discontinuous-Conduction Mode with omega _s < ½omega _0

          • 9.4.1.2 Continuous-Conduction Mode with ½omega _0 < omega _s < omega _0

          • 9.4.1.3 Continuous-Conduction Mode with omega _s > omega _0

          • 9.4.1.4 Steady-State Operating Characteristics

          • 9.4.1.5 Control of SLR dc-dc Converters

        • 9.4.2 Parallel-Loaded Resonant dc-dc Converters

          • 9.4.2.1 Discontinuous Mode of Operation

          • 9.4.2.2 Continuous Mode of Operation below omega _0

          • 9.4.2.3 Continuous Mode of Operation above omega _0

          • 9.4.2.4 Steady-State Operating Characteristics

        • 9.4.3 Hybrid-Resonant dc-dc Converter

        • 9.4.4 Current-Source, Parallel-Resonant dc-to-ac Inverters for Induction Heating

          • 9.4.4.1 Start-up

        • 9.4.5 Class E Converters

      • 9.5 Resonant-Switch Converters

        • 9.5.1 ZCS Resonant-Switch Converters

        • 9.5.2 ZVS Resonant-Switch Converters

        • 9.5.3 Comparison of ZCS and ZVS Topologies

      • 9.6 Zero-Voltage-Switching, Clamped-Voltage Topologies

        • 9.6.1 ZVS-CV dc-dc Converters

        • 9.6.2 ZVS-CV dc-to-ac Inverters

        • 9.6.3 ZVS-CV dc-dc Converter with Voltage Cancellation

      • 9.7 Resonant-dc-Link Inverters with Zero-Voltage Switchings

      • 9.8 High-Frequency-Link Integral-Half-Cycle Converters

      • Summary

      • Problems

      • References

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_09a

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • 5. Line-Frequency Diode Rectifiers: Line-Frequency ac right arrow Uncontrolled dc

      • 5.1 Introduction

      • 5.2 Basic Rectifier Concepts

        • 5.2.1 Pure Resistive Load

        • 5.2.2 Inductive Load

        • 5.2.3 Load with an Internal dc Voltage

      • 5.3 Single-Phase Diode Bridge Rectifiers

        • 5.3.1 Idealized Circuit with L_s = 0

        • 5.3.2 Effect of L_s on Current Commutation

        • 5.3.3 Constant dc-Side Voltage v_d (t) = V_d

          • 5.3.3.1 Rectifier Characteristic

        • 5.3.4 Practical Diode Bridge Rectifiers

          • 5.3.4.1 Analytical Calculations under a Highly Discontinuous Current

          • 5.3.4.2 Circuit Simulation for General Operating Conditions

          • 5.3.4.3 Line-Current Distortion

          • 5.3.4.4 Line-Voltage Distortion

      • 5.4 Voltage Doubler (Single-Phase) Rectifiers

      • 5.5 Effect of Single-Phase Rectifiers on Neutral Currents in Three-Phase, Four-Wire Systems

      • 5.6 Three-Phase, Full-Bridge Rectifiers

        • 5.6.1 Idealized Circuit with L_s = 0

        • 5.6.2 Effect of L_s on Current Commutation

        • 5.6.3 A Constant dc-Side Voltage v_d (t) = V_d

          • 5.6.3.1 Distortion in the Line-Current Waveforms

        • 5.6.4 Practical Three-Phase Diode Bridge Rectifiers

      • 5.7 Comparison of Single-Phase and Three-Phase Rectifiers

      • 5.8 Inrush Current and Overvoltages at Turn-on

      • 5.9 Concerns and Remedies for Line-Current Harmonics and Low Power Factor

      • Summary

      • Problems

      • References

      • Appendix

    • 6. Line-Frequency Phase-Controlled Rectifiers and Inverters: Line-Frequency ac left right arrow Controlled dc

      • 6.1 Introduction

      • 6.2 Thyristor Circuits and Their Control

        • 6.2.1 Basic Thyristor Circuits

        • 6.2.2 Thyristor Gate Triggering

        • 6.2.3 Practical Thyristor Converters

      • 6.3 Single-Phase Converters

        • 6.3.1 Idealized Circuit with L_s = 0 and i_d (t) = I_d

          • 6.3.1.1 dc-Side Voltage

          • 6.3.1.2 Line Current i_s

          • 6.3.1.3 Power, Power Factor, and Reactive Volt-Amperes

        • 6.3.2 Effect of L_s

          • 6.3.2.1 Input Line Current i_s

        • 6.3.3 Practical Thyristor Converters

          • 6.3.3.1 Discontinuous-Current Conduction

        • 6.3.4 Inverter Mode of Operation

          • 6.3.4.1 Inverter Start-up

        • 6.3.5 ac Voltage Waveform (Line Notching and Distortion)

      • 6.4 Three-Phase Converters

        • 6.4.1 Idealized Circuit with L_s = 0 and i_d (t) = I_d

          • 6.4.1.1 dc-Side Voltage

          • 6.4.1.2 Input Line Currents i_a , i_b , and i_c

          • 6.4.1.3 Power, Power Factor, and Reactive Volt-Amperes

        • 6.4.2 Effect of L_s

          • 6.4.2.1 Input Line Current i_s

        • 6.4.3 Practical Converter

          • 6.4.3.1 Discontinuous-Current Conduction

        • 6.4.4 Inverter Mode of Operation

          • 6.4.4.1 Inverter Start-up

        • 6.4.5 ac Voltage Waveform (Line Notching and Distortion)

          • 6.4.5.1 Line Notching

          • 6.4.5.2 Voltage Distortion

      • 6.5 Other Three-Phase Converters

      • Summary

      • Problems

      • References

      • Appendix

    • 7. dc-dc Switch-Mode Converters

      • 7.1 Introduction

      • 7.2 Control of dc-dc Converters

      • 7.3 Step-down (Buck) Converter

        • 7.3.1 Continuous-Conduction Mode

        • 7.3.2 Boundary between Continuous and Discontinuous Conduction

        • 7.3.3 Discontinuous-Conduction Mode

          • 7.3.3.1 Discontinuous-Conduction Mode with Constant V_d

          • 7.3.3.2 Discontinuous-Conduction Mode with Constant V_o

        • 7.3.4 Output Voltage Ripple

      • 7.4 Step-up (Boost) Converter

        • 7.4.1 Continuous-Conduction Mode

        • 7.4.2 Boundary between Continuous and Discontinuous Conduction

        • 7.4.3 Discontinuous-Conduction Mode

        • 7.4.4 Effect of Parasitic Elements

        • 7.4.5 Output Voltage Ripple

      • 7.5 Buck-Boost Converter

        • 7.5.1 Continuous-Conduction Mode

        • 7.5.2 Boundary between Continuous and Discontinuous Conduction

        • 7.5.3 Discontinuous-Conduction Mode

        • 7.5.4 Effect of Parasitic Elements

        • 7.5.5 Output Voltage Ripple

      • 7.6 Cúk dc-dc Converter

      • 7.7 Full-Bridge dc-dc Converter

        • 7.7.1 PWM with Bipolar Voltage Switching

        • 7.7.2 PWM with Unipolar Voltage Switching

      • 7.8 dc-dc Converter Comparison

      • Summary

      • Problems

      • References

    • 8. Switch-Mode dc-ac Inverters: dc left right arrow Sinusoidal ac

      • 8.1 Introduction

      • 8.2 Basic Concepts of Switch-Mode Inverters

        • 8.2.1 Pulse-Width-Modulated Switching Scheme

          • 8.2.1.1 Small m_f (m_f Less-Than or Equal to 21)

          • 8.2.1.2 Large m_f (m_f > 21)

          • 8.2.1.3 Overmodulation (m_a > 1.0)

        • 8.2.2 Square-Wave Switching Scheme

      • 8.3 Single-Phase Inverters

        • 8.3.1 Half-Bridge Inverters (Single Phase)

        • 8.3.2 Full-Bridge Inverters (Single Phase)

          • 8.3.2.1 PWM with Bipolar Voltage Switching

          • 8.3.2.2 PWM with Unipolar Voltage Switching

          • 8.3.2.3 Square-Wave Operation

          • 8.3.2.4 Output Control by Voltage Cancellation

          • 8.3.2.5 Switch Utilization in Full-Bridge Inverters

          • 8.3.2.6 Ripple in the Single-Phase Inverter Output

        • 8.3.3 Push-Pull Inverters

        • 8.3.4 Switch Utilization in Single-Phase Inverters

      • 8.4 Three-Phase Inverters

        • 8.4.1 PWM in Three-Phase Voltage Source Inverters

          • 8.4.1.1 Linear Modulation (m_a Less-Than or Equal to 1.0)

          • 8.4.1.2 Overmodulation (m_a > 1.0)

        • 8.4.2 Square-Wave Operation in Three-Phase Inverters

        • 8.4.3 Switch Utilization in Three-Phase Inverters

        • 8.4.4 Ripple in the Inverter Output

        • 8.4.5 dc-Side Current i_d

        • 8.4.6 Conduction of Switches in Three-Phase Inverters

          • 8.4.6.1 Square-Wave Operation

          • 8.4.6.2 PWM Operation

      • 8.5 Effect of Blanking Time on Voltage in PWM Inverters

      • 8.6 Other Inverter Switching Schemes

        • 8.6.1 Square-Wave Pulse Switching

        • 8.6.2 Programmed Harmonic Elimination Switching

        • 8.6.3 Current-Regulated (Current-Mode) Modulation

          • 8.6.3.1 Tolerance Band Control

          • 8.6.3.2 Fixed-Frequency Control

        • 8.6.4 Switching Scheme Incorporating Harmonic Neutralization by Modulation and Transformer Connections

      • 8.7 Rectifier Mode of Operation

      • Summary

      • Problems

      • References

    • 9. Resonant Converters: Zero-Voltage and/or Zero-Current Switchings

      • 9.1 Introduction

        • 9.1.1 Switch-Mode Inductive Current Switching

        • 9.1.2 Zero-Voltage and Zero-Current Switchings

      • 9.2 Classification of Resonant Converters

        • 9.2.1 Load-Resonant Converters

        • 9.2.2 Resonant-Switch Converters

        • 9.2.3 Resonant-dc-Link Converters

        • 9.2.4 High-Frequency-Link Integral-Half-Cycle Converters

      • 9.3 Basic Resonant Circuit Concepts

        • 9.3.1 Series-Resonant Circuits

          • 9.3.1.1 Undamped Series-Resonant Circuit

          • 9.3.1.2 Series-Resonant Circuit with a Capacitor-Parallel Load

          • 9.3.1.3 Frequency Characteristics of a Series-Resonant Circuit

        • 9.3.2 Parallel-Resonant Circuits

          • 9.3.2.1 Undamped Parallel-Resonant Circuit

          • 9.3.2.2 Frequency Characteristics of Parallel-Resonant Circuit

      • 9.4 Load-Resonant Converters

        • 9.4.1 Series-Loaded Resonant dc-dc Converters

          • 9.4.1.1 Discontinuous-Conduction Mode with omega _s < ½omega _0

          • 9.4.1.2 Continuous-Conduction Mode with ½omega _0 < omega _s < omega _0

          • 9.4.1.3 Continuous-Conduction Mode with omega _s > omega _0

          • 9.4.1.4 Steady-State Operating Characteristics

          • 9.4.1.5 Control of SLR dc-dc Converters

        • 9.4.2 Parallel-Loaded Resonant dc-dc Converters

          • 9.4.2.1 Discontinuous Mode of Operation

          • 9.4.2.2 Continuous Mode of Operation below omega _0

          • 9.4.2.3 Continuous Mode of Operation above omega _0

          • 9.4.2.4 Steady-State Operating Characteristics

        • 9.4.3 Hybrid-Resonant dc-dc Converter

        • 9.4.4 Current-Source, Parallel-Resonant dc-to-ac Inverters for Induction Heating

          • 9.4.4.1 Start-up

        • 9.4.5 Class E Converters

      • 9.5 Resonant-Switch Converters

        • 9.5.1 ZCS Resonant-Switch Converters

        • 9.5.2 ZVS Resonant-Switch Converters

        • 9.5.3 Comparison of ZCS and ZVS Topologies

      • 9.6 Zero-Voltage-Switching, Clamped-Voltage Topologies

        • 9.6.1 ZVS-CV dc-dc Converters

        • 9.6.2 ZVS-CV dc-to-ac Inverters

        • 9.6.3 ZVS-CV dc-dc Converter with Voltage Cancellation

      • 9.7 Resonant-dc-Link Inverters with Zero-Voltage Switchings

      • 9.8 High-Frequency-Link Integral-Half-Cycle Converters

      • Summary

      • Problems

      • References

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_09b

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • 5. Line-Frequency Diode Rectifiers: Line-Frequency ac right arrow Uncontrolled dc

      • 5.1 Introduction

      • 5.2 Basic Rectifier Concepts

        • 5.2.1 Pure Resistive Load

        • 5.2.2 Inductive Load

        • 5.2.3 Load with an Internal dc Voltage

      • 5.3 Single-Phase Diode Bridge Rectifiers

        • 5.3.1 Idealized Circuit with L_s = 0

        • 5.3.2 Effect of L_s on Current Commutation

        • 5.3.3 Constant dc-Side Voltage v_d (t) = V_d

          • 5.3.3.1 Rectifier Characteristic

        • 5.3.4 Practical Diode Bridge Rectifiers

          • 5.3.4.1 Analytical Calculations under a Highly Discontinuous Current

          • 5.3.4.2 Circuit Simulation for General Operating Conditions

          • 5.3.4.3 Line-Current Distortion

          • 5.3.4.4 Line-Voltage Distortion

      • 5.4 Voltage Doubler (Single-Phase) Rectifiers

      • 5.5 Effect of Single-Phase Rectifiers on Neutral Currents in Three-Phase, Four-Wire Systems

      • 5.6 Three-Phase, Full-Bridge Rectifiers

        • 5.6.1 Idealized Circuit with L_s = 0

        • 5.6.2 Effect of L_s on Current Commutation

        • 5.6.3 A Constant dc-Side Voltage v_d (t) = V_d

          • 5.6.3.1 Distortion in the Line-Current Waveforms

        • 5.6.4 Practical Three-Phase Diode Bridge Rectifiers

      • 5.7 Comparison of Single-Phase and Three-Phase Rectifiers

      • 5.8 Inrush Current and Overvoltages at Turn-on

      • 5.9 Concerns and Remedies for Line-Current Harmonics and Low Power Factor

      • Summary

      • Problems

      • References

      • Appendix

    • 6. Line-Frequency Phase-Controlled Rectifiers and Inverters: Line-Frequency ac left right arrow Controlled dc

      • 6.1 Introduction

      • 6.2 Thyristor Circuits and Their Control

        • 6.2.1 Basic Thyristor Circuits

        • 6.2.2 Thyristor Gate Triggering

        • 6.2.3 Practical Thyristor Converters

      • 6.3 Single-Phase Converters

        • 6.3.1 Idealized Circuit with L_s = 0 and i_d (t) = I_d

          • 6.3.1.1 dc-Side Voltage

          • 6.3.1.2 Line Current i_s

          • 6.3.1.3 Power, Power Factor, and Reactive Volt-Amperes

        • 6.3.2 Effect of L_s

          • 6.3.2.1 Input Line Current i_s

        • 6.3.3 Practical Thyristor Converters

          • 6.3.3.1 Discontinuous-Current Conduction

        • 6.3.4 Inverter Mode of Operation

          • 6.3.4.1 Inverter Start-up

        • 6.3.5 ac Voltage Waveform (Line Notching and Distortion)

      • 6.4 Three-Phase Converters

        • 6.4.1 Idealized Circuit with L_s = 0 and i_d (t) = I_d

          • 6.4.1.1 dc-Side Voltage

          • 6.4.1.2 Input Line Currents i_a , i_b , and i_c

          • 6.4.1.3 Power, Power Factor, and Reactive Volt-Amperes

        • 6.4.2 Effect of L_s

          • 6.4.2.1 Input Line Current i_s

        • 6.4.3 Practical Converter

          • 6.4.3.1 Discontinuous-Current Conduction

        • 6.4.4 Inverter Mode of Operation

          • 6.4.4.1 Inverter Start-up

        • 6.4.5 ac Voltage Waveform (Line Notching and Distortion)

          • 6.4.5.1 Line Notching

          • 6.4.5.2 Voltage Distortion

      • 6.5 Other Three-Phase Converters

      • Summary

      • Problems

      • References

      • Appendix

    • 7. dc-dc Switch-Mode Converters

      • 7.1 Introduction

      • 7.2 Control of dc-dc Converters

      • 7.3 Step-down (Buck) Converter

        • 7.3.1 Continuous-Conduction Mode

        • 7.3.2 Boundary between Continuous and Discontinuous Conduction

        • 7.3.3 Discontinuous-Conduction Mode

          • 7.3.3.1 Discontinuous-Conduction Mode with Constant V_d

          • 7.3.3.2 Discontinuous-Conduction Mode with Constant V_o

        • 7.3.4 Output Voltage Ripple

      • 7.4 Step-up (Boost) Converter

        • 7.4.1 Continuous-Conduction Mode

        • 7.4.2 Boundary between Continuous and Discontinuous Conduction

        • 7.4.3 Discontinuous-Conduction Mode

        • 7.4.4 Effect of Parasitic Elements

        • 7.4.5 Output Voltage Ripple

      • 7.5 Buck-Boost Converter

        • 7.5.1 Continuous-Conduction Mode

        • 7.5.2 Boundary between Continuous and Discontinuous Conduction

        • 7.5.3 Discontinuous-Conduction Mode

        • 7.5.4 Effect of Parasitic Elements

        • 7.5.5 Output Voltage Ripple

      • 7.6 Cúk dc-dc Converter

      • 7.7 Full-Bridge dc-dc Converter

        • 7.7.1 PWM with Bipolar Voltage Switching

        • 7.7.2 PWM with Unipolar Voltage Switching

      • 7.8 dc-dc Converter Comparison

      • Summary

      • Problems

      • References

    • 8. Switch-Mode dc-ac Inverters: dc left right arrow Sinusoidal ac

      • 8.1 Introduction

      • 8.2 Basic Concepts of Switch-Mode Inverters

        • 8.2.1 Pulse-Width-Modulated Switching Scheme

          • 8.2.1.1 Small m_f (m_f Less-Than or Equal to 21)

          • 8.2.1.2 Large m_f (m_f > 21)

          • 8.2.1.3 Overmodulation (m_a > 1.0)

        • 8.2.2 Square-Wave Switching Scheme

      • 8.3 Single-Phase Inverters

        • 8.3.1 Half-Bridge Inverters (Single Phase)

        • 8.3.2 Full-Bridge Inverters (Single Phase)

          • 8.3.2.1 PWM with Bipolar Voltage Switching

          • 8.3.2.2 PWM with Unipolar Voltage Switching

          • 8.3.2.3 Square-Wave Operation

          • 8.3.2.4 Output Control by Voltage Cancellation

          • 8.3.2.5 Switch Utilization in Full-Bridge Inverters

          • 8.3.2.6 Ripple in the Single-Phase Inverter Output

        • 8.3.3 Push-Pull Inverters

        • 8.3.4 Switch Utilization in Single-Phase Inverters

      • 8.4 Three-Phase Inverters

        • 8.4.1 PWM in Three-Phase Voltage Source Inverters

          • 8.4.1.1 Linear Modulation (m_a Less-Than or Equal to 1.0)

          • 8.4.1.2 Overmodulation (m_a > 1.0)

        • 8.4.2 Square-Wave Operation in Three-Phase Inverters

        • 8.4.3 Switch Utilization in Three-Phase Inverters

        • 8.4.4 Ripple in the Inverter Output

        • 8.4.5 dc-Side Current i_d

        • 8.4.6 Conduction of Switches in Three-Phase Inverters

          • 8.4.6.1 Square-Wave Operation

          • 8.4.6.2 PWM Operation

      • 8.5 Effect of Blanking Time on Voltage in PWM Inverters

      • 8.6 Other Inverter Switching Schemes

        • 8.6.1 Square-Wave Pulse Switching

        • 8.6.2 Programmed Harmonic Elimination Switching

        • 8.6.3 Current-Regulated (Current-Mode) Modulation

          • 8.6.3.1 Tolerance Band Control

          • 8.6.3.2 Fixed-Frequency Control

        • 8.6.4 Switching Scheme Incorporating Harmonic Neutralization by Modulation and Transformer Connections

      • 8.7 Rectifier Mode of Operation

      • Summary

      • Problems

      • References

    • 9. Resonant Converters: Zero-Voltage and/or Zero-Current Switchings

      • 9.1 Introduction

        • 9.1.1 Switch-Mode Inductive Current Switching

        • 9.1.2 Zero-Voltage and Zero-Current Switchings

      • 9.2 Classification of Resonant Converters

        • 9.2.1 Load-Resonant Converters

        • 9.2.2 Resonant-Switch Converters

        • 9.2.3 Resonant-dc-Link Converters

        • 9.2.4 High-Frequency-Link Integral-Half-Cycle Converters

      • 9.3 Basic Resonant Circuit Concepts

        • 9.3.1 Series-Resonant Circuits

          • 9.3.1.1 Undamped Series-Resonant Circuit

          • 9.3.1.2 Series-Resonant Circuit with a Capacitor-Parallel Load

          • 9.3.1.3 Frequency Characteristics of a Series-Resonant Circuit

        • 9.3.2 Parallel-Resonant Circuits

          • 9.3.2.1 Undamped Parallel-Resonant Circuit

          • 9.3.2.2 Frequency Characteristics of Parallel-Resonant Circuit

      • 9.4 Load-Resonant Converters

        • 9.4.1 Series-Loaded Resonant dc-dc Converters

          • 9.4.1.1 Discontinuous-Conduction Mode with omega _s < ½omega _0

          • 9.4.1.2 Continuous-Conduction Mode with ½omega _0 < omega _s < omega _0

          • 9.4.1.3 Continuous-Conduction Mode with omega _s > omega _0

          • 9.4.1.4 Steady-State Operating Characteristics

          • 9.4.1.5 Control of SLR dc-dc Converters

        • 9.4.2 Parallel-Loaded Resonant dc-dc Converters

          • 9.4.2.1 Discontinuous Mode of Operation

          • 9.4.2.2 Continuous Mode of Operation below omega _0

          • 9.4.2.3 Continuous Mode of Operation above omega _0

          • 9.4.2.4 Steady-State Operating Characteristics

        • 9.4.3 Hybrid-Resonant dc-dc Converter

        • 9.4.4 Current-Source, Parallel-Resonant dc-to-ac Inverters for Induction Heating

          • 9.4.4.1 Start-up

        • 9.4.5 Class E Converters

      • 9.5 Resonant-Switch Converters

        • 9.5.1 ZCS Resonant-Switch Converters

        • 9.5.2 ZVS Resonant-Switch Converters

        • 9.5.3 Comparison of ZCS and ZVS Topologies

      • 9.6 Zero-Voltage-Switching, Clamped-Voltage Topologies

        • 9.6.1 ZVS-CV dc-dc Converters

        • 9.6.2 ZVS-CV dc-to-ac Inverters

        • 9.6.3 ZVS-CV dc-dc Converter with Voltage Cancellation

      • 9.7 Resonant-dc-Link Inverters with Zero-Voltage Switchings

      • 9.8 High-Frequency-Link Integral-Half-Cycle Converters

      • Summary

      • Problems

      • References

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_10a

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • 10. Switching dc Power Supplies

      • 10.1 Introduction

      • 10.2 Linear Power Supplies

      • 10.3 Overview of Switching Power Supplies

      • 10.4 dc-dc Converters with Electrical Isolation

        • 10.4.1 Introduction to dc-dc Converters with Isolation

          • 10.4.1.1 Unidirectional Core Excitation

          • 10.4.1.2 Bidirectional Core Excitation

          • 10.4.1.3 Isolation Transformer Representation

          • 10.4.1.4 Control of dc-dc Converters with Isolation

        • 10.4.2 Flyback Converters (Derived from Buck-Boost Converters)

          • 10.4.2.1 Other Flyback Converter Topologies

        • 10.4.3 Forward Converter (Derived from Step-down Converter)

          • 10.4.3.1 Other Forward Converter Topologies

        • 10.4.4 Push-Pull Converter (Derived from Step-down Converter)

        • 10.4.5 Half-Bridge Converter (Derived from Step-down Converter)

        • 10.4.6 Full-Bridge Converter (Derived from Step-down Converter)

        • 10.4.7 Current-Source dc-dc Converters

        • 10.4.8 Transformer Core Selection in dc-dc Converters with Electrical Isolation

      • 10.5 Control of Switch-Mode dc Power Supplies

        • 10.5.1 Linearization of the Power Stage Including the Output Filter Using State-Space Averaging to Obtain v with Tilde_o (s)/d with Tilde (s)

        • 10.5.2 Transfer Function d with Tilde (s)/v with Tilde_c (s) of the Direct Duty Ratio Pulse-Width Modulator

        • 10.5.3 Compensation of the Feedback System Using a Direct Duty Ratio Pulse-Width Modulator

        • 10.5.4 Voltage Feed-Forward PWM Control

        • 10.5.5 Current-Mode Control

        • 10.5.6 Digital Pulse-Width Modulation Control

      • 10.6 Power Supply Protection

        • 10.6.1 Soft Start

        • 10.6.2 Voltage Protection

        • 10.6.3 Current Limiting

          • 10.6.3.1 Foldback Current Limiting

      • 10.7 Electrical Isolation in the Feedback Loop

      • 10.8 Designing to Meet the Power Supply Specifications

        • 10.8.1 Input Filter

        • 10.8.2 Input Rectifier Bridge

        • 10.8.3 Bulk Capacitor and the Hold-up Time

        • 10.8.4 Limiting Inrush (Surge) Current at Initial Turn-on

        • 10.8.5 Equivalent Series Resistance of Output Filter Capacitor

        • 10.8.6 Synchronous Rectifier to Improve Energy Efficiency

        • 10.8.7 Multiple Outputs

        • 10.8.8 EMI Considerations

      • Summary

      • Problems

      • References

    • 11. Power Conditioners and Uninterruptible Power Supplies

      • 11.1 Introduction

      • 11.2 Power Line Disturbances

        • 11.2.1 Types of Disturbances

        • 11.2.2 Sources of Disturbances

        • 11.2.3 Effect on Sensitive Equipment

      • 11.3 Power Conditioners

      • 11.4 Uninterruptible Power Supplies (UPSs)

        • 11.4.1 Rectifier

        • 11.4.2 Batteries

        • 11.4.3 Inverters

        • 11.4.4 Static Transfer Switch

      • Summary

      • Problems

      • References

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_10b

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • 10. Switching dc Power Supplies

      • 10.1 Introduction

      • 10.2 Linear Power Supplies

      • 10.3 Overview of Switching Power Supplies

      • 10.4 dc-dc Converters with Electrical Isolation

        • 10.4.1 Introduction to dc-dc Converters with Isolation

          • 10.4.1.1 Unidirectional Core Excitation

          • 10.4.1.2 Bidirectional Core Excitation

          • 10.4.1.3 Isolation Transformer Representation

          • 10.4.1.4 Control of dc-dc Converters with Isolation

        • 10.4.2 Flyback Converters (Derived from Buck-Boost Converters)

          • 10.4.2.1 Other Flyback Converter Topologies

        • 10.4.3 Forward Converter (Derived from Step-down Converter)

          • 10.4.3.1 Other Forward Converter Topologies

        • 10.4.4 Push-Pull Converter (Derived from Step-down Converter)

        • 10.4.5 Half-Bridge Converter (Derived from Step-down Converter)

        • 10.4.6 Full-Bridge Converter (Derived from Step-down Converter)

        • 10.4.7 Current-Source dc-dc Converters

        • 10.4.8 Transformer Core Selection in dc-dc Converters with Electrical Isolation

      • 10.5 Control of Switch-Mode dc Power Supplies

        • 10.5.1 Linearization of the Power Stage Including the Output Filter Using State-Space Averaging to Obtain v with Tilde_o (s)/d with Tilde (s)

        • 10.5.2 Transfer Function d with Tilde (s)/v with Tilde_c (s) of the Direct Duty Ratio Pulse-Width Modulator

        • 10.5.3 Compensation of the Feedback System Using a Direct Duty Ratio Pulse-Width Modulator

        • 10.5.4 Voltage Feed-Forward PWM Control

        • 10.5.5 Current-Mode Control

        • 10.5.6 Digital Pulse-Width Modulation Control

      • 10.6 Power Supply Protection

        • 10.6.1 Soft Start

        • 10.6.2 Voltage Protection

        • 10.6.3 Current Limiting

          • 10.6.3.1 Foldback Current Limiting

      • 10.7 Electrical Isolation in the Feedback Loop

      • 10.8 Designing to Meet the Power Supply Specifications

        • 10.8.1 Input Filter

        • 10.8.2 Input Rectifier Bridge

        • 10.8.3 Bulk Capacitor and the Hold-up Time

        • 10.8.4 Limiting Inrush (Surge) Current at Initial Turn-on

        • 10.8.5 Equivalent Series Resistance of Output Filter Capacitor

        • 10.8.6 Synchronous Rectifier to Improve Energy Efficiency

        • 10.8.7 Multiple Outputs

        • 10.8.8 EMI Considerations

      • Summary

      • Problems

      • References

    • 11. Power Conditioners and Uninterruptible Power Supplies

      • 11.1 Introduction

      • 11.2 Power Line Disturbances

        • 11.2.1 Types of Disturbances

        • 11.2.2 Sources of Disturbances

        • 11.2.3 Effect on Sensitive Equipment

      • 11.3 Power Conditioners

      • 11.4 Uninterruptible Power Supplies (UPSs)

        • 11.4.1 Rectifier

        • 11.4.2 Batteries

        • 11.4.3 Inverters

        • 11.4.4 Static Transfer Switch

      • Summary

      • Problems

      • References

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_10c

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • 10. Switching dc Power Supplies

      • 10.1 Introduction

      • 10.2 Linear Power Supplies

      • 10.3 Overview of Switching Power Supplies

      • 10.4 dc-dc Converters with Electrical Isolation

        • 10.4.1 Introduction to dc-dc Converters with Isolation

          • 10.4.1.1 Unidirectional Core Excitation

          • 10.4.1.2 Bidirectional Core Excitation

          • 10.4.1.3 Isolation Transformer Representation

          • 10.4.1.4 Control of dc-dc Converters with Isolation

        • 10.4.2 Flyback Converters (Derived from Buck-Boost Converters)

          • 10.4.2.1 Other Flyback Converter Topologies

        • 10.4.3 Forward Converter (Derived from Step-down Converter)

          • 10.4.3.1 Other Forward Converter Topologies

        • 10.4.4 Push-Pull Converter (Derived from Step-down Converter)

        • 10.4.5 Half-Bridge Converter (Derived from Step-down Converter)

        • 10.4.6 Full-Bridge Converter (Derived from Step-down Converter)

        • 10.4.7 Current-Source dc-dc Converters

        • 10.4.8 Transformer Core Selection in dc-dc Converters with Electrical Isolation

      • 10.5 Control of Switch-Mode dc Power Supplies

        • 10.5.1 Linearization of the Power Stage Including the Output Filter Using State-Space Averaging to Obtain v with Tilde_o (s)/d with Tilde (s)

        • 10.5.2 Transfer Function d with Tilde (s)/v with Tilde_c (s) of the Direct Duty Ratio Pulse-Width Modulator

        • 10.5.3 Compensation of the Feedback System Using a Direct Duty Ratio Pulse-Width Modulator

        • 10.5.4 Voltage Feed-Forward PWM Control

        • 10.5.5 Current-Mode Control

        • 10.5.6 Digital Pulse-Width Modulation Control

      • 10.6 Power Supply Protection

        • 10.6.1 Soft Start

        • 10.6.2 Voltage Protection

        • 10.6.3 Current Limiting

          • 10.6.3.1 Foldback Current Limiting

      • 10.7 Electrical Isolation in the Feedback Loop

      • 10.8 Designing to Meet the Power Supply Specifications

        • 10.8.1 Input Filter

        • 10.8.2 Input Rectifier Bridge

        • 10.8.3 Bulk Capacitor and the Hold-up Time

        • 10.8.4 Limiting Inrush (Surge) Current at Initial Turn-on

        • 10.8.5 Equivalent Series Resistance of Output Filter Capacitor

        • 10.8.6 Synchronous Rectifier to Improve Energy Efficiency

        • 10.8.7 Multiple Outputs

        • 10.8.8 EMI Considerations

      • Summary

      • Problems

      • References

    • 11. Power Conditioners and Uninterruptible Power Supplies

      • 11.1 Introduction

      • 11.2 Power Line Disturbances

        • 11.2.1 Types of Disturbances

        • 11.2.2 Sources of Disturbances

        • 11.2.3 Effect on Sensitive Equipment

      • 11.3 Power Conditioners

      • 11.4 Uninterruptible Power Supplies (UPSs)

        • 11.4.1 Rectifier

        • 11.4.2 Batteries

        • 11.4.3 Inverters

        • 11.4.4 Static Transfer Switch

      • Summary

      • Problems

      • References

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_11

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • 10. Switching dc Power Supplies

      • 10.1 Introduction

      • 10.2 Linear Power Supplies

      • 10.3 Overview of Switching Power Supplies

      • 10.4 dc-dc Converters with Electrical Isolation

        • 10.4.1 Introduction to dc-dc Converters with Isolation

          • 10.4.1.1 Unidirectional Core Excitation

          • 10.4.1.2 Bidirectional Core Excitation

          • 10.4.1.3 Isolation Transformer Representation

          • 10.4.1.4 Control of dc-dc Converters with Isolation

        • 10.4.2 Flyback Converters (Derived from Buck-Boost Converters)

          • 10.4.2.1 Other Flyback Converter Topologies

        • 10.4.3 Forward Converter (Derived from Step-down Converter)

          • 10.4.3.1 Other Forward Converter Topologies

        • 10.4.4 Push-Pull Converter (Derived from Step-down Converter)

        • 10.4.5 Half-Bridge Converter (Derived from Step-down Converter)

        • 10.4.6 Full-Bridge Converter (Derived from Step-down Converter)

        • 10.4.7 Current-Source dc-dc Converters

        • 10.4.8 Transformer Core Selection in dc-dc Converters with Electrical Isolation

      • 10.5 Control of Switch-Mode dc Power Supplies

        • 10.5.1 Linearization of the Power Stage Including the Output Filter Using State-Space Averaging to Obtain v with Tilde_o (s)/d with Tilde (s)

        • 10.5.2 Transfer Function d with Tilde (s)/v with Tilde_c (s) of the Direct Duty Ratio Pulse-Width Modulator

        • 10.5.3 Compensation of the Feedback System Using a Direct Duty Ratio Pulse-Width Modulator

        • 10.5.4 Voltage Feed-Forward PWM Control

        • 10.5.5 Current-Mode Control

        • 10.5.6 Digital Pulse-Width Modulation Control

      • 10.6 Power Supply Protection

        • 10.6.1 Soft Start

        • 10.6.2 Voltage Protection

        • 10.6.3 Current Limiting

          • 10.6.3.1 Foldback Current Limiting

      • 10.7 Electrical Isolation in the Feedback Loop

      • 10.8 Designing to Meet the Power Supply Specifications

        • 10.8.1 Input Filter

        • 10.8.2 Input Rectifier Bridge

        • 10.8.3 Bulk Capacitor and the Hold-up Time

        • 10.8.4 Limiting Inrush (Surge) Current at Initial Turn-on

        • 10.8.5 Equivalent Series Resistance of Output Filter Capacitor

        • 10.8.6 Synchronous Rectifier to Improve Energy Efficiency

        • 10.8.7 Multiple Outputs

        • 10.8.8 EMI Considerations

      • Summary

      • Problems

      • References

    • 11. Power Conditioners and Uninterruptible Power Supplies

      • 11.1 Introduction

      • 11.2 Power Line Disturbances

        • 11.2.1 Types of Disturbances

        • 11.2.2 Sources of Disturbances

        • 11.2.3 Effect on Sensitive Equipment

      • 11.3 Power Conditioners

      • 11.4 Uninterruptible Power Supplies (UPSs)

        • 11.4.1 Rectifier

        • 11.4.2 Batteries

        • 11.4.3 Inverters

        • 11.4.4 Static Transfer Switch

      • Summary

      • Problems

      • References

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_14a

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • 12. Introduction to Motor Drives

      • 12.1 Introduction

      • 12.2 Criteria for Selecting Drive Components

        • 12.2.1 Match between the Motor and the Load

        • 12.2.2 Thermal Considerations in Selecting the Motor

        • 12.2.3 Match between the Motor and the Power Electronic Converter

          • 12.2.3.1 Current Rating

          • 12.2.3.2 Voltage Rating

          • 12.2.3.3 Switching Frequency and the Motor Inductance

        • 12.2.4 Selection of Speed and Position Sensors

        • 12.2.5 Servo Drive Control and Current Limiting

        • 12.2.6 Current Limiting in Adjustable-Speed Drives

      • Summary

      • Problems

      • References

    • 13. dc Motor Drives

      • 13.1 Introduction

      • 13.2 Equivalent Circuit of dc Motors

      • 13.3 Permanent-Magnet dc Motors

      • 13.4 dc Motors with a Separately Excited Field Winding

      • 13.5 Effect of Armature Current Waveform

        • 13.5.1 Form Factor

        • 13.5.2 Torque Pulsations

      • 13.6 dc Servo Drives

        • 13.6.1 Transfer Function Model for Small-Signal Dynamic Performance

        • 13.6.2 Power Electronic Converter

        • 13.6.3 Ripple in the Armature Current i_a

        • 13.6.4 Control of Servo Drives

        • 13.6.5 Nonlinearity due to Blanking Time

        • 13.6.6 Selection of Servo Drive Parameters

      • 13.7 Adjustable-Speed dc Drives

        • 13.7.1 Switch-Mode dc-dc Converter

        • 13.7.2 Line-Frequency Controlled Converters

        • 13.7.3 Effect of Discontinuous Armature Current

        • 13.7.4 Control of Adjustable-Speed Drives

        • 13.7.5 Field Weakening in Adjustable-Speed dc Motor Drives

        • 13.7.6 Power Factor of the Line Current in Adjustable-Speed Drives

      • Summary

      • Problems

      • References

    • 14. Induction Motor Drives

      • 14.1 Introduction

      • 14.2 Basic Principles of Induction Motor Operation

      • 14.3 Induction Motor Characteristics at Rated (Line) Frequency and Rated Voltage

      • 14.4 Speed Control by Varying Stator Frequency and Voltage

        • 14.4.1 Torque-Speed Characteristics

        • 14.4.2 Start-up Considerations

        • 14.4.3 Voltage Boost Required at Low Frequencies

        • 14.4.4 Induction Motor Capability: Below and above the Rated Speed

          • 14.4.4.1 Below the Rated Speed: Constant-Torque Region

          • 14.4.4.2 Beyond the Rated Speed: Constant-Power Region

          • 14.4.4.3 High-Speed Operation: Constant-f_sl Region

          • 14.4.4.4 Higher Voltage Operation

        • 14.4.5 Braking in Induction Motors

      • 14.5 Impact of Nonsinusoidal Excitation on Induction Motors

        • 14.5.1 Harmonic Motor Currents

        • 14.5.2 Harmonic Losses

        • 14.5.3 Torque Pulsations

      • 14.6 Variable-Frequency Converter Classifications

      • 14.7 Variable-Frequency PWM-VSI Drives

        • 14.7.1 Impact of PWM-VSI Harmonics

        • 14.7.2 Input Power Factor and Current Waveform

        • 14.7.3 Electromagnetic Braking

        • 14.7.4 Adjustable-Speed Control of PWM-VSI Drives

        • 14.7.5 Induction Motor Servo Drives

      • 14.8 Variable-Frequency Square-Wave VSI Drives

      • 14.9 Variable-Frequency CSI Drives

      • 14.10 Comparison of Variable-Frequency Drives

      • 14.11 Line-Frequency Variable-Voltage Drives

      • 14.12 Reduced Voltage Starting ("Soft Start") of Induction Motors

      • 14.13 Speed Control by Static Slip Power Recovery

      • Summary

      • Problems

      • References

    • 15. Synchronous Motor Drives

      • 15.1 Introduction

      • 15.2 Basic Principles of Synchronous Motor Operation

      • 15.3 Synchronous Servomotor Drives with Sinusoidal Waveforms

      • 15.4 Synchronous Servomotor Drives with Trapezoidal Waveforms

      • 15.5 Load-Commutated Inverter Drives

      • 15.6 Cycloconverters

      • Summary

      • Problems

      • References

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_12

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • 12. Introduction to Motor Drives

      • 12.1 Introduction

      • 12.2 Criteria for Selecting Drive Components

        • 12.2.1 Match between the Motor and the Load

        • 12.2.2 Thermal Considerations in Selecting the Motor

        • 12.2.3 Match between the Motor and the Power Electronic Converter

          • 12.2.3.1 Current Rating

          • 12.2.3.2 Voltage Rating

          • 12.2.3.3 Switching Frequency and the Motor Inductance

        • 12.2.4 Selection of Speed and Position Sensors

        • 12.2.5 Servo Drive Control and Current Limiting

        • 12.2.6 Current Limiting in Adjustable-Speed Drives

      • Summary

      • Problems

      • References

    • 13. dc Motor Drives

      • 13.1 Introduction

      • 13.2 Equivalent Circuit of dc Motors

      • 13.3 Permanent-Magnet dc Motors

      • 13.4 dc Motors with a Separately Excited Field Winding

      • 13.5 Effect of Armature Current Waveform

        • 13.5.1 Form Factor

        • 13.5.2 Torque Pulsations

      • 13.6 dc Servo Drives

        • 13.6.1 Transfer Function Model for Small-Signal Dynamic Performance

        • 13.6.2 Power Electronic Converter

        • 13.6.3 Ripple in the Armature Current i_a

        • 13.6.4 Control of Servo Drives

        • 13.6.5 Nonlinearity due to Blanking Time

        • 13.6.6 Selection of Servo Drive Parameters

      • 13.7 Adjustable-Speed dc Drives

        • 13.7.1 Switch-Mode dc-dc Converter

        • 13.7.2 Line-Frequency Controlled Converters

        • 13.7.3 Effect of Discontinuous Armature Current

        • 13.7.4 Control of Adjustable-Speed Drives

        • 13.7.5 Field Weakening in Adjustable-Speed dc Motor Drives

        • 13.7.6 Power Factor of the Line Current in Adjustable-Speed Drives

      • Summary

      • Problems

      • References

    • 14. Induction Motor Drives

      • 14.1 Introduction

      • 14.2 Basic Principles of Induction Motor Operation

      • 14.3 Induction Motor Characteristics at Rated (Line) Frequency and Rated Voltage

      • 14.4 Speed Control by Varying Stator Frequency and Voltage

        • 14.4.1 Torque-Speed Characteristics

        • 14.4.2 Start-up Considerations

        • 14.4.3 Voltage Boost Required at Low Frequencies

        • 14.4.4 Induction Motor Capability: Below and above the Rated Speed

          • 14.4.4.1 Below the Rated Speed: Constant-Torque Region

          • 14.4.4.2 Beyond the Rated Speed: Constant-Power Region

          • 14.4.4.3 High-Speed Operation: Constant-f_sl Region

          • 14.4.4.4 Higher Voltage Operation

        • 14.4.5 Braking in Induction Motors

      • 14.5 Impact of Nonsinusoidal Excitation on Induction Motors

        • 14.5.1 Harmonic Motor Currents

        • 14.5.2 Harmonic Losses

        • 14.5.3 Torque Pulsations

      • 14.6 Variable-Frequency Converter Classifications

      • 14.7 Variable-Frequency PWM-VSI Drives

        • 14.7.1 Impact of PWM-VSI Harmonics

        • 14.7.2 Input Power Factor and Current Waveform

        • 14.7.3 Electromagnetic Braking

        • 14.7.4 Adjustable-Speed Control of PWM-VSI Drives

        • 14.7.5 Induction Motor Servo Drives

      • 14.8 Variable-Frequency Square-Wave VSI Drives

      • 14.9 Variable-Frequency CSI Drives

      • 14.10 Comparison of Variable-Frequency Drives

      • 14.11 Line-Frequency Variable-Voltage Drives

      • 14.12 Reduced Voltage Starting ("Soft Start") of Induction Motors

      • 14.13 Speed Control by Static Slip Power Recovery

      • Summary

      • Problems

      • References

    • 15. Synchronous Motor Drives

      • 15.1 Introduction

      • 15.2 Basic Principles of Synchronous Motor Operation

      • 15.3 Synchronous Servomotor Drives with Sinusoidal Waveforms

      • 15.4 Synchronous Servomotor Drives with Trapezoidal Waveforms

      • 15.5 Load-Commutated Inverter Drives

      • 15.6 Cycloconverters

      • Summary

      • Problems

      • References

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_13

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • 12. Introduction to Motor Drives

      • 12.1 Introduction

      • 12.2 Criteria for Selecting Drive Components

        • 12.2.1 Match between the Motor and the Load

        • 12.2.2 Thermal Considerations in Selecting the Motor

        • 12.2.3 Match between the Motor and the Power Electronic Converter

          • 12.2.3.1 Current Rating

          • 12.2.3.2 Voltage Rating

          • 12.2.3.3 Switching Frequency and the Motor Inductance

        • 12.2.4 Selection of Speed and Position Sensors

        • 12.2.5 Servo Drive Control and Current Limiting

        • 12.2.6 Current Limiting in Adjustable-Speed Drives

      • Summary

      • Problems

      • References

    • 13. dc Motor Drives

      • 13.1 Introduction

      • 13.2 Equivalent Circuit of dc Motors

      • 13.3 Permanent-Magnet dc Motors

      • 13.4 dc Motors with a Separately Excited Field Winding

      • 13.5 Effect of Armature Current Waveform

        • 13.5.1 Form Factor

        • 13.5.2 Torque Pulsations

      • 13.6 dc Servo Drives

        • 13.6.1 Transfer Function Model for Small-Signal Dynamic Performance

        • 13.6.2 Power Electronic Converter

        • 13.6.3 Ripple in the Armature Current i_a

        • 13.6.4 Control of Servo Drives

        • 13.6.5 Nonlinearity due to Blanking Time

        • 13.6.6 Selection of Servo Drive Parameters

      • 13.7 Adjustable-Speed dc Drives

        • 13.7.1 Switch-Mode dc-dc Converter

        • 13.7.2 Line-Frequency Controlled Converters

        • 13.7.3 Effect of Discontinuous Armature Current

        • 13.7.4 Control of Adjustable-Speed Drives

        • 13.7.5 Field Weakening in Adjustable-Speed dc Motor Drives

        • 13.7.6 Power Factor of the Line Current in Adjustable-Speed Drives

      • Summary

      • Problems

      • References

    • 14. Induction Motor Drives

      • 14.1 Introduction

      • 14.2 Basic Principles of Induction Motor Operation

      • 14.3 Induction Motor Characteristics at Rated (Line) Frequency and Rated Voltage

      • 14.4 Speed Control by Varying Stator Frequency and Voltage

        • 14.4.1 Torque-Speed Characteristics

        • 14.4.2 Start-up Considerations

        • 14.4.3 Voltage Boost Required at Low Frequencies

        • 14.4.4 Induction Motor Capability: Below and above the Rated Speed

          • 14.4.4.1 Below the Rated Speed: Constant-Torque Region

          • 14.4.4.2 Beyond the Rated Speed: Constant-Power Region

          • 14.4.4.3 High-Speed Operation: Constant-f_sl Region

          • 14.4.4.4 Higher Voltage Operation

        • 14.4.5 Braking in Induction Motors

      • 14.5 Impact of Nonsinusoidal Excitation on Induction Motors

        • 14.5.1 Harmonic Motor Currents

        • 14.5.2 Harmonic Losses

        • 14.5.3 Torque Pulsations

      • 14.6 Variable-Frequency Converter Classifications

      • 14.7 Variable-Frequency PWM-VSI Drives

        • 14.7.1 Impact of PWM-VSI Harmonics

        • 14.7.2 Input Power Factor and Current Waveform

        • 14.7.3 Electromagnetic Braking

        • 14.7.4 Adjustable-Speed Control of PWM-VSI Drives

        • 14.7.5 Induction Motor Servo Drives

      • 14.8 Variable-Frequency Square-Wave VSI Drives

      • 14.9 Variable-Frequency CSI Drives

      • 14.10 Comparison of Variable-Frequency Drives

      • 14.11 Line-Frequency Variable-Voltage Drives

      • 14.12 Reduced Voltage Starting ("Soft Start") of Induction Motors

      • 14.13 Speed Control by Static Slip Power Recovery

      • Summary

      • Problems

      • References

    • 15. Synchronous Motor Drives

      • 15.1 Introduction

      • 15.2 Basic Principles of Synchronous Motor Operation

      • 15.3 Synchronous Servomotor Drives with Sinusoidal Waveforms

      • 15.4 Synchronous Servomotor Drives with Trapezoidal Waveforms

      • 15.5 Load-Commutated Inverter Drives

      • 15.6 Cycloconverters

      • Summary

      • Problems

      • References

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_14b

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • 12. Introduction to Motor Drives

      • 12.1 Introduction

      • 12.2 Criteria for Selecting Drive Components

        • 12.2.1 Match between the Motor and the Load

        • 12.2.2 Thermal Considerations in Selecting the Motor

        • 12.2.3 Match between the Motor and the Power Electronic Converter

          • 12.2.3.1 Current Rating

          • 12.2.3.2 Voltage Rating

          • 12.2.3.3 Switching Frequency and the Motor Inductance

        • 12.2.4 Selection of Speed and Position Sensors

        • 12.2.5 Servo Drive Control and Current Limiting

        • 12.2.6 Current Limiting in Adjustable-Speed Drives

      • Summary

      • Problems

      • References

    • 13. dc Motor Drives

      • 13.1 Introduction

      • 13.2 Equivalent Circuit of dc Motors

      • 13.3 Permanent-Magnet dc Motors

      • 13.4 dc Motors with a Separately Excited Field Winding

      • 13.5 Effect of Armature Current Waveform

        • 13.5.1 Form Factor

        • 13.5.2 Torque Pulsations

      • 13.6 dc Servo Drives

        • 13.6.1 Transfer Function Model for Small-Signal Dynamic Performance

        • 13.6.2 Power Electronic Converter

        • 13.6.3 Ripple in the Armature Current i_a

        • 13.6.4 Control of Servo Drives

        • 13.6.5 Nonlinearity due to Blanking Time

        • 13.6.6 Selection of Servo Drive Parameters

      • 13.7 Adjustable-Speed dc Drives

        • 13.7.1 Switch-Mode dc-dc Converter

        • 13.7.2 Line-Frequency Controlled Converters

        • 13.7.3 Effect of Discontinuous Armature Current

        • 13.7.4 Control of Adjustable-Speed Drives

        • 13.7.5 Field Weakening in Adjustable-Speed dc Motor Drives

        • 13.7.6 Power Factor of the Line Current in Adjustable-Speed Drives

      • Summary

      • Problems

      • References

    • 14. Induction Motor Drives

      • 14.1 Introduction

      • 14.2 Basic Principles of Induction Motor Operation

      • 14.3 Induction Motor Characteristics at Rated (Line) Frequency and Rated Voltage

      • 14.4 Speed Control by Varying Stator Frequency and Voltage

        • 14.4.1 Torque-Speed Characteristics

        • 14.4.2 Start-up Considerations

        • 14.4.3 Voltage Boost Required at Low Frequencies

        • 14.4.4 Induction Motor Capability: Below and above the Rated Speed

          • 14.4.4.1 Below the Rated Speed: Constant-Torque Region

          • 14.4.4.2 Beyond the Rated Speed: Constant-Power Region

          • 14.4.4.3 High-Speed Operation: Constant-f_sl Region

          • 14.4.4.4 Higher Voltage Operation

        • 14.4.5 Braking in Induction Motors

      • 14.5 Impact of Nonsinusoidal Excitation on Induction Motors

        • 14.5.1 Harmonic Motor Currents

        • 14.5.2 Harmonic Losses

        • 14.5.3 Torque Pulsations

      • 14.6 Variable-Frequency Converter Classifications

      • 14.7 Variable-Frequency PWM-VSI Drives

        • 14.7.1 Impact of PWM-VSI Harmonics

        • 14.7.2 Input Power Factor and Current Waveform

        • 14.7.3 Electromagnetic Braking

        • 14.7.4 Adjustable-Speed Control of PWM-VSI Drives

        • 14.7.5 Induction Motor Servo Drives

      • 14.8 Variable-Frequency Square-Wave VSI Drives

      • 14.9 Variable-Frequency CSI Drives

      • 14.10 Comparison of Variable-Frequency Drives

      • 14.11 Line-Frequency Variable-Voltage Drives

      • 14.12 Reduced Voltage Starting ("Soft Start") of Induction Motors

      • 14.13 Speed Control by Static Slip Power Recovery

      • Summary

      • Problems

      • References

    • 15. Synchronous Motor Drives

      • 15.1 Introduction

      • 15.2 Basic Principles of Synchronous Motor Operation

      • 15.3 Synchronous Servomotor Drives with Sinusoidal Waveforms

      • 15.4 Synchronous Servomotor Drives with Trapezoidal Waveforms

      • 15.5 Load-Commutated Inverter Drives

      • 15.6 Cycloconverters

      • Summary

      • Problems

      • References

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_15

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • 12. Introduction to Motor Drives

      • 12.1 Introduction

      • 12.2 Criteria for Selecting Drive Components

        • 12.2.1 Match between the Motor and the Load

        • 12.2.2 Thermal Considerations in Selecting the Motor

        • 12.2.3 Match between the Motor and the Power Electronic Converter

          • 12.2.3.1 Current Rating

          • 12.2.3.2 Voltage Rating

          • 12.2.3.3 Switching Frequency and the Motor Inductance

        • 12.2.4 Selection of Speed and Position Sensors

        • 12.2.5 Servo Drive Control and Current Limiting

        • 12.2.6 Current Limiting in Adjustable-Speed Drives

      • Summary

      • Problems

      • References

    • 13. dc Motor Drives

      • 13.1 Introduction

      • 13.2 Equivalent Circuit of dc Motors

      • 13.3 Permanent-Magnet dc Motors

      • 13.4 dc Motors with a Separately Excited Field Winding

      • 13.5 Effect of Armature Current Waveform

        • 13.5.1 Form Factor

        • 13.5.2 Torque Pulsations

      • 13.6 dc Servo Drives

        • 13.6.1 Transfer Function Model for Small-Signal Dynamic Performance

        • 13.6.2 Power Electronic Converter

        • 13.6.3 Ripple in the Armature Current i_a

        • 13.6.4 Control of Servo Drives

        • 13.6.5 Nonlinearity due to Blanking Time

        • 13.6.6 Selection of Servo Drive Parameters

      • 13.7 Adjustable-Speed dc Drives

        • 13.7.1 Switch-Mode dc-dc Converter

        • 13.7.2 Line-Frequency Controlled Converters

        • 13.7.3 Effect of Discontinuous Armature Current

        • 13.7.4 Control of Adjustable-Speed Drives

        • 13.7.5 Field Weakening in Adjustable-Speed dc Motor Drives

        • 13.7.6 Power Factor of the Line Current in Adjustable-Speed Drives

      • Summary

      • Problems

      • References

    • 14. Induction Motor Drives

      • 14.1 Introduction

      • 14.2 Basic Principles of Induction Motor Operation

      • 14.3 Induction Motor Characteristics at Rated (Line) Frequency and Rated Voltage

      • 14.4 Speed Control by Varying Stator Frequency and Voltage

        • 14.4.1 Torque-Speed Characteristics

        • 14.4.2 Start-up Considerations

        • 14.4.3 Voltage Boost Required at Low Frequencies

        • 14.4.4 Induction Motor Capability: Below and above the Rated Speed

          • 14.4.4.1 Below the Rated Speed: Constant-Torque Region

          • 14.4.4.2 Beyond the Rated Speed: Constant-Power Region

          • 14.4.4.3 High-Speed Operation: Constant-f_sl Region

          • 14.4.4.4 Higher Voltage Operation

        • 14.4.5 Braking in Induction Motors

      • 14.5 Impact of Nonsinusoidal Excitation on Induction Motors

        • 14.5.1 Harmonic Motor Currents

        • 14.5.2 Harmonic Losses

        • 14.5.3 Torque Pulsations

      • 14.6 Variable-Frequency Converter Classifications

      • 14.7 Variable-Frequency PWM-VSI Drives

        • 14.7.1 Impact of PWM-VSI Harmonics

        • 14.7.2 Input Power Factor and Current Waveform

        • 14.7.3 Electromagnetic Braking

        • 14.7.4 Adjustable-Speed Control of PWM-VSI Drives

        • 14.7.5 Induction Motor Servo Drives

      • 14.8 Variable-Frequency Square-Wave VSI Drives

      • 14.9 Variable-Frequency CSI Drives

      • 14.10 Comparison of Variable-Frequency Drives

      • 14.11 Line-Frequency Variable-Voltage Drives

      • 14.12 Reduced Voltage Starting ("Soft Start") of Induction Motors

      • 14.13 Speed Control by Static Slip Power Recovery

      • Summary

      • Problems

      • References

    • 15. Synchronous Motor Drives

      • 15.1 Introduction

      • 15.2 Basic Principles of Synchronous Motor Operation

      • 15.3 Synchronous Servomotor Drives with Sinusoidal Waveforms

      • 15.4 Synchronous Servomotor Drives with Trapezoidal Waveforms

      • 15.5 Load-Commutated Inverter Drives

      • 15.6 Cycloconverters

      • Summary

      • Problems

      • References

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_16

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • 16. Residential and Industrial Applications

      • 16.1 Introduction

      • 16.2 Residential Applications

        • 16.2.1 Space Heating and Air Conditioning

        • 16.2.2 High-Frequency Fluorescent Lighting

        • 16.2.3 Induction Cooking

      • 16.3 Industrial Applications

        • 16.3.1 Induction Heating

        • 16.3.2 Electric Welding

        • 16.3.3 Integral Half-Cycle Controllers

      • Summary

      • Problems

      • References

    • 17. Electric Utility Applications

      • 17.1 Introduction

      • 17.2 High-Voltage dc Transmission

        • 17.2.1 Twelve-Pulse Line-Frequency Converters

        • 17.2.2 Reactive Power Drawn by Converters

          • 17.2.2.1 Rectifier Mode of Operation

          • 17.2.2.2 Inverter Mode of Operation

        • 17.2.3 Control of HVDC Converters

        • 17.2.4 Harmonic Filters and Power Factor Correction Capacitors

          • 17.2.4.1 dc-Side Harmonic Filters

          • 17.2.4.2 ac-Side Harmonic Filters and Power Factor Correction Capacitors

      • 17.3 Static var Compensators

        • 17.3.1 Thyristor-Controlled Inductors

        • 17.3.2 Thyristor-Switched Capacitors

        • 17.3.3 Instantaneous var Control Using Switching Converters with Minimum Energy Storage

      • 17.4 Interconnection of Renewable Energy Sources and Energy Storage Systems to the Utility Grid

        • 17.4.1 Photovoltaic Array Interconnection

          • 17.4.1.1 Single-Phase Interconnection

          • 17.4.1.2 Three-Phase Interconnection

        • 17.4.2 Wind and Small Hydro Interconnection

        • 17.4.3 Minnesota Interface: A New Topology Utility Interface for Photovoltaic, Wind, and Fuel Cell Systems

        • 17.4.4 Interconnection of Energy Storage Systems for Utility Load Leveling

      • 17.5 Active Filters

      • Summary

      • Problems

      • References

    • 18. Optimizing the Utility Interface with Power Electronic Systems

      • 18.1 Introduction

      • 18.2 Generation of Current Harmonics

      • 18.3 Current Harmonics and Power Factor

      • 18.4 Harmonic Standards and Recommended Practices

      • 18.5 Need for Improved Utility Interface

      • 18.6 Improved Single-Phase Utility Interface

        • 18.6.1 Passive Circuits

        • 18.6.2 Active Shaping of the Input Line Current

        • 18.6.3 Interface for a Bidirectional Power Flow

      • 18.7 Improved Three-Phase Utility Interface

        • 18.7.1 Minnesota Rectifier

      • 18.8 Electromagnetic Interference

        • 18.8.1 Generation of EMI

        • 18.8.2 EMI Standards

        • 18.8.3 Reduction of EMI

      • Summary

      • Problems

      • References

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_17

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • 16. Residential and Industrial Applications

      • 16.1 Introduction

      • 16.2 Residential Applications

        • 16.2.1 Space Heating and Air Conditioning

        • 16.2.2 High-Frequency Fluorescent Lighting

        • 16.2.3 Induction Cooking

      • 16.3 Industrial Applications

        • 16.3.1 Induction Heating

        • 16.3.2 Electric Welding

        • 16.3.3 Integral Half-Cycle Controllers

      • Summary

      • Problems

      • References

    • 17. Electric Utility Applications

      • 17.1 Introduction

      • 17.2 High-Voltage dc Transmission

        • 17.2.1 Twelve-Pulse Line-Frequency Converters

        • 17.2.2 Reactive Power Drawn by Converters

          • 17.2.2.1 Rectifier Mode of Operation

          • 17.2.2.2 Inverter Mode of Operation

        • 17.2.3 Control of HVDC Converters

        • 17.2.4 Harmonic Filters and Power Factor Correction Capacitors

          • 17.2.4.1 dc-Side Harmonic Filters

          • 17.2.4.2 ac-Side Harmonic Filters and Power Factor Correction Capacitors

      • 17.3 Static var Compensators

        • 17.3.1 Thyristor-Controlled Inductors

        • 17.3.2 Thyristor-Switched Capacitors

        • 17.3.3 Instantaneous var Control Using Switching Converters with Minimum Energy Storage

      • 17.4 Interconnection of Renewable Energy Sources and Energy Storage Systems to the Utility Grid

        • 17.4.1 Photovoltaic Array Interconnection

          • 17.4.1.1 Single-Phase Interconnection

          • 17.4.1.2 Three-Phase Interconnection

        • 17.4.2 Wind and Small Hydro Interconnection

        • 17.4.3 Minnesota Interface: A New Topology Utility Interface for Photovoltaic, Wind, and Fuel Cell Systems

        • 17.4.4 Interconnection of Energy Storage Systems for Utility Load Leveling

      • 17.5 Active Filters

      • Summary

      • Problems

      • References

    • 18. Optimizing the Utility Interface with Power Electronic Systems

      • 18.1 Introduction

      • 18.2 Generation of Current Harmonics

      • 18.3 Current Harmonics and Power Factor

      • 18.4 Harmonic Standards and Recommended Practices

      • 18.5 Need for Improved Utility Interface

      • 18.6 Improved Single-Phase Utility Interface

        • 18.6.1 Passive Circuits

        • 18.6.2 Active Shaping of the Input Line Current

        • 18.6.3 Interface for a Bidirectional Power Flow

      • 18.7 Improved Three-Phase Utility Interface

        • 18.7.1 Minnesota Rectifier

      • 18.8 Electromagnetic Interference

        • 18.8.1 Generation of EMI

        • 18.8.2 EMI Standards

        • 18.8.3 Reduction of EMI

      • Summary

      • Problems

      • References

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_18

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • 16. Residential and Industrial Applications

      • 16.1 Introduction

      • 16.2 Residential Applications

        • 16.2.1 Space Heating and Air Conditioning

        • 16.2.2 High-Frequency Fluorescent Lighting

        • 16.2.3 Induction Cooking

      • 16.3 Industrial Applications

        • 16.3.1 Induction Heating

        • 16.3.2 Electric Welding

        • 16.3.3 Integral Half-Cycle Controllers

      • Summary

      • Problems

      • References

    • 17. Electric Utility Applications

      • 17.1 Introduction

      • 17.2 High-Voltage dc Transmission

        • 17.2.1 Twelve-Pulse Line-Frequency Converters

        • 17.2.2 Reactive Power Drawn by Converters

          • 17.2.2.1 Rectifier Mode of Operation

          • 17.2.2.2 Inverter Mode of Operation

        • 17.2.3 Control of HVDC Converters

        • 17.2.4 Harmonic Filters and Power Factor Correction Capacitors

          • 17.2.4.1 dc-Side Harmonic Filters

          • 17.2.4.2 ac-Side Harmonic Filters and Power Factor Correction Capacitors

      • 17.3 Static var Compensators

        • 17.3.1 Thyristor-Controlled Inductors

        • 17.3.2 Thyristor-Switched Capacitors

        • 17.3.3 Instantaneous var Control Using Switching Converters with Minimum Energy Storage

      • 17.4 Interconnection of Renewable Energy Sources and Energy Storage Systems to the Utility Grid

        • 17.4.1 Photovoltaic Array Interconnection

          • 17.4.1.1 Single-Phase Interconnection

          • 17.4.1.2 Three-Phase Interconnection

        • 17.4.2 Wind and Small Hydro Interconnection

        • 17.4.3 Minnesota Interface: A New Topology Utility Interface for Photovoltaic, Wind, and Fuel Cell Systems

        • 17.4.4 Interconnection of Energy Storage Systems for Utility Load Leveling

      • 17.5 Active Filters

      • Summary

      • Problems

      • References

    • 18. Optimizing the Utility Interface with Power Electronic Systems

      • 18.1 Introduction

      • 18.2 Generation of Current Harmonics

      • 18.3 Current Harmonics and Power Factor

      • 18.4 Harmonic Standards and Recommended Practices

      • 18.5 Need for Improved Utility Interface

      • 18.6 Improved Single-Phase Utility Interface

        • 18.6.1 Passive Circuits

        • 18.6.2 Active Shaping of the Input Line Current

        • 18.6.3 Interface for a Bidirectional Power Flow

      • 18.7 Improved Three-Phase Utility Interface

        • 18.7.1 Minnesota Rectifier

      • 18.8 Electromagnetic Interference

        • 18.8.1 Generation of EMI

        • 18.8.2 EMI Standards

        • 18.8.3 Reduction of EMI

      • Summary

      • Problems

      • References

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_19

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • 19. Basic Semiconductor Physics

      • 19.1 Introduction

      • 19.2 Conduction Processes in Semiconductors

        • 19.2.1 Metals, Insulators, and Semiconductors

        • 19.2.2 Electrons and Holes

        • 19.2.3 Doped Semiconductors

        • 19.2.4 Recombination

        • 19.2.5 Drift and Diffusion

      • 19.3 pn Junctions

        • 19.3.1 Potential Barrier at Thermal Equilibrium

        • 19.3.2 Forward and Reverse Bias

      • 19.4 Charge Control Description of pn-Junction Operation

      • 19.5 Avalanche Breakdown

        • 19.5.1 Impact Ionization

        • 19.5.2 Breakdown Voltage Estimate

      • Summary

      • Problems

      • References

    • 20. Power Diodes

      • 20.1 Introduction

      • 20.2 Basic Structure and I-V Characteristics

      • 20.3 Breakdown Voltage Considerations

        • 20.3.1 Breakdown Voltage of Non-Punch-through Diodes

        • 20.3.2 Breakdown Voltage of Punch-through Diode

        • 20.3.3 Depletion Layer Boundary Control

      • 20.4 On-State Losses

        • 20.4.1 Conductivity Modulation

        • 20.4.2 Impact on On-State Losses

      • 20.5 Switching Characteristics

        • 20.5.1 Observed Switching Waveforms

        • 20.5.2 Turn-on Transient

        • 20.5.3 Turn-off Transient

        • 20.5.4 Reverse Recovery

      • 20.6 Schottky Diodes

        • 20.6.1 Structure and I-V Characteristics

        • 20.6.2 Principle of Operation

        • 20.6.3 Ohmic Contacts

        • 20.6.4 Breakdown Voltage

        • 20.6.5 Switching Characteristics

      • Summary

      • Problems

      • References

    • 21. Bipolar Junction Transistors

      • 21.1 Introduction

      • 21.2 Vertical Power Transistor Structures

      • 21.3 I-V Characteristics

      • 21.4 Physics of BJT Operation

        • 21.4.1 Basic Gain Mechanism and Beta

        • 21.4.2 Quasi-Saturation

      • 21.5 Switching Characteristics

        • 21.5.1 BJT Turn-on

        • 21.5.2 Transistor Turn-off

        • 21.5.3 Switching of Monolithic Darlingtons

      • 21.6 Breakdown Voltages

      • 21.7 Second Breakdown

      • 21.8 On-State Losses

      • 21.9 Safe Operating Areas

      • Summary

      • Problems

      • References

    • 22. Power MOSFETs

      • 22.1 Introduction

      • 22.2 Basic Structure

      • 22.3 I-V Characteristics

      • 22.4 Physics of Device Operation

        • 22.4.1 Inversion Layers and the Field Effect

        • 22.4.2 Gate Control of Drain Current Flow

      • 22.5 Switching Characteristics

        • 22.5.1 MOSFET Circuit Models

        • 22.5.2 Switching Waveforms

      • 22.6 Operating Limitations and Safe Operating Areas

        • 22.6.1 Voltage Breakdown

        • 22.6.2 On-State Conduction Losses

        • 22.6.3 Paralleling of MOSFETs

        • 22.6.4 Parasitic BJT

        • 22.6.5 Safe Operating Area

      • Summary

      • Problems

      • References

    • 23. Thyristors

      • 23.1 Introduction

      • 23.2 Basic Structure

      • 23.3 I-V Characteristics

      • 23.4 Physics of Device Operation

        • 23.4.1 Blocking States

        • 23.4.2 Turn-on Process

        • 23.4.3 On-State Operation

        • 23.4.4 Turn-off Process

      • 23.5 Switching Characteristics

        • 23.5.1 Turn-on Transient and di/dt Limitations

        • 23.5.2 Turn-off Transient

        • 23.5.3 Turn-off Time and Reapplied dv_F /dt Limitations

      • 23.6 Methods of Improving di/dt and dv/dt Ratings

        • 23.6.1 Improvements in di/dt

        • 23.6.2 Cathode Shorts

      • Summary

      • Problems

      • References

    • 24. Gate Turn-off Thyristors

      • 24.1 Introduction

      • 24.2 Basic Structure and I-V Characteristics

      • 24.3 Physics of Turn-off Operation

        • 24.3.1 Turn-off Gain

        • 24.3.2 Required Structural Modifications and Performance Compromises

      • 24.4 GTO Switching Characteristics

        • 24.4.1 Inclusion of Snubber and Drive Circuits

        • 24.4.2 GTO Turn-on Transient

        • 24.4.3 GTO Turn-off Transient

        • 24.4.4 Minimum on- and Off-State Times

        • 24.4.5 Maximum Controllable Anode Current

      • 24.5 Overcurrent Protection of GTOs

      • Summary

      • Problems

      • References

    • 25. Insulated Gate Bipolar Transistors

      • 25.1 Introduction

      • 25.2 Basic Structure

      • 25.3 I-V Characteristics

      • 25.4 Physics of Device Operation

        • 25.4.1 Blocking State Operation

        • 25.4.2 On-State Operation

      • 25.5 Latchup in IGBTs

        • 25.5.1 Causes of Latchup

        • 25.5.2 Avoidance of Latchup

      • 25.6 Switching Characteristics

        • 25.6.1 Turn-on Transient

        • 25.6.2 Turn-off Transient

        • 25.6.3 NPT versus PT Structures

      • 25.7 Device Limits and SOAs

      • Summary

      • Problems

      • References

    • 26. Emerging Devices and Circuits

      • 26.1 Introduction

      • 26.2 Power Junction Field Effect Transistors

        • 26.2.1 Basic Structure and I-V Characteristics

        • 26.2.2 Physics of Device Operation

        • 26.2.3 Switching Characteristics

      • 26.3 Field-Controlled Thyristor

        • 26.3.1 Basic Structure and I-V Characteristic

        • 26.3.2 Physical Description of FCT Operation

        • 26.3.3 Switching Characteristics

      • 26.4 JFET-Based Devices versus other Power Devices

      • 26.5 MOS-Controlled Thyristors

        • 26.5.1 Basic Structure

        • 26.5.2 MOSFET-Controlled Turn-on and Turn-off

        • 26.5.3 Rationale of Off-FET Placement in the MCT Structure

        • 26.5.4 MCT Switching Behavior

        • 26.5.5 Device Limits and Safe Operating Area

      • 26.6 Power Integrated Circuits

        • 26.6.1 Types of Power Integrated Circuits

        • 26.6.2 Challenges Facing PIC Commercialization

        • 26.6.3 Progress in Resolving Challenges

      • 26.7 New Semiconductor Materials for Power Devices

        • 26.7.1 Properties of Candidate Replacement Materials for Silicon

        • 26.7.2 Comparative Estimates of Power Device Performance Using other Materials

        • 26.7.3 Challenges in Using New Semiconductor Materials

        • 26.7.4 Future Trends

      • Summary

      • Problems

      • References

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_20

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • 19. Basic Semiconductor Physics

      • 19.1 Introduction

      • 19.2 Conduction Processes in Semiconductors

        • 19.2.1 Metals, Insulators, and Semiconductors

        • 19.2.2 Electrons and Holes

        • 19.2.3 Doped Semiconductors

        • 19.2.4 Recombination

        • 19.2.5 Drift and Diffusion

      • 19.3 pn Junctions

        • 19.3.1 Potential Barrier at Thermal Equilibrium

        • 19.3.2 Forward and Reverse Bias

      • 19.4 Charge Control Description of pn-Junction Operation

      • 19.5 Avalanche Breakdown

        • 19.5.1 Impact Ionization

        • 19.5.2 Breakdown Voltage Estimate

      • Summary

      • Problems

      • References

    • 20. Power Diodes

      • 20.1 Introduction

      • 20.2 Basic Structure and I-V Characteristics

      • 20.3 Breakdown Voltage Considerations

        • 20.3.1 Breakdown Voltage of Non-Punch-through Diodes

        • 20.3.2 Breakdown Voltage of Punch-through Diode

        • 20.3.3 Depletion Layer Boundary Control

      • 20.4 On-State Losses

        • 20.4.1 Conductivity Modulation

        • 20.4.2 Impact on On-State Losses

      • 20.5 Switching Characteristics

        • 20.5.1 Observed Switching Waveforms

        • 20.5.2 Turn-on Transient

        • 20.5.3 Turn-off Transient

        • 20.5.4 Reverse Recovery

      • 20.6 Schottky Diodes

        • 20.6.1 Structure and I-V Characteristics

        • 20.6.2 Principle of Operation

        • 20.6.3 Ohmic Contacts

        • 20.6.4 Breakdown Voltage

        • 20.6.5 Switching Characteristics

      • Summary

      • Problems

      • References

    • 21. Bipolar Junction Transistors

      • 21.1 Introduction

      • 21.2 Vertical Power Transistor Structures

      • 21.3 I-V Characteristics

      • 21.4 Physics of BJT Operation

        • 21.4.1 Basic Gain Mechanism and Beta

        • 21.4.2 Quasi-Saturation

      • 21.5 Switching Characteristics

        • 21.5.1 BJT Turn-on

        • 21.5.2 Transistor Turn-off

        • 21.5.3 Switching of Monolithic Darlingtons

      • 21.6 Breakdown Voltages

      • 21.7 Second Breakdown

      • 21.8 On-State Losses

      • 21.9 Safe Operating Areas

      • Summary

      • Problems

      • References

    • 22. Power MOSFETs

      • 22.1 Introduction

      • 22.2 Basic Structure

      • 22.3 I-V Characteristics

      • 22.4 Physics of Device Operation

        • 22.4.1 Inversion Layers and the Field Effect

        • 22.4.2 Gate Control of Drain Current Flow

      • 22.5 Switching Characteristics

        • 22.5.1 MOSFET Circuit Models

        • 22.5.2 Switching Waveforms

      • 22.6 Operating Limitations and Safe Operating Areas

        • 22.6.1 Voltage Breakdown

        • 22.6.2 On-State Conduction Losses

        • 22.6.3 Paralleling of MOSFETs

        • 22.6.4 Parasitic BJT

        • 22.6.5 Safe Operating Area

      • Summary

      • Problems

      • References

    • 23. Thyristors

      • 23.1 Introduction

      • 23.2 Basic Structure

      • 23.3 I-V Characteristics

      • 23.4 Physics of Device Operation

        • 23.4.1 Blocking States

        • 23.4.2 Turn-on Process

        • 23.4.3 On-State Operation

        • 23.4.4 Turn-off Process

      • 23.5 Switching Characteristics

        • 23.5.1 Turn-on Transient and di/dt Limitations

        • 23.5.2 Turn-off Transient

        • 23.5.3 Turn-off Time and Reapplied dv_F /dt Limitations

      • 23.6 Methods of Improving di/dt and dv/dt Ratings

        • 23.6.1 Improvements in di/dt

        • 23.6.2 Cathode Shorts

      • Summary

      • Problems

      • References

    • 24. Gate Turn-off Thyristors

      • 24.1 Introduction

      • 24.2 Basic Structure and I-V Characteristics

      • 24.3 Physics of Turn-off Operation

        • 24.3.1 Turn-off Gain

        • 24.3.2 Required Structural Modifications and Performance Compromises

      • 24.4 GTO Switching Characteristics

        • 24.4.1 Inclusion of Snubber and Drive Circuits

        • 24.4.2 GTO Turn-on Transient

        • 24.4.3 GTO Turn-off Transient

        • 24.4.4 Minimum on- and Off-State Times

        • 24.4.5 Maximum Controllable Anode Current

      • 24.5 Overcurrent Protection of GTOs

      • Summary

      • Problems

      • References

    • 25. Insulated Gate Bipolar Transistors

      • 25.1 Introduction

      • 25.2 Basic Structure

      • 25.3 I-V Characteristics

      • 25.4 Physics of Device Operation

        • 25.4.1 Blocking State Operation

        • 25.4.2 On-State Operation

      • 25.5 Latchup in IGBTs

        • 25.5.1 Causes of Latchup

        • 25.5.2 Avoidance of Latchup

      • 25.6 Switching Characteristics

        • 25.6.1 Turn-on Transient

        • 25.6.2 Turn-off Transient

        • 25.6.3 NPT versus PT Structures

      • 25.7 Device Limits and SOAs

      • Summary

      • Problems

      • References

    • 26. Emerging Devices and Circuits

      • 26.1 Introduction

      • 26.2 Power Junction Field Effect Transistors

        • 26.2.1 Basic Structure and I-V Characteristics

        • 26.2.2 Physics of Device Operation

        • 26.2.3 Switching Characteristics

      • 26.3 Field-Controlled Thyristor

        • 26.3.1 Basic Structure and I-V Characteristic

        • 26.3.2 Physical Description of FCT Operation

        • 26.3.3 Switching Characteristics

      • 26.4 JFET-Based Devices versus other Power Devices

      • 26.5 MOS-Controlled Thyristors

        • 26.5.1 Basic Structure

        • 26.5.2 MOSFET-Controlled Turn-on and Turn-off

        • 26.5.3 Rationale of Off-FET Placement in the MCT Structure

        • 26.5.4 MCT Switching Behavior

        • 26.5.5 Device Limits and Safe Operating Area

      • 26.6 Power Integrated Circuits

        • 26.6.1 Types of Power Integrated Circuits

        • 26.6.2 Challenges Facing PIC Commercialization

        • 26.6.3 Progress in Resolving Challenges

      • 26.7 New Semiconductor Materials for Power Devices

        • 26.7.1 Properties of Candidate Replacement Materials for Silicon

        • 26.7.2 Comparative Estimates of Power Device Performance Using other Materials

        • 26.7.3 Challenges in Using New Semiconductor Materials

        • 26.7.4 Future Trends

      • Summary

      • Problems

      • References

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_21

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • 19. Basic Semiconductor Physics

      • 19.1 Introduction

      • 19.2 Conduction Processes in Semiconductors

        • 19.2.1 Metals, Insulators, and Semiconductors

        • 19.2.2 Electrons and Holes

        • 19.2.3 Doped Semiconductors

        • 19.2.4 Recombination

        • 19.2.5 Drift and Diffusion

      • 19.3 pn Junctions

        • 19.3.1 Potential Barrier at Thermal Equilibrium

        • 19.3.2 Forward and Reverse Bias

      • 19.4 Charge Control Description of pn-Junction Operation

      • 19.5 Avalanche Breakdown

        • 19.5.1 Impact Ionization

        • 19.5.2 Breakdown Voltage Estimate

      • Summary

      • Problems

      • References

    • 20. Power Diodes

      • 20.1 Introduction

      • 20.2 Basic Structure and I-V Characteristics

      • 20.3 Breakdown Voltage Considerations

        • 20.3.1 Breakdown Voltage of Non-Punch-through Diodes

        • 20.3.2 Breakdown Voltage of Punch-through Diode

        • 20.3.3 Depletion Layer Boundary Control

      • 20.4 On-State Losses

        • 20.4.1 Conductivity Modulation

        • 20.4.2 Impact on On-State Losses

      • 20.5 Switching Characteristics

        • 20.5.1 Observed Switching Waveforms

        • 20.5.2 Turn-on Transient

        • 20.5.3 Turn-off Transient

        • 20.5.4 Reverse Recovery

      • 20.6 Schottky Diodes

        • 20.6.1 Structure and I-V Characteristics

        • 20.6.2 Principle of Operation

        • 20.6.3 Ohmic Contacts

        • 20.6.4 Breakdown Voltage

        • 20.6.5 Switching Characteristics

      • Summary

      • Problems

      • References

    • 21. Bipolar Junction Transistors

      • 21.1 Introduction

      • 21.2 Vertical Power Transistor Structures

      • 21.3 I-V Characteristics

      • 21.4 Physics of BJT Operation

        • 21.4.1 Basic Gain Mechanism and Beta

        • 21.4.2 Quasi-Saturation

      • 21.5 Switching Characteristics

        • 21.5.1 BJT Turn-on

        • 21.5.2 Transistor Turn-off

        • 21.5.3 Switching of Monolithic Darlingtons

      • 21.6 Breakdown Voltages

      • 21.7 Second Breakdown

      • 21.8 On-State Losses

      • 21.9 Safe Operating Areas

      • Summary

      • Problems

      • References

    • 22. Power MOSFETs

      • 22.1 Introduction

      • 22.2 Basic Structure

      • 22.3 I-V Characteristics

      • 22.4 Physics of Device Operation

        • 22.4.1 Inversion Layers and the Field Effect

        • 22.4.2 Gate Control of Drain Current Flow

      • 22.5 Switching Characteristics

        • 22.5.1 MOSFET Circuit Models

        • 22.5.2 Switching Waveforms

      • 22.6 Operating Limitations and Safe Operating Areas

        • 22.6.1 Voltage Breakdown

        • 22.6.2 On-State Conduction Losses

        • 22.6.3 Paralleling of MOSFETs

        • 22.6.4 Parasitic BJT

        • 22.6.5 Safe Operating Area

      • Summary

      • Problems

      • References

    • 23. Thyristors

      • 23.1 Introduction

      • 23.2 Basic Structure

      • 23.3 I-V Characteristics

      • 23.4 Physics of Device Operation

        • 23.4.1 Blocking States

        • 23.4.2 Turn-on Process

        • 23.4.3 On-State Operation

        • 23.4.4 Turn-off Process

      • 23.5 Switching Characteristics

        • 23.5.1 Turn-on Transient and di/dt Limitations

        • 23.5.2 Turn-off Transient

        • 23.5.3 Turn-off Time and Reapplied dv_F /dt Limitations

      • 23.6 Methods of Improving di/dt and dv/dt Ratings

        • 23.6.1 Improvements in di/dt

        • 23.6.2 Cathode Shorts

      • Summary

      • Problems

      • References

    • 24. Gate Turn-off Thyristors

      • 24.1 Introduction

      • 24.2 Basic Structure and I-V Characteristics

      • 24.3 Physics of Turn-off Operation

        • 24.3.1 Turn-off Gain

        • 24.3.2 Required Structural Modifications and Performance Compromises

      • 24.4 GTO Switching Characteristics

        • 24.4.1 Inclusion of Snubber and Drive Circuits

        • 24.4.2 GTO Turn-on Transient

        • 24.4.3 GTO Turn-off Transient

        • 24.4.4 Minimum on- and Off-State Times

        • 24.4.5 Maximum Controllable Anode Current

      • 24.5 Overcurrent Protection of GTOs

      • Summary

      • Problems

      • References

    • 25. Insulated Gate Bipolar Transistors

      • 25.1 Introduction

      • 25.2 Basic Structure

      • 25.3 I-V Characteristics

      • 25.4 Physics of Device Operation

        • 25.4.1 Blocking State Operation

        • 25.4.2 On-State Operation

      • 25.5 Latchup in IGBTs

        • 25.5.1 Causes of Latchup

        • 25.5.2 Avoidance of Latchup

      • 25.6 Switching Characteristics

        • 25.6.1 Turn-on Transient

        • 25.6.2 Turn-off Transient

        • 25.6.3 NPT versus PT Structures

      • 25.7 Device Limits and SOAs

      • Summary

      • Problems

      • References

    • 26. Emerging Devices and Circuits

      • 26.1 Introduction

      • 26.2 Power Junction Field Effect Transistors

        • 26.2.1 Basic Structure and I-V Characteristics

        • 26.2.2 Physics of Device Operation

        • 26.2.3 Switching Characteristics

      • 26.3 Field-Controlled Thyristor

        • 26.3.1 Basic Structure and I-V Characteristic

        • 26.3.2 Physical Description of FCT Operation

        • 26.3.3 Switching Characteristics

      • 26.4 JFET-Based Devices versus other Power Devices

      • 26.5 MOS-Controlled Thyristors

        • 26.5.1 Basic Structure

        • 26.5.2 MOSFET-Controlled Turn-on and Turn-off

        • 26.5.3 Rationale of Off-FET Placement in the MCT Structure

        • 26.5.4 MCT Switching Behavior

        • 26.5.5 Device Limits and Safe Operating Area

      • 26.6 Power Integrated Circuits

        • 26.6.1 Types of Power Integrated Circuits

        • 26.6.2 Challenges Facing PIC Commercialization

        • 26.6.3 Progress in Resolving Challenges

      • 26.7 New Semiconductor Materials for Power Devices

        • 26.7.1 Properties of Candidate Replacement Materials for Silicon

        • 26.7.2 Comparative Estimates of Power Device Performance Using other Materials

        • 26.7.3 Challenges in Using New Semiconductor Materials

        • 26.7.4 Future Trends

      • Summary

      • Problems

      • References

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_22

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • 19. Basic Semiconductor Physics

      • 19.1 Introduction

      • 19.2 Conduction Processes in Semiconductors

        • 19.2.1 Metals, Insulators, and Semiconductors

        • 19.2.2 Electrons and Holes

        • 19.2.3 Doped Semiconductors

        • 19.2.4 Recombination

        • 19.2.5 Drift and Diffusion

      • 19.3 pn Junctions

        • 19.3.1 Potential Barrier at Thermal Equilibrium

        • 19.3.2 Forward and Reverse Bias

      • 19.4 Charge Control Description of pn-Junction Operation

      • 19.5 Avalanche Breakdown

        • 19.5.1 Impact Ionization

        • 19.5.2 Breakdown Voltage Estimate

      • Summary

      • Problems

      • References

    • 20. Power Diodes

      • 20.1 Introduction

      • 20.2 Basic Structure and I-V Characteristics

      • 20.3 Breakdown Voltage Considerations

        • 20.3.1 Breakdown Voltage of Non-Punch-through Diodes

        • 20.3.2 Breakdown Voltage of Punch-through Diode

        • 20.3.3 Depletion Layer Boundary Control

      • 20.4 On-State Losses

        • 20.4.1 Conductivity Modulation

        • 20.4.2 Impact on On-State Losses

      • 20.5 Switching Characteristics

        • 20.5.1 Observed Switching Waveforms

        • 20.5.2 Turn-on Transient

        • 20.5.3 Turn-off Transient

        • 20.5.4 Reverse Recovery

      • 20.6 Schottky Diodes

        • 20.6.1 Structure and I-V Characteristics

        • 20.6.2 Principle of Operation

        • 20.6.3 Ohmic Contacts

        • 20.6.4 Breakdown Voltage

        • 20.6.5 Switching Characteristics

      • Summary

      • Problems

      • References

    • 21. Bipolar Junction Transistors

      • 21.1 Introduction

      • 21.2 Vertical Power Transistor Structures

      • 21.3 I-V Characteristics

      • 21.4 Physics of BJT Operation

        • 21.4.1 Basic Gain Mechanism and Beta

        • 21.4.2 Quasi-Saturation

      • 21.5 Switching Characteristics

        • 21.5.1 BJT Turn-on

        • 21.5.2 Transistor Turn-off

        • 21.5.3 Switching of Monolithic Darlingtons

      • 21.6 Breakdown Voltages

      • 21.7 Second Breakdown

      • 21.8 On-State Losses

      • 21.9 Safe Operating Areas

      • Summary

      • Problems

      • References

    • 22. Power MOSFETs

      • 22.1 Introduction

      • 22.2 Basic Structure

      • 22.3 I-V Characteristics

      • 22.4 Physics of Device Operation

        • 22.4.1 Inversion Layers and the Field Effect

        • 22.4.2 Gate Control of Drain Current Flow

      • 22.5 Switching Characteristics

        • 22.5.1 MOSFET Circuit Models

        • 22.5.2 Switching Waveforms

      • 22.6 Operating Limitations and Safe Operating Areas

        • 22.6.1 Voltage Breakdown

        • 22.6.2 On-State Conduction Losses

        • 22.6.3 Paralleling of MOSFETs

        • 22.6.4 Parasitic BJT

        • 22.6.5 Safe Operating Area

      • Summary

      • Problems

      • References

    • 23. Thyristors

      • 23.1 Introduction

      • 23.2 Basic Structure

      • 23.3 I-V Characteristics

      • 23.4 Physics of Device Operation

        • 23.4.1 Blocking States

        • 23.4.2 Turn-on Process

        • 23.4.3 On-State Operation

        • 23.4.4 Turn-off Process

      • 23.5 Switching Characteristics

        • 23.5.1 Turn-on Transient and di/dt Limitations

        • 23.5.2 Turn-off Transient

        • 23.5.3 Turn-off Time and Reapplied dv_F /dt Limitations

      • 23.6 Methods of Improving di/dt and dv/dt Ratings

        • 23.6.1 Improvements in di/dt

        • 23.6.2 Cathode Shorts

      • Summary

      • Problems

      • References

    • 24. Gate Turn-off Thyristors

      • 24.1 Introduction

      • 24.2 Basic Structure and I-V Characteristics

      • 24.3 Physics of Turn-off Operation

        • 24.3.1 Turn-off Gain

        • 24.3.2 Required Structural Modifications and Performance Compromises

      • 24.4 GTO Switching Characteristics

        • 24.4.1 Inclusion of Snubber and Drive Circuits

        • 24.4.2 GTO Turn-on Transient

        • 24.4.3 GTO Turn-off Transient

        • 24.4.4 Minimum on- and Off-State Times

        • 24.4.5 Maximum Controllable Anode Current

      • 24.5 Overcurrent Protection of GTOs

      • Summary

      • Problems

      • References

    • 25. Insulated Gate Bipolar Transistors

      • 25.1 Introduction

      • 25.2 Basic Structure

      • 25.3 I-V Characteristics

      • 25.4 Physics of Device Operation

        • 25.4.1 Blocking State Operation

        • 25.4.2 On-State Operation

      • 25.5 Latchup in IGBTs

        • 25.5.1 Causes of Latchup

        • 25.5.2 Avoidance of Latchup

      • 25.6 Switching Characteristics

        • 25.6.1 Turn-on Transient

        • 25.6.2 Turn-off Transient

        • 25.6.3 NPT versus PT Structures

      • 25.7 Device Limits and SOAs

      • Summary

      • Problems

      • References

    • 26. Emerging Devices and Circuits

      • 26.1 Introduction

      • 26.2 Power Junction Field Effect Transistors

        • 26.2.1 Basic Structure and I-V Characteristics

        • 26.2.2 Physics of Device Operation

        • 26.2.3 Switching Characteristics

      • 26.3 Field-Controlled Thyristor

        • 26.3.1 Basic Structure and I-V Characteristic

        • 26.3.2 Physical Description of FCT Operation

        • 26.3.3 Switching Characteristics

      • 26.4 JFET-Based Devices versus other Power Devices

      • 26.5 MOS-Controlled Thyristors

        • 26.5.1 Basic Structure

        • 26.5.2 MOSFET-Controlled Turn-on and Turn-off

        • 26.5.3 Rationale of Off-FET Placement in the MCT Structure

        • 26.5.4 MCT Switching Behavior

        • 26.5.5 Device Limits and Safe Operating Area

      • 26.6 Power Integrated Circuits

        • 26.6.1 Types of Power Integrated Circuits

        • 26.6.2 Challenges Facing PIC Commercialization

        • 26.6.3 Progress in Resolving Challenges

      • 26.7 New Semiconductor Materials for Power Devices

        • 26.7.1 Properties of Candidate Replacement Materials for Silicon

        • 26.7.2 Comparative Estimates of Power Device Performance Using other Materials

        • 26.7.3 Challenges in Using New Semiconductor Materials

        • 26.7.4 Future Trends

      • Summary

      • Problems

      • References

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_25

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • 19. Basic Semiconductor Physics

      • 19.1 Introduction

      • 19.2 Conduction Processes in Semiconductors

        • 19.2.1 Metals, Insulators, and Semiconductors

        • 19.2.2 Electrons and Holes

        • 19.2.3 Doped Semiconductors

        • 19.2.4 Recombination

        • 19.2.5 Drift and Diffusion

      • 19.3 pn Junctions

        • 19.3.1 Potential Barrier at Thermal Equilibrium

        • 19.3.2 Forward and Reverse Bias

      • 19.4 Charge Control Description of pn-Junction Operation

      • 19.5 Avalanche Breakdown

        • 19.5.1 Impact Ionization

        • 19.5.2 Breakdown Voltage Estimate

      • Summary

      • Problems

      • References

    • 20. Power Diodes

      • 20.1 Introduction

      • 20.2 Basic Structure and I-V Characteristics

      • 20.3 Breakdown Voltage Considerations

        • 20.3.1 Breakdown Voltage of Non-Punch-through Diodes

        • 20.3.2 Breakdown Voltage of Punch-through Diode

        • 20.3.3 Depletion Layer Boundary Control

      • 20.4 On-State Losses

        • 20.4.1 Conductivity Modulation

        • 20.4.2 Impact on On-State Losses

      • 20.5 Switching Characteristics

        • 20.5.1 Observed Switching Waveforms

        • 20.5.2 Turn-on Transient

        • 20.5.3 Turn-off Transient

        • 20.5.4 Reverse Recovery

      • 20.6 Schottky Diodes

        • 20.6.1 Structure and I-V Characteristics

        • 20.6.2 Principle of Operation

        • 20.6.3 Ohmic Contacts

        • 20.6.4 Breakdown Voltage

        • 20.6.5 Switching Characteristics

      • Summary

      • Problems

      • References

    • 21. Bipolar Junction Transistors

      • 21.1 Introduction

      • 21.2 Vertical Power Transistor Structures

      • 21.3 I-V Characteristics

      • 21.4 Physics of BJT Operation

        • 21.4.1 Basic Gain Mechanism and Beta

        • 21.4.2 Quasi-Saturation

      • 21.5 Switching Characteristics

        • 21.5.1 BJT Turn-on

        • 21.5.2 Transistor Turn-off

        • 21.5.3 Switching of Monolithic Darlingtons

      • 21.6 Breakdown Voltages

      • 21.7 Second Breakdown

      • 21.8 On-State Losses

      • 21.9 Safe Operating Areas

      • Summary

      • Problems

      • References

    • 22. Power MOSFETs

      • 22.1 Introduction

      • 22.2 Basic Structure

      • 22.3 I-V Characteristics

      • 22.4 Physics of Device Operation

        • 22.4.1 Inversion Layers and the Field Effect

        • 22.4.2 Gate Control of Drain Current Flow

      • 22.5 Switching Characteristics

        • 22.5.1 MOSFET Circuit Models

        • 22.5.2 Switching Waveforms

      • 22.6 Operating Limitations and Safe Operating Areas

        • 22.6.1 Voltage Breakdown

        • 22.6.2 On-State Conduction Losses

        • 22.6.3 Paralleling of MOSFETs

        • 22.6.4 Parasitic BJT

        • 22.6.5 Safe Operating Area

      • Summary

      • Problems

      • References

    • 23. Thyristors

      • 23.1 Introduction

      • 23.2 Basic Structure

      • 23.3 I-V Characteristics

      • 23.4 Physics of Device Operation

        • 23.4.1 Blocking States

        • 23.4.2 Turn-on Process

        • 23.4.3 On-State Operation

        • 23.4.4 Turn-off Process

      • 23.5 Switching Characteristics

        • 23.5.1 Turn-on Transient and di/dt Limitations

        • 23.5.2 Turn-off Transient

        • 23.5.3 Turn-off Time and Reapplied dv_F /dt Limitations

      • 23.6 Methods of Improving di/dt and dv/dt Ratings

        • 23.6.1 Improvements in di/dt

        • 23.6.2 Cathode Shorts

      • Summary

      • Problems

      • References

    • 24. Gate Turn-off Thyristors

      • 24.1 Introduction

      • 24.2 Basic Structure and I-V Characteristics

      • 24.3 Physics of Turn-off Operation

        • 24.3.1 Turn-off Gain

        • 24.3.2 Required Structural Modifications and Performance Compromises

      • 24.4 GTO Switching Characteristics

        • 24.4.1 Inclusion of Snubber and Drive Circuits

        • 24.4.2 GTO Turn-on Transient

        • 24.4.3 GTO Turn-off Transient

        • 24.4.4 Minimum on- and Off-State Times

        • 24.4.5 Maximum Controllable Anode Current

      • 24.5 Overcurrent Protection of GTOs

      • Summary

      • Problems

      • References

    • 25. Insulated Gate Bipolar Transistors

      • 25.1 Introduction

      • 25.2 Basic Structure

      • 25.3 I-V Characteristics

      • 25.4 Physics of Device Operation

        • 25.4.1 Blocking State Operation

        • 25.4.2 On-State Operation

      • 25.5 Latchup in IGBTs

        • 25.5.1 Causes of Latchup

        • 25.5.2 Avoidance of Latchup

      • 25.6 Switching Characteristics

        • 25.6.1 Turn-on Transient

        • 25.6.2 Turn-off Transient

        • 25.6.3 NPT versus PT Structures

      • 25.7 Device Limits and SOAs

      • Summary

      • Problems

      • References

    • 26. Emerging Devices and Circuits

      • 26.1 Introduction

      • 26.2 Power Junction Field Effect Transistors

        • 26.2.1 Basic Structure and I-V Characteristics

        • 26.2.2 Physics of Device Operation

        • 26.2.3 Switching Characteristics

      • 26.3 Field-Controlled Thyristor

        • 26.3.1 Basic Structure and I-V Characteristic

        • 26.3.2 Physical Description of FCT Operation

        • 26.3.3 Switching Characteristics

      • 26.4 JFET-Based Devices versus other Power Devices

      • 26.5 MOS-Controlled Thyristors

        • 26.5.1 Basic Structure

        • 26.5.2 MOSFET-Controlled Turn-on and Turn-off

        • 26.5.3 Rationale of Off-FET Placement in the MCT Structure

        • 26.5.4 MCT Switching Behavior

        • 26.5.5 Device Limits and Safe Operating Area

      • 26.6 Power Integrated Circuits

        • 26.6.1 Types of Power Integrated Circuits

        • 26.6.2 Challenges Facing PIC Commercialization

        • 26.6.3 Progress in Resolving Challenges

      • 26.7 New Semiconductor Materials for Power Devices

        • 26.7.1 Properties of Candidate Replacement Materials for Silicon

        • 26.7.2 Comparative Estimates of Power Device Performance Using other Materials

        • 26.7.3 Challenges in Using New Semiconductor Materials

        • 26.7.4 Future Trends

      • Summary

      • Problems

      • References

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_23

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • 19. Basic Semiconductor Physics

      • 19.1 Introduction

      • 19.2 Conduction Processes in Semiconductors

        • 19.2.1 Metals, Insulators, and Semiconductors

        • 19.2.2 Electrons and Holes

        • 19.2.3 Doped Semiconductors

        • 19.2.4 Recombination

        • 19.2.5 Drift and Diffusion

      • 19.3 pn Junctions

        • 19.3.1 Potential Barrier at Thermal Equilibrium

        • 19.3.2 Forward and Reverse Bias

      • 19.4 Charge Control Description of pn-Junction Operation

      • 19.5 Avalanche Breakdown

        • 19.5.1 Impact Ionization

        • 19.5.2 Breakdown Voltage Estimate

      • Summary

      • Problems

      • References

    • 20. Power Diodes

      • 20.1 Introduction

      • 20.2 Basic Structure and I-V Characteristics

      • 20.3 Breakdown Voltage Considerations

        • 20.3.1 Breakdown Voltage of Non-Punch-through Diodes

        • 20.3.2 Breakdown Voltage of Punch-through Diode

        • 20.3.3 Depletion Layer Boundary Control

      • 20.4 On-State Losses

        • 20.4.1 Conductivity Modulation

        • 20.4.2 Impact on On-State Losses

      • 20.5 Switching Characteristics

        • 20.5.1 Observed Switching Waveforms

        • 20.5.2 Turn-on Transient

        • 20.5.3 Turn-off Transient

        • 20.5.4 Reverse Recovery

      • 20.6 Schottky Diodes

        • 20.6.1 Structure and I-V Characteristics

        • 20.6.2 Principle of Operation

        • 20.6.3 Ohmic Contacts

        • 20.6.4 Breakdown Voltage

        • 20.6.5 Switching Characteristics

      • Summary

      • Problems

      • References

    • 21. Bipolar Junction Transistors

      • 21.1 Introduction

      • 21.2 Vertical Power Transistor Structures

      • 21.3 I-V Characteristics

      • 21.4 Physics of BJT Operation

        • 21.4.1 Basic Gain Mechanism and Beta

        • 21.4.2 Quasi-Saturation

      • 21.5 Switching Characteristics

        • 21.5.1 BJT Turn-on

        • 21.5.2 Transistor Turn-off

        • 21.5.3 Switching of Monolithic Darlingtons

      • 21.6 Breakdown Voltages

      • 21.7 Second Breakdown

      • 21.8 On-State Losses

      • 21.9 Safe Operating Areas

      • Summary

      • Problems

      • References

    • 22. Power MOSFETs

      • 22.1 Introduction

      • 22.2 Basic Structure

      • 22.3 I-V Characteristics

      • 22.4 Physics of Device Operation

        • 22.4.1 Inversion Layers and the Field Effect

        • 22.4.2 Gate Control of Drain Current Flow

      • 22.5 Switching Characteristics

        • 22.5.1 MOSFET Circuit Models

        • 22.5.2 Switching Waveforms

      • 22.6 Operating Limitations and Safe Operating Areas

        • 22.6.1 Voltage Breakdown

        • 22.6.2 On-State Conduction Losses

        • 22.6.3 Paralleling of MOSFETs

        • 22.6.4 Parasitic BJT

        • 22.6.5 Safe Operating Area

      • Summary

      • Problems

      • References

    • 23. Thyristors

      • 23.1 Introduction

      • 23.2 Basic Structure

      • 23.3 I-V Characteristics

      • 23.4 Physics of Device Operation

        • 23.4.1 Blocking States

        • 23.4.2 Turn-on Process

        • 23.4.3 On-State Operation

        • 23.4.4 Turn-off Process

      • 23.5 Switching Characteristics

        • 23.5.1 Turn-on Transient and di/dt Limitations

        • 23.5.2 Turn-off Transient

        • 23.5.3 Turn-off Time and Reapplied dv_F /dt Limitations

      • 23.6 Methods of Improving di/dt and dv/dt Ratings

        • 23.6.1 Improvements in di/dt

        • 23.6.2 Cathode Shorts

      • Summary

      • Problems

      • References

    • 24. Gate Turn-off Thyristors

      • 24.1 Introduction

      • 24.2 Basic Structure and I-V Characteristics

      • 24.3 Physics of Turn-off Operation

        • 24.3.1 Turn-off Gain

        • 24.3.2 Required Structural Modifications and Performance Compromises

      • 24.4 GTO Switching Characteristics

        • 24.4.1 Inclusion of Snubber and Drive Circuits

        • 24.4.2 GTO Turn-on Transient

        • 24.4.3 GTO Turn-off Transient

        • 24.4.4 Minimum on- and Off-State Times

        • 24.4.5 Maximum Controllable Anode Current

      • 24.5 Overcurrent Protection of GTOs

      • Summary

      • Problems

      • References

    • 25. Insulated Gate Bipolar Transistors

      • 25.1 Introduction

      • 25.2 Basic Structure

      • 25.3 I-V Characteristics

      • 25.4 Physics of Device Operation

        • 25.4.1 Blocking State Operation

        • 25.4.2 On-State Operation

      • 25.5 Latchup in IGBTs

        • 25.5.1 Causes of Latchup

        • 25.5.2 Avoidance of Latchup

      • 25.6 Switching Characteristics

        • 25.6.1 Turn-on Transient

        • 25.6.2 Turn-off Transient

        • 25.6.3 NPT versus PT Structures

      • 25.7 Device Limits and SOAs

      • Summary

      • Problems

      • References

    • 26. Emerging Devices and Circuits

      • 26.1 Introduction

      • 26.2 Power Junction Field Effect Transistors

        • 26.2.1 Basic Structure and I-V Characteristics

        • 26.2.2 Physics of Device Operation

        • 26.2.3 Switching Characteristics

      • 26.3 Field-Controlled Thyristor

        • 26.3.1 Basic Structure and I-V Characteristic

        • 26.3.2 Physical Description of FCT Operation

        • 26.3.3 Switching Characteristics

      • 26.4 JFET-Based Devices versus other Power Devices

      • 26.5 MOS-Controlled Thyristors

        • 26.5.1 Basic Structure

        • 26.5.2 MOSFET-Controlled Turn-on and Turn-off

        • 26.5.3 Rationale of Off-FET Placement in the MCT Structure

        • 26.5.4 MCT Switching Behavior

        • 26.5.5 Device Limits and Safe Operating Area

      • 26.6 Power Integrated Circuits

        • 26.6.1 Types of Power Integrated Circuits

        • 26.6.2 Challenges Facing PIC Commercialization

        • 26.6.3 Progress in Resolving Challenges

      • 26.7 New Semiconductor Materials for Power Devices

        • 26.7.1 Properties of Candidate Replacement Materials for Silicon

        • 26.7.2 Comparative Estimates of Power Device Performance Using other Materials

        • 26.7.3 Challenges in Using New Semiconductor Materials

        • 26.7.4 Future Trends

      • Summary

      • Problems

      • References

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_24

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • 19. Basic Semiconductor Physics

      • 19.1 Introduction

      • 19.2 Conduction Processes in Semiconductors

        • 19.2.1 Metals, Insulators, and Semiconductors

        • 19.2.2 Electrons and Holes

        • 19.2.3 Doped Semiconductors

        • 19.2.4 Recombination

        • 19.2.5 Drift and Diffusion

      • 19.3 pn Junctions

        • 19.3.1 Potential Barrier at Thermal Equilibrium

        • 19.3.2 Forward and Reverse Bias

      • 19.4 Charge Control Description of pn-Junction Operation

      • 19.5 Avalanche Breakdown

        • 19.5.1 Impact Ionization

        • 19.5.2 Breakdown Voltage Estimate

      • Summary

      • Problems

      • References

    • 20. Power Diodes

      • 20.1 Introduction

      • 20.2 Basic Structure and I-V Characteristics

      • 20.3 Breakdown Voltage Considerations

        • 20.3.1 Breakdown Voltage of Non-Punch-through Diodes

        • 20.3.2 Breakdown Voltage of Punch-through Diode

        • 20.3.3 Depletion Layer Boundary Control

      • 20.4 On-State Losses

        • 20.4.1 Conductivity Modulation

        • 20.4.2 Impact on On-State Losses

      • 20.5 Switching Characteristics

        • 20.5.1 Observed Switching Waveforms

        • 20.5.2 Turn-on Transient

        • 20.5.3 Turn-off Transient

        • 20.5.4 Reverse Recovery

      • 20.6 Schottky Diodes

        • 20.6.1 Structure and I-V Characteristics

        • 20.6.2 Principle of Operation

        • 20.6.3 Ohmic Contacts

        • 20.6.4 Breakdown Voltage

        • 20.6.5 Switching Characteristics

      • Summary

      • Problems

      • References

    • 21. Bipolar Junction Transistors

      • 21.1 Introduction

      • 21.2 Vertical Power Transistor Structures

      • 21.3 I-V Characteristics

      • 21.4 Physics of BJT Operation

        • 21.4.1 Basic Gain Mechanism and Beta

        • 21.4.2 Quasi-Saturation

      • 21.5 Switching Characteristics

        • 21.5.1 BJT Turn-on

        • 21.5.2 Transistor Turn-off

        • 21.5.3 Switching of Monolithic Darlingtons

      • 21.6 Breakdown Voltages

      • 21.7 Second Breakdown

      • 21.8 On-State Losses

      • 21.9 Safe Operating Areas

      • Summary

      • Problems

      • References

    • 22. Power MOSFETs

      • 22.1 Introduction

      • 22.2 Basic Structure

      • 22.3 I-V Characteristics

      • 22.4 Physics of Device Operation

        • 22.4.1 Inversion Layers and the Field Effect

        • 22.4.2 Gate Control of Drain Current Flow

      • 22.5 Switching Characteristics

        • 22.5.1 MOSFET Circuit Models

        • 22.5.2 Switching Waveforms

      • 22.6 Operating Limitations and Safe Operating Areas

        • 22.6.1 Voltage Breakdown

        • 22.6.2 On-State Conduction Losses

        • 22.6.3 Paralleling of MOSFETs

        • 22.6.4 Parasitic BJT

        • 22.6.5 Safe Operating Area

      • Summary

      • Problems

      • References

    • 23. Thyristors

      • 23.1 Introduction

      • 23.2 Basic Structure

      • 23.3 I-V Characteristics

      • 23.4 Physics of Device Operation

        • 23.4.1 Blocking States

        • 23.4.2 Turn-on Process

        • 23.4.3 On-State Operation

        • 23.4.4 Turn-off Process

      • 23.5 Switching Characteristics

        • 23.5.1 Turn-on Transient and di/dt Limitations

        • 23.5.2 Turn-off Transient

        • 23.5.3 Turn-off Time and Reapplied dv_F /dt Limitations

      • 23.6 Methods of Improving di/dt and dv/dt Ratings

        • 23.6.1 Improvements in di/dt

        • 23.6.2 Cathode Shorts

      • Summary

      • Problems

      • References

    • 24. Gate Turn-off Thyristors

      • 24.1 Introduction

      • 24.2 Basic Structure and I-V Characteristics

      • 24.3 Physics of Turn-off Operation

        • 24.3.1 Turn-off Gain

        • 24.3.2 Required Structural Modifications and Performance Compromises

      • 24.4 GTO Switching Characteristics

        • 24.4.1 Inclusion of Snubber and Drive Circuits

        • 24.4.2 GTO Turn-on Transient

        • 24.4.3 GTO Turn-off Transient

        • 24.4.4 Minimum on- and Off-State Times

        • 24.4.5 Maximum Controllable Anode Current

      • 24.5 Overcurrent Protection of GTOs

      • Summary

      • Problems

      • References

    • 25. Insulated Gate Bipolar Transistors

      • 25.1 Introduction

      • 25.2 Basic Structure

      • 25.3 I-V Characteristics

      • 25.4 Physics of Device Operation

        • 25.4.1 Blocking State Operation

        • 25.4.2 On-State Operation

      • 25.5 Latchup in IGBTs

        • 25.5.1 Causes of Latchup

        • 25.5.2 Avoidance of Latchup

      • 25.6 Switching Characteristics

        • 25.6.1 Turn-on Transient

        • 25.6.2 Turn-off Transient

        • 25.6.3 NPT versus PT Structures

      • 25.7 Device Limits and SOAs

      • Summary

      • Problems

      • References

    • 26. Emerging Devices and Circuits

      • 26.1 Introduction

      • 26.2 Power Junction Field Effect Transistors

        • 26.2.1 Basic Structure and I-V Characteristics

        • 26.2.2 Physics of Device Operation

        • 26.2.3 Switching Characteristics

      • 26.3 Field-Controlled Thyristor

        • 26.3.1 Basic Structure and I-V Characteristic

        • 26.3.2 Physical Description of FCT Operation

        • 26.3.3 Switching Characteristics

      • 26.4 JFET-Based Devices versus other Power Devices

      • 26.5 MOS-Controlled Thyristors

        • 26.5.1 Basic Structure

        • 26.5.2 MOSFET-Controlled Turn-on and Turn-off

        • 26.5.3 Rationale of Off-FET Placement in the MCT Structure

        • 26.5.4 MCT Switching Behavior

        • 26.5.5 Device Limits and Safe Operating Area

      • 26.6 Power Integrated Circuits

        • 26.6.1 Types of Power Integrated Circuits

        • 26.6.2 Challenges Facing PIC Commercialization

        • 26.6.3 Progress in Resolving Challenges

      • 26.7 New Semiconductor Materials for Power Devices

        • 26.7.1 Properties of Candidate Replacement Materials for Silicon

        • 26.7.2 Comparative Estimates of Power Device Performance Using other Materials

        • 26.7.3 Challenges in Using New Semiconductor Materials

        • 26.7.4 Future Trends

      • Summary

      • Problems

      • References

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_27a

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • 27. Snubber Circuits

      • 27.1 Function and Types of Snubber Circuits

      • 27.2 Diode Snubbers

        • 27.2.1 Capacitive Snubber

        • 27.2.2 Effect of Adding a Snubber Resistance

        • 27.2.3 Implementation

      • 27.3 Snubber Circuits for Thyristors

      • 27.4 Need for Snubbers with Transistors

      • 27.5 Turn-off Snubber

      • 27.6 Overvoltage Snubber

      • 27.7 Turn-on Snubber

      • 27.8 Snubbers for Bridge Circuit Configurations

      • 27.9 GTO Snubber Considerations

      • Summary

      • Problems

      • References

    • 28. Gate and Base Drive Circuits

      • 28.1 Preliminary Design Considerations

      • 28.2 dc-Coupled Drive Circuits

        • 28.2.1 dc-Coupled Drive Circuits with Unipolar Output

        • 28.2.2 dc-Coupled Drive Circuits with Bipolar Output

      • 28.3 Electrically Isolated Drive Circuits

        • 28.3.1 Need for and Types of Electrical Isolation

        • 28.3.2 Optocoupler Isolated Drive Circuits

        • 28.3.3 Transformer-Isolated Drive Circuits Providing Both Signal and Power

      • 28.4 Cascode-Connected Drive Circuits

        • 28.4.1 Open-Emitter BJT Drive Circuit

        • 28.4.2 Cascode Drive Circuits for Normally on Power Devices

      • 28.5 Thyristor Drive Circuits

        • 28.5.1 Gate Current Pulse Requirements

        • 28.5.2 Gate Pulse Amplifiers

        • 28.5.3 Commutation Circuits

      • 28.6 Power Device Protection in Drive Circuits

        • 28.6.1 Overcurrent Protection

        • 28.6.2 Blanking Times for Bridge Circuits

        • 28.6.3 "Smart" Drive Circuits for Snubberless Switching

      • 28.7 Circuit Layout Considerations

        • 28.7.1 Minimizing Stray Inductance in Drive Circuits

        • 28.7.2 Shielding and Partitioning of Drive Circuits

        • 28.7.3 Reduction of Stray Inductance in Bus Bars

        • 28.7.4 Current Measurements

        • 28.7.5 Capacitor Selection

          • 28.7.5.1 Aluminum Electrolytic Capacitors

          • 28.7.5.2 Metallized Polypropylene Capacitors and Ceramic Capacitors

      • Summary

      • Problems

      • References

    • 29. Component Temperature Control and Heat Sinks

      • 29.1 Control of Semiconductor Device Temperatures

      • 29.2 Heat Transfer by Conduction

        • 29.2.1 Thermal Resistance

        • 29.2.2 Transient Thermal Impedance

      • 29.3 Heat Sinks

      • 29.4 Heat Transfer by Radiation and Convection

        • 29.4.1 Thermal Resistance due to Radiative Heat Transfer

        • 29.4.2 Thermal Resistance due to Convective Heat Transfer

        • 29.4.3 Example Heat Sink-Ambient Calculation

      • Summary

      • Problems

      • References

    • 30. Design of Magnetic Components

      • 30.1 Magnetic Materials and Cores

        • 30.1.1 Magnetic Core Materials

        • 30.1.2 Hysteresis Loss

        • 30.1.3 Skin Effect Limitations

        • 30.1.4 Eddy Current Loss in Laminated Cores

        • 30.1.5 Core Shapes and Optimum Dimensions

      • 30.2 Copper Windings

        • 30.2.1 Copper Fill Factor

        • 30.2.2 Winding Loss due to dc Resistance of Windings

        • 30.2.3 Skin Effect in Copper Windings

      • 30.3 Thermal Considerations

      • 30.4 Analysis of a Specific Inductor Design

        • 30.4.1 Inductor Parameters

        • 30.4.2 Characteristics of the Inductor

          • 30.4.2.1 Copper Fill Factor k_cu

          • 30.4.2.2 Current Density J and Winding Losses P_w

          • 30.4.2.3 Flux Densities and Core Losses

        • 30.4.3 Inductance L

        • 30.4.4 Temperatures in the Inductor

        • 30.4.5 Effect of an Overcurrent on the Hot Spot Temperature

      • 30.5 Inductor Design Procedures

        • 30.5.1 Inductor Design Foundation: The Stored Energy Relation

        • 30.5.2 Single-Pass Inductor Design Procedure Outline

        • 30.5.3 Iterative Inductor Design Procedure

        • 30.5.4 Inductor Design Example

      • 30.6 Analysis of a Specific Transformer Design

        • 30.6.1 Transformer Parameters

        • 30.6.2 Transformer Electrical Characteristics

          • 30.6.2.1 Areas of Primary and Secondary Conductors, A_pri and A_sec

          • 30.6.2.2 Winding Loss P_w

          • 30.6.2.3 Flux Density and Core Loss

          • 30.6.2.4 Leakage Inductance

        • 30.6.3 Temperature in the Transformer

        • 30.6.4 Effect of Overcurrents on Transformer Temperatures

      • 30.7 Eddy Currents

        • 30.7.1 Proximity Effect

        • 30.7.2 Optimum Conductor Size and Minimum Winding Loss

        • 30.7.3 Reduction of Loss in the Inductor Winding

        • 30.7.4 Sectioning Transformer Windings to Reduce Eddy Current Loss

        • 30.7.5 Optimization of Solid Conductor Windings

      • 30.8 Transformer Leakage Inductance

      • 30.9 Transformer Design Procedure

        • 30.9.1 Transformer Design Foundation: The Volt-Ampere Rating

        • 30.9.2 Single-Pass Transformer Design Procedure

        • 30.9.3 Transformer Design Example

      • 30.10 Comparison of Transformer and Inductor Sizes

      • Summary

      • Problems

      • References

    • Index

    • Contents of CD-ROM

  • 26932_26a

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • 19. Basic Semiconductor Physics

      • 19.1 Introduction

      • 19.2 Conduction Processes in Semiconductors

        • 19.2.1 Metals, Insulators, and Semiconductors

        • 19.2.2 Electrons and Holes

        • 19.2.3 Doped Semiconductors

        • 19.2.4 Recombination

        • 19.2.5 Drift and Diffusion

      • 19.3 pn Junctions

        • 19.3.1 Potential Barrier at Thermal Equilibrium

        • 19.3.2 Forward and Reverse Bias

      • 19.4 Charge Control Description of pn-Junction Operation

      • 19.5 Avalanche Breakdown

        • 19.5.1 Impact Ionization

        • 19.5.2 Breakdown Voltage Estimate

      • Summary

      • Problems

      • References

    • 20. Power Diodes

      • 20.1 Introduction

      • 20.2 Basic Structure and I-V Characteristics

      • 20.3 Breakdown Voltage Considerations

        • 20.3.1 Breakdown Voltage of Non-Punch-through Diodes

        • 20.3.2 Breakdown Voltage of Punch-through Diode

        • 20.3.3 Depletion Layer Boundary Control

      • 20.4 On-State Losses

        • 20.4.1 Conductivity Modulation

        • 20.4.2 Impact on On-State Losses

      • 20.5 Switching Characteristics

        • 20.5.1 Observed Switching Waveforms

        • 20.5.2 Turn-on Transient

        • 20.5.3 Turn-off Transient

        • 20.5.4 Reverse Recovery

      • 20.6 Schottky Diodes

        • 20.6.1 Structure and I-V Characteristics

        • 20.6.2 Principle of Operation

        • 20.6.3 Ohmic Contacts

        • 20.6.4 Breakdown Voltage

        • 20.6.5 Switching Characteristics

      • Summary

      • Problems

      • References

    • 21. Bipolar Junction Transistors

      • 21.1 Introduction

      • 21.2 Vertical Power Transistor Structures

      • 21.3 I-V Characteristics

      • 21.4 Physics of BJT Operation

        • 21.4.1 Basic Gain Mechanism and Beta

        • 21.4.2 Quasi-Saturation

      • 21.5 Switching Characteristics

        • 21.5.1 BJT Turn-on

        • 21.5.2 Transistor Turn-off

        • 21.5.3 Switching of Monolithic Darlingtons

      • 21.6 Breakdown Voltages

      • 21.7 Second Breakdown

      • 21.8 On-State Losses

      • 21.9 Safe Operating Areas

      • Summary

      • Problems

      • References

    • 22. Power MOSFETs

      • 22.1 Introduction

      • 22.2 Basic Structure

      • 22.3 I-V Characteristics

      • 22.4 Physics of Device Operation

        • 22.4.1 Inversion Layers and the Field Effect

        • 22.4.2 Gate Control of Drain Current Flow

      • 22.5 Switching Characteristics

        • 22.5.1 MOSFET Circuit Models

        • 22.5.2 Switching Waveforms

      • 22.6 Operating Limitations and Safe Operating Areas

        • 22.6.1 Voltage Breakdown

        • 22.6.2 On-State Conduction Losses

        • 22.6.3 Paralleling of MOSFETs

        • 22.6.4 Parasitic BJT

        • 22.6.5 Safe Operating Area

      • Summary

      • Problems

      • References

    • 23. Thyristors

      • 23.1 Introduction

      • 23.2 Basic Structure

      • 23.3 I-V Characteristics

      • 23.4 Physics of Device Operation

        • 23.4.1 Blocking States

        • 23.4.2 Turn-on Process

        • 23.4.3 On-State Operation

        • 23.4.4 Turn-off Process

      • 23.5 Switching Characteristics

        • 23.5.1 Turn-on Transient and di/dt Limitations

        • 23.5.2 Turn-off Transient

        • 23.5.3 Turn-off Time and Reapplied dv_F /dt Limitations

      • 23.6 Methods of Improving di/dt and dv/dt Ratings

        • 23.6.1 Improvements in di/dt

        • 23.6.2 Cathode Shorts

      • Summary

      • Problems

      • References

    • 24. Gate Turn-off Thyristors

      • 24.1 Introduction

      • 24.2 Basic Structure and I-V Characteristics

      • 24.3 Physics of Turn-off Operation

        • 24.3.1 Turn-off Gain

        • 24.3.2 Required Structural Modifications and Performance Compromises

      • 24.4 GTO Switching Characteristics

        • 24.4.1 Inclusion of Snubber and Drive Circuits

        • 24.4.2 GTO Turn-on Transient

        • 24.4.3 GTO Turn-off Transient

        • 24.4.4 Minimum on- and Off-State Times

        • 24.4.5 Maximum Controllable Anode Current

      • 24.5 Overcurrent Protection of GTOs

      • Summary

      • Problems

      • References

    • 25. Insulated Gate Bipolar Transistors

      • 25.1 Introduction

      • 25.2 Basic Structure

      • 25.3 I-V Characteristics

      • 25.4 Physics of Device Operation

        • 25.4.1 Blocking State Operation

        • 25.4.2 On-State Operation

      • 25.5 Latchup in IGBTs

        • 25.5.1 Causes of Latchup

        • 25.5.2 Avoidance of Latchup

      • 25.6 Switching Characteristics

        • 25.6.1 Turn-on Transient

        • 25.6.2 Turn-off Transient

        • 25.6.3 NPT versus PT Structures

      • 25.7 Device Limits and SOAs

      • Summary

      • Problems

      • References

    • 26. Emerging Devices and Circuits

      • 26.1 Introduction

      • 26.2 Power Junction Field Effect Transistors

        • 26.2.1 Basic Structure and I-V Characteristics

        • 26.2.2 Physics of Device Operation

        • 26.2.3 Switching Characteristics

      • 26.3 Field-Controlled Thyristor

        • 26.3.1 Basic Structure and I-V Characteristic

        • 26.3.2 Physical Description of FCT Operation

        • 26.3.3 Switching Characteristics

      • 26.4 JFET-Based Devices versus other Power Devices

      • 26.5 MOS-Controlled Thyristors

        • 26.5.1 Basic Structure

        • 26.5.2 MOSFET-Controlled Turn-on and Turn-off

        • 26.5.3 Rationale of Off-FET Placement in the MCT Structure

        • 26.5.4 MCT Switching Behavior

        • 26.5.5 Device Limits and Safe Operating Area

      • 26.6 Power Integrated Circuits

        • 26.6.1 Types of Power Integrated Circuits

        • 26.6.2 Challenges Facing PIC Commercialization

        • 26.6.3 Progress in Resolving Challenges

      • 26.7 New Semiconductor Materials for Power Devices

        • 26.7.1 Properties of Candidate Replacement Materials for Silicon

        • 26.7.2 Comparative Estimates of Power Device Performance Using other Materials

        • 26.7.3 Challenges in Using New Semiconductor Materials

        • 26.7.4 Future Trends

      • Summary

      • Problems

      • References

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_26b

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • 19. Basic Semiconductor Physics

      • 19.1 Introduction

      • 19.2 Conduction Processes in Semiconductors

        • 19.2.1 Metals, Insulators, and Semiconductors

        • 19.2.2 Electrons and Holes

        • 19.2.3 Doped Semiconductors

        • 19.2.4 Recombination

        • 19.2.5 Drift and Diffusion

      • 19.3 pn Junctions

        • 19.3.1 Potential Barrier at Thermal Equilibrium

        • 19.3.2 Forward and Reverse Bias

      • 19.4 Charge Control Description of pn-Junction Operation

      • 19.5 Avalanche Breakdown

        • 19.5.1 Impact Ionization

        • 19.5.2 Breakdown Voltage Estimate

      • Summary

      • Problems

      • References

    • 20. Power Diodes

      • 20.1 Introduction

      • 20.2 Basic Structure and I-V Characteristics

      • 20.3 Breakdown Voltage Considerations

        • 20.3.1 Breakdown Voltage of Non-Punch-through Diodes

        • 20.3.2 Breakdown Voltage of Punch-through Diode

        • 20.3.3 Depletion Layer Boundary Control

      • 20.4 On-State Losses

        • 20.4.1 Conductivity Modulation

        • 20.4.2 Impact on On-State Losses

      • 20.5 Switching Characteristics

        • 20.5.1 Observed Switching Waveforms

        • 20.5.2 Turn-on Transient

        • 20.5.3 Turn-off Transient

        • 20.5.4 Reverse Recovery

      • 20.6 Schottky Diodes

        • 20.6.1 Structure and I-V Characteristics

        • 20.6.2 Principle of Operation

        • 20.6.3 Ohmic Contacts

        • 20.6.4 Breakdown Voltage

        • 20.6.5 Switching Characteristics

      • Summary

      • Problems

      • References

    • 21. Bipolar Junction Transistors

      • 21.1 Introduction

      • 21.2 Vertical Power Transistor Structures

      • 21.3 I-V Characteristics

      • 21.4 Physics of BJT Operation

        • 21.4.1 Basic Gain Mechanism and Beta

        • 21.4.2 Quasi-Saturation

      • 21.5 Switching Characteristics

        • 21.5.1 BJT Turn-on

        • 21.5.2 Transistor Turn-off

        • 21.5.3 Switching of Monolithic Darlingtons

      • 21.6 Breakdown Voltages

      • 21.7 Second Breakdown

      • 21.8 On-State Losses

      • 21.9 Safe Operating Areas

      • Summary

      • Problems

      • References

    • 22. Power MOSFETs

      • 22.1 Introduction

      • 22.2 Basic Structure

      • 22.3 I-V Characteristics

      • 22.4 Physics of Device Operation

        • 22.4.1 Inversion Layers and the Field Effect

        • 22.4.2 Gate Control of Drain Current Flow

      • 22.5 Switching Characteristics

        • 22.5.1 MOSFET Circuit Models

        • 22.5.2 Switching Waveforms

      • 22.6 Operating Limitations and Safe Operating Areas

        • 22.6.1 Voltage Breakdown

        • 22.6.2 On-State Conduction Losses

        • 22.6.3 Paralleling of MOSFETs

        • 22.6.4 Parasitic BJT

        • 22.6.5 Safe Operating Area

      • Summary

      • Problems

      • References

    • 23. Thyristors

      • 23.1 Introduction

      • 23.2 Basic Structure

      • 23.3 I-V Characteristics

      • 23.4 Physics of Device Operation

        • 23.4.1 Blocking States

        • 23.4.2 Turn-on Process

        • 23.4.3 On-State Operation

        • 23.4.4 Turn-off Process

      • 23.5 Switching Characteristics

        • 23.5.1 Turn-on Transient and di/dt Limitations

        • 23.5.2 Turn-off Transient

        • 23.5.3 Turn-off Time and Reapplied dv_F /dt Limitations

      • 23.6 Methods of Improving di/dt and dv/dt Ratings

        • 23.6.1 Improvements in di/dt

        • 23.6.2 Cathode Shorts

      • Summary

      • Problems

      • References

    • 24. Gate Turn-off Thyristors

      • 24.1 Introduction

      • 24.2 Basic Structure and I-V Characteristics

      • 24.3 Physics of Turn-off Operation

        • 24.3.1 Turn-off Gain

        • 24.3.2 Required Structural Modifications and Performance Compromises

      • 24.4 GTO Switching Characteristics

        • 24.4.1 Inclusion of Snubber and Drive Circuits

        • 24.4.2 GTO Turn-on Transient

        • 24.4.3 GTO Turn-off Transient

        • 24.4.4 Minimum on- and Off-State Times

        • 24.4.5 Maximum Controllable Anode Current

      • 24.5 Overcurrent Protection of GTOs

      • Summary

      • Problems

      • References

    • 25. Insulated Gate Bipolar Transistors

      • 25.1 Introduction

      • 25.2 Basic Structure

      • 25.3 I-V Characteristics

      • 25.4 Physics of Device Operation

        • 25.4.1 Blocking State Operation

        • 25.4.2 On-State Operation

      • 25.5 Latchup in IGBTs

        • 25.5.1 Causes of Latchup

        • 25.5.2 Avoidance of Latchup

      • 25.6 Switching Characteristics

        • 25.6.1 Turn-on Transient

        • 25.6.2 Turn-off Transient

        • 25.6.3 NPT versus PT Structures

      • 25.7 Device Limits and SOAs

      • Summary

      • Problems

      • References

    • 26. Emerging Devices and Circuits

      • 26.1 Introduction

      • 26.2 Power Junction Field Effect Transistors

        • 26.2.1 Basic Structure and I-V Characteristics

        • 26.2.2 Physics of Device Operation

        • 26.2.3 Switching Characteristics

      • 26.3 Field-Controlled Thyristor

        • 26.3.1 Basic Structure and I-V Characteristic

        • 26.3.2 Physical Description of FCT Operation

        • 26.3.3 Switching Characteristics

      • 26.4 JFET-Based Devices versus other Power Devices

      • 26.5 MOS-Controlled Thyristors

        • 26.5.1 Basic Structure

        • 26.5.2 MOSFET-Controlled Turn-on and Turn-off

        • 26.5.3 Rationale of Off-FET Placement in the MCT Structure

        • 26.5.4 MCT Switching Behavior

        • 26.5.5 Device Limits and Safe Operating Area

      • 26.6 Power Integrated Circuits

        • 26.6.1 Types of Power Integrated Circuits

        • 26.6.2 Challenges Facing PIC Commercialization

        • 26.6.3 Progress in Resolving Challenges

      • 26.7 New Semiconductor Materials for Power Devices

        • 26.7.1 Properties of Candidate Replacement Materials for Silicon

        • 26.7.2 Comparative Estimates of Power Device Performance Using other Materials

        • 26.7.3 Challenges in Using New Semiconductor Materials

        • 26.7.4 Future Trends

      • Summary

      • Problems

      • References

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

  • 26932_27b

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • 27. Snubber Circuits

      • 27.1 Function and Types of Snubber Circuits

      • 27.2 Diode Snubbers

        • 27.2.1 Capacitive Snubber

        • 27.2.2 Effect of Adding a Snubber Resistance

        • 27.2.3 Implementation

      • 27.3 Snubber Circuits for Thyristors

      • 27.4 Need for Snubbers with Transistors

      • 27.5 Turn-off Snubber

      • 27.6 Overvoltage Snubber

      • 27.7 Turn-on Snubber

      • 27.8 Snubbers for Bridge Circuit Configurations

      • 27.9 GTO Snubber Considerations

      • Summary

      • Problems

      • References

    • 28. Gate and Base Drive Circuits

      • 28.1 Preliminary Design Considerations

      • 28.2 dc-Coupled Drive Circuits

        • 28.2.1 dc-Coupled Drive Circuits with Unipolar Output

        • 28.2.2 dc-Coupled Drive Circuits with Bipolar Output

      • 28.3 Electrically Isolated Drive Circuits

        • 28.3.1 Need for and Types of Electrical Isolation

        • 28.3.2 Optocoupler Isolated Drive Circuits

        • 28.3.3 Transformer-Isolated Drive Circuits Providing Both Signal and Power

      • 28.4 Cascode-Connected Drive Circuits

        • 28.4.1 Open-Emitter BJT Drive Circuit

        • 28.4.2 Cascode Drive Circuits for Normally on Power Devices

      • 28.5 Thyristor Drive Circuits

        • 28.5.1 Gate Current Pulse Requirements

        • 28.5.2 Gate Pulse Amplifiers

        • 28.5.3 Commutation Circuits

      • 28.6 Power Device Protection in Drive Circuits

        • 28.6.1 Overcurrent Protection

        • 28.6.2 Blanking Times for Bridge Circuits

        • 28.6.3 "Smart" Drive Circuits for Snubberless Switching

      • 28.7 Circuit Layout Considerations

        • 28.7.1 Minimizing Stray Inductance in Drive Circuits

        • 28.7.2 Shielding and Partitioning of Drive Circuits

        • 28.7.3 Reduction of Stray Inductance in Bus Bars

        • 28.7.4 Current Measurements

        • 28.7.5 Capacitor Selection

          • 28.7.5.1 Aluminum Electrolytic Capacitors

          • 28.7.5.2 Metallized Polypropylene Capacitors and Ceramic Capacitors

      • Summary

      • Problems

      • References

    • 29. Component Temperature Control and Heat Sinks

      • 29.1 Control of Semiconductor Device Temperatures

      • 29.2 Heat Transfer by Conduction

        • 29.2.1 Thermal Resistance

        • 29.2.2 Transient Thermal Impedance

      • 29.3 Heat Sinks

      • 29.4 Heat Transfer by Radiation and Convection

        • 29.4.1 Thermal Resistance due to Radiative Heat Transfer

        • 29.4.2 Thermal Resistance due to Convective Heat Transfer

        • 29.4.3 Example Heat Sink-Ambient Calculation

      • Summary

      • Problems

      • References

    • 30. Design of Magnetic Components

      • 30.1 Magnetic Materials and Cores

        • 30.1.1 Magnetic Core Materials

        • 30.1.2 Hysteresis Loss

        • 30.1.3 Skin Effect Limitations

        • 30.1.4 Eddy Current Loss in Laminated Cores

        • 30.1.5 Core Shapes and Optimum Dimensions

      • 30.2 Copper Windings

        • 30.2.1 Copper Fill Factor

        • 30.2.2 Winding Loss due to dc Resistance of Windings

        • 30.2.3 Skin Effect in Copper Windings

      • 30.3 Thermal Considerations

      • 30.4 Analysis of a Specific Inductor Design

        • 30.4.1 Inductor Parameters

        • 30.4.2 Characteristics of the Inductor

          • 30.4.2.1 Copper Fill Factor k_cu

          • 30.4.2.2 Current Density J and Winding Losses P_w

          • 30.4.2.3 Flux Densities and Core Losses

        • 30.4.3 Inductance L

        • 30.4.4 Temperatures in the Inductor

        • 30.4.5 Effect of an Overcurrent on the Hot Spot Temperature

      • 30.5 Inductor Design Procedures

        • 30.5.1 Inductor Design Foundation: The Stored Energy Relation

        • 30.5.2 Single-Pass Inductor Design Procedure Outline

        • 30.5.3 Iterative Inductor Design Procedure

        • 30.5.4 Inductor Design Example

      • 30.6 Analysis of a Specific Transformer Design

        • 30.6.1 Transformer Parameters

        • 30.6.2 Transformer Electrical Characteristics

          • 30.6.2.1 Areas of Primary and Secondary Conductors, A_pri and A_sec

          • 30.6.2.2 Winding Loss P_w

          • 30.6.2.3 Flux Density and Core Loss

          • 30.6.2.4 Leakage Inductance

        • 30.6.3 Temperature in the Transformer

        • 30.6.4 Effect of Overcurrents on Transformer Temperatures

      • 30.7 Eddy Currents

        • 30.7.1 Proximity Effect

        • 30.7.2 Optimum Conductor Size and Minimum Winding Loss

        • 30.7.3 Reduction of Loss in the Inductor Winding

        • 30.7.4 Sectioning Transformer Windings to Reduce Eddy Current Loss

        • 30.7.5 Optimization of Solid Conductor Windings

      • 30.8 Transformer Leakage Inductance

      • 30.9 Transformer Design Procedure

        • 30.9.1 Transformer Design Foundation: The Volt-Ampere Rating

        • 30.9.2 Single-Pass Transformer Design Procedure

        • 30.9.3 Transformer Design Example

      • 30.10 Comparison of Transformer and Inductor Sizes

      • Summary

      • Problems

      • References

    • Index

    • Contents of CD-ROM

  • 26932_28a

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • 27. Snubber Circuits

      • 27.1 Function and Types of Snubber Circuits

      • 27.2 Diode Snubbers

        • 27.2.1 Capacitive Snubber

        • 27.2.2 Effect of Adding a Snubber Resistance

        • 27.2.3 Implementation

      • 27.3 Snubber Circuits for Thyristors

      • 27.4 Need for Snubbers with Transistors

      • 27.5 Turn-off Snubber

      • 27.6 Overvoltage Snubber

      • 27.7 Turn-on Snubber

      • 27.8 Snubbers for Bridge Circuit Configurations

      • 27.9 GTO Snubber Considerations

      • Summary

      • Problems

      • References

    • 28. Gate and Base Drive Circuits

      • 28.1 Preliminary Design Considerations

      • 28.2 dc-Coupled Drive Circuits

        • 28.2.1 dc-Coupled Drive Circuits with Unipolar Output

        • 28.2.2 dc-Coupled Drive Circuits with Bipolar Output

      • 28.3 Electrically Isolated Drive Circuits

        • 28.3.1 Need for and Types of Electrical Isolation

        • 28.3.2 Optocoupler Isolated Drive Circuits

        • 28.3.3 Transformer-Isolated Drive Circuits Providing Both Signal and Power

      • 28.4 Cascode-Connected Drive Circuits

        • 28.4.1 Open-Emitter BJT Drive Circuit

        • 28.4.2 Cascode Drive Circuits for Normally on Power Devices

      • 28.5 Thyristor Drive Circuits

        • 28.5.1 Gate Current Pulse Requirements

        • 28.5.2 Gate Pulse Amplifiers

        • 28.5.3 Commutation Circuits

      • 28.6 Power Device Protection in Drive Circuits

        • 28.6.1 Overcurrent Protection

        • 28.6.2 Blanking Times for Bridge Circuits

        • 28.6.3 "Smart" Drive Circuits for Snubberless Switching

      • 28.7 Circuit Layout Considerations

        • 28.7.1 Minimizing Stray Inductance in Drive Circuits

        • 28.7.2 Shielding and Partitioning of Drive Circuits

        • 28.7.3 Reduction of Stray Inductance in Bus Bars

        • 28.7.4 Current Measurements

        • 28.7.5 Capacitor Selection

          • 28.7.5.1 Aluminum Electrolytic Capacitors

          • 28.7.5.2 Metallized Polypropylene Capacitors and Ceramic Capacitors

      • Summary

      • Problems

      • References

    • 29. Component Temperature Control and Heat Sinks

      • 29.1 Control of Semiconductor Device Temperatures

      • 29.2 Heat Transfer by Conduction

        • 29.2.1 Thermal Resistance

        • 29.2.2 Transient Thermal Impedance

      • 29.3 Heat Sinks

      • 29.4 Heat Transfer by Radiation and Convection

        • 29.4.1 Thermal Resistance due to Radiative Heat Transfer

        • 29.4.2 Thermal Resistance due to Convective Heat Transfer

        • 29.4.3 Example Heat Sink-Ambient Calculation

      • Summary

      • Problems

      • References

    • 30. Design of Magnetic Components

      • 30.1 Magnetic Materials and Cores

        • 30.1.1 Magnetic Core Materials

        • 30.1.2 Hysteresis Loss

        • 30.1.3 Skin Effect Limitations

        • 30.1.4 Eddy Current Loss in Laminated Cores

        • 30.1.5 Core Shapes and Optimum Dimensions

      • 30.2 Copper Windings

        • 30.2.1 Copper Fill Factor

        • 30.2.2 Winding Loss due to dc Resistance of Windings

        • 30.2.3 Skin Effect in Copper Windings

      • 30.3 Thermal Considerations

      • 30.4 Analysis of a Specific Inductor Design

        • 30.4.1 Inductor Parameters

        • 30.4.2 Characteristics of the Inductor

          • 30.4.2.1 Copper Fill Factor k_cu

          • 30.4.2.2 Current Density J and Winding Losses P_w

          • 30.4.2.3 Flux Densities and Core Losses

        • 30.4.3 Inductance L

        • 30.4.4 Temperatures in the Inductor

        • 30.4.5 Effect of an Overcurrent on the Hot Spot Temperature

      • 30.5 Inductor Design Procedures

        • 30.5.1 Inductor Design Foundation: The Stored Energy Relation

        • 30.5.2 Single-Pass Inductor Design Procedure Outline

        • 30.5.3 Iterative Inductor Design Procedure

        • 30.5.4 Inductor Design Example

      • 30.6 Analysis of a Specific Transformer Design

        • 30.6.1 Transformer Parameters

        • 30.6.2 Transformer Electrical Characteristics

          • 30.6.2.1 Areas of Primary and Secondary Conductors, A_pri and A_sec

          • 30.6.2.2 Winding Loss P_w

          • 30.6.2.3 Flux Density and Core Loss

          • 30.6.2.4 Leakage Inductance

        • 30.6.3 Temperature in the Transformer

        • 30.6.4 Effect of Overcurrents on Transformer Temperatures

      • 30.7 Eddy Currents

        • 30.7.1 Proximity Effect

        • 30.7.2 Optimum Conductor Size and Minimum Winding Loss

        • 30.7.3 Reduction of Loss in the Inductor Winding

        • 30.7.4 Sectioning Transformer Windings to Reduce Eddy Current Loss

        • 30.7.5 Optimization of Solid Conductor Windings

      • 30.8 Transformer Leakage Inductance

      • 30.9 Transformer Design Procedure

        • 30.9.1 Transformer Design Foundation: The Volt-Ampere Rating

        • 30.9.2 Single-Pass Transformer Design Procedure

        • 30.9.3 Transformer Design Example

      • 30.10 Comparison of Transformer and Inductor Sizes

      • Summary

      • Problems

      • References

    • Index

    • Contents of CD-ROM

  • 26932_28b

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • 27. Snubber Circuits

      • 27.1 Function and Types of Snubber Circuits

      • 27.2 Diode Snubbers

        • 27.2.1 Capacitive Snubber

        • 27.2.2 Effect of Adding a Snubber Resistance

        • 27.2.3 Implementation

      • 27.3 Snubber Circuits for Thyristors

      • 27.4 Need for Snubbers with Transistors

      • 27.5 Turn-off Snubber

      • 27.6 Overvoltage Snubber

      • 27.7 Turn-on Snubber

      • 27.8 Snubbers for Bridge Circuit Configurations

      • 27.9 GTO Snubber Considerations

      • Summary

      • Problems

      • References

    • 28. Gate and Base Drive Circuits

      • 28.1 Preliminary Design Considerations

      • 28.2 dc-Coupled Drive Circuits

        • 28.2.1 dc-Coupled Drive Circuits with Unipolar Output

        • 28.2.2 dc-Coupled Drive Circuits with Bipolar Output

      • 28.3 Electrically Isolated Drive Circuits

        • 28.3.1 Need for and Types of Electrical Isolation

        • 28.3.2 Optocoupler Isolated Drive Circuits

        • 28.3.3 Transformer-Isolated Drive Circuits Providing Both Signal and Power

      • 28.4 Cascode-Connected Drive Circuits

        • 28.4.1 Open-Emitter BJT Drive Circuit

        • 28.4.2 Cascode Drive Circuits for Normally on Power Devices

      • 28.5 Thyristor Drive Circuits

        • 28.5.1 Gate Current Pulse Requirements

        • 28.5.2 Gate Pulse Amplifiers

        • 28.5.3 Commutation Circuits

      • 28.6 Power Device Protection in Drive Circuits

        • 28.6.1 Overcurrent Protection

        • 28.6.2 Blanking Times for Bridge Circuits

        • 28.6.3 "Smart" Drive Circuits for Snubberless Switching

      • 28.7 Circuit Layout Considerations

        • 28.7.1 Minimizing Stray Inductance in Drive Circuits

        • 28.7.2 Shielding and Partitioning of Drive Circuits

        • 28.7.3 Reduction of Stray Inductance in Bus Bars

        • 28.7.4 Current Measurements

        • 28.7.5 Capacitor Selection

          • 28.7.5.1 Aluminum Electrolytic Capacitors

          • 28.7.5.2 Metallized Polypropylene Capacitors and Ceramic Capacitors

      • Summary

      • Problems

      • References

    • 29. Component Temperature Control and Heat Sinks

      • 29.1 Control of Semiconductor Device Temperatures

      • 29.2 Heat Transfer by Conduction

        • 29.2.1 Thermal Resistance

        • 29.2.2 Transient Thermal Impedance

      • 29.3 Heat Sinks

      • 29.4 Heat Transfer by Radiation and Convection

        • 29.4.1 Thermal Resistance due to Radiative Heat Transfer

        • 29.4.2 Thermal Resistance due to Convective Heat Transfer

        • 29.4.3 Example Heat Sink-Ambient Calculation

      • Summary

      • Problems

      • References

    • 30. Design of Magnetic Components

      • 30.1 Magnetic Materials and Cores

        • 30.1.1 Magnetic Core Materials

        • 30.1.2 Hysteresis Loss

        • 30.1.3 Skin Effect Limitations

        • 30.1.4 Eddy Current Loss in Laminated Cores

        • 30.1.5 Core Shapes and Optimum Dimensions

      • 30.2 Copper Windings

        • 30.2.1 Copper Fill Factor

        • 30.2.2 Winding Loss due to dc Resistance of Windings

        • 30.2.3 Skin Effect in Copper Windings

      • 30.3 Thermal Considerations

      • 30.4 Analysis of a Specific Inductor Design

        • 30.4.1 Inductor Parameters

        • 30.4.2 Characteristics of the Inductor

          • 30.4.2.1 Copper Fill Factor k_cu

          • 30.4.2.2 Current Density J and Winding Losses P_w

          • 30.4.2.3 Flux Densities and Core Losses

        • 30.4.3 Inductance L

        • 30.4.4 Temperatures in the Inductor

        • 30.4.5 Effect of an Overcurrent on the Hot Spot Temperature

      • 30.5 Inductor Design Procedures

        • 30.5.1 Inductor Design Foundation: The Stored Energy Relation

        • 30.5.2 Single-Pass Inductor Design Procedure Outline

        • 30.5.3 Iterative Inductor Design Procedure

        • 30.5.4 Inductor Design Example

      • 30.6 Analysis of a Specific Transformer Design

        • 30.6.1 Transformer Parameters

        • 30.6.2 Transformer Electrical Characteristics

          • 30.6.2.1 Areas of Primary and Secondary Conductors, A_pri and A_sec

          • 30.6.2.2 Winding Loss P_w

          • 30.6.2.3 Flux Density and Core Loss

          • 30.6.2.4 Leakage Inductance

        • 30.6.3 Temperature in the Transformer

        • 30.6.4 Effect of Overcurrents on Transformer Temperatures

      • 30.7 Eddy Currents

        • 30.7.1 Proximity Effect

        • 30.7.2 Optimum Conductor Size and Minimum Winding Loss

        • 30.7.3 Reduction of Loss in the Inductor Winding

        • 30.7.4 Sectioning Transformer Windings to Reduce Eddy Current Loss

        • 30.7.5 Optimization of Solid Conductor Windings

      • 30.8 Transformer Leakage Inductance

      • 30.9 Transformer Design Procedure

        • 30.9.1 Transformer Design Foundation: The Volt-Ampere Rating

        • 30.9.2 Single-Pass Transformer Design Procedure

        • 30.9.3 Transformer Design Example

      • 30.10 Comparison of Transformer and Inductor Sizes

      • Summary

      • Problems

      • References

    • Index

    • Contents of CD-ROM

  • 26932_29

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • 27. Snubber Circuits

      • 27.1 Function and Types of Snubber Circuits

      • 27.2 Diode Snubbers

        • 27.2.1 Capacitive Snubber

        • 27.2.2 Effect of Adding a Snubber Resistance

        • 27.2.3 Implementation

      • 27.3 Snubber Circuits for Thyristors

      • 27.4 Need for Snubbers with Transistors

      • 27.5 Turn-off Snubber

      • 27.6 Overvoltage Snubber

      • 27.7 Turn-on Snubber

      • 27.8 Snubbers for Bridge Circuit Configurations

      • 27.9 GTO Snubber Considerations

      • Summary

      • Problems

      • References

    • 28. Gate and Base Drive Circuits

      • 28.1 Preliminary Design Considerations

      • 28.2 dc-Coupled Drive Circuits

        • 28.2.1 dc-Coupled Drive Circuits with Unipolar Output

        • 28.2.2 dc-Coupled Drive Circuits with Bipolar Output

      • 28.3 Electrically Isolated Drive Circuits

        • 28.3.1 Need for and Types of Electrical Isolation

        • 28.3.2 Optocoupler Isolated Drive Circuits

        • 28.3.3 Transformer-Isolated Drive Circuits Providing Both Signal and Power

      • 28.4 Cascode-Connected Drive Circuits

        • 28.4.1 Open-Emitter BJT Drive Circuit

        • 28.4.2 Cascode Drive Circuits for Normally on Power Devices

      • 28.5 Thyristor Drive Circuits

        • 28.5.1 Gate Current Pulse Requirements

        • 28.5.2 Gate Pulse Amplifiers

        • 28.5.3 Commutation Circuits

      • 28.6 Power Device Protection in Drive Circuits

        • 28.6.1 Overcurrent Protection

        • 28.6.2 Blanking Times for Bridge Circuits

        • 28.6.3 "Smart" Drive Circuits for Snubberless Switching

      • 28.7 Circuit Layout Considerations

        • 28.7.1 Minimizing Stray Inductance in Drive Circuits

        • 28.7.2 Shielding and Partitioning of Drive Circuits

        • 28.7.3 Reduction of Stray Inductance in Bus Bars

        • 28.7.4 Current Measurements

        • 28.7.5 Capacitor Selection

          • 28.7.5.1 Aluminum Electrolytic Capacitors

          • 28.7.5.2 Metallized Polypropylene Capacitors and Ceramic Capacitors

      • Summary

      • Problems

      • References

    • 29. Component Temperature Control and Heat Sinks

      • 29.1 Control of Semiconductor Device Temperatures

      • 29.2 Heat Transfer by Conduction

        • 29.2.1 Thermal Resistance

        • 29.2.2 Transient Thermal Impedance

      • 29.3 Heat Sinks

      • 29.4 Heat Transfer by Radiation and Convection

        • 29.4.1 Thermal Resistance due to Radiative Heat Transfer

        • 29.4.2 Thermal Resistance due to Convective Heat Transfer

        • 29.4.3 Example Heat Sink-Ambient Calculation

      • Summary

      • Problems

      • References

    • 30. Design of Magnetic Components

      • 30.1 Magnetic Materials and Cores

        • 30.1.1 Magnetic Core Materials

        • 30.1.2 Hysteresis Loss

        • 30.1.3 Skin Effect Limitations

        • 30.1.4 Eddy Current Loss in Laminated Cores

        • 30.1.5 Core Shapes and Optimum Dimensions

      • 30.2 Copper Windings

        • 30.2.1 Copper Fill Factor

        • 30.2.2 Winding Loss due to dc Resistance of Windings

        • 30.2.3 Skin Effect in Copper Windings

      • 30.3 Thermal Considerations

      • 30.4 Analysis of a Specific Inductor Design

        • 30.4.1 Inductor Parameters

        • 30.4.2 Characteristics of the Inductor

          • 30.4.2.1 Copper Fill Factor k_cu

          • 30.4.2.2 Current Density J and Winding Losses P_w

          • 30.4.2.3 Flux Densities and Core Losses

        • 30.4.3 Inductance L

        • 30.4.4 Temperatures in the Inductor

        • 30.4.5 Effect of an Overcurrent on the Hot Spot Temperature

      • 30.5 Inductor Design Procedures

        • 30.5.1 Inductor Design Foundation: The Stored Energy Relation

        • 30.5.2 Single-Pass Inductor Design Procedure Outline

        • 30.5.3 Iterative Inductor Design Procedure

        • 30.5.4 Inductor Design Example

      • 30.6 Analysis of a Specific Transformer Design

        • 30.6.1 Transformer Parameters

        • 30.6.2 Transformer Electrical Characteristics

          • 30.6.2.1 Areas of Primary and Secondary Conductors, A_pri and A_sec

          • 30.6.2.2 Winding Loss P_w

          • 30.6.2.3 Flux Density and Core Loss

          • 30.6.2.4 Leakage Inductance

        • 30.6.3 Temperature in the Transformer

        • 30.6.4 Effect of Overcurrents on Transformer Temperatures

      • 30.7 Eddy Currents

        • 30.7.1 Proximity Effect

        • 30.7.2 Optimum Conductor Size and Minimum Winding Loss

        • 30.7.3 Reduction of Loss in the Inductor Winding

        • 30.7.4 Sectioning Transformer Windings to Reduce Eddy Current Loss

        • 30.7.5 Optimization of Solid Conductor Windings

      • 30.8 Transformer Leakage Inductance

      • 30.9 Transformer Design Procedure

        • 30.9.1 Transformer Design Foundation: The Volt-Ampere Rating

        • 30.9.2 Single-Pass Transformer Design Procedure

        • 30.9.3 Transformer Design Example

      • 30.10 Comparison of Transformer and Inductor Sizes

      • Summary

      • Problems

      • References

    • Index

    • Contents of CD-ROM

  • 26932_30a

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • 27. Snubber Circuits

      • 27.1 Function and Types of Snubber Circuits

      • 27.2 Diode Snubbers

        • 27.2.1 Capacitive Snubber

        • 27.2.2 Effect of Adding a Snubber Resistance

        • 27.2.3 Implementation

      • 27.3 Snubber Circuits for Thyristors

      • 27.4 Need for Snubbers with Transistors

      • 27.5 Turn-off Snubber

      • 27.6 Overvoltage Snubber

      • 27.7 Turn-on Snubber

      • 27.8 Snubbers for Bridge Circuit Configurations

      • 27.9 GTO Snubber Considerations

      • Summary

      • Problems

      • References

    • 28. Gate and Base Drive Circuits

      • 28.1 Preliminary Design Considerations

      • 28.2 dc-Coupled Drive Circuits

        • 28.2.1 dc-Coupled Drive Circuits with Unipolar Output

        • 28.2.2 dc-Coupled Drive Circuits with Bipolar Output

      • 28.3 Electrically Isolated Drive Circuits

        • 28.3.1 Need for and Types of Electrical Isolation

        • 28.3.2 Optocoupler Isolated Drive Circuits

        • 28.3.3 Transformer-Isolated Drive Circuits Providing Both Signal and Power

      • 28.4 Cascode-Connected Drive Circuits

        • 28.4.1 Open-Emitter BJT Drive Circuit

        • 28.4.2 Cascode Drive Circuits for Normally on Power Devices

      • 28.5 Thyristor Drive Circuits

        • 28.5.1 Gate Current Pulse Requirements

        • 28.5.2 Gate Pulse Amplifiers

        • 28.5.3 Commutation Circuits

      • 28.6 Power Device Protection in Drive Circuits

        • 28.6.1 Overcurrent Protection

        • 28.6.2 Blanking Times for Bridge Circuits

        • 28.6.3 "Smart" Drive Circuits for Snubberless Switching

      • 28.7 Circuit Layout Considerations

        • 28.7.1 Minimizing Stray Inductance in Drive Circuits

        • 28.7.2 Shielding and Partitioning of Drive Circuits

        • 28.7.3 Reduction of Stray Inductance in Bus Bars

        • 28.7.4 Current Measurements

        • 28.7.5 Capacitor Selection

          • 28.7.5.1 Aluminum Electrolytic Capacitors

          • 28.7.5.2 Metallized Polypropylene Capacitors and Ceramic Capacitors

      • Summary

      • Problems

      • References

    • 29. Component Temperature Control and Heat Sinks

      • 29.1 Control of Semiconductor Device Temperatures

      • 29.2 Heat Transfer by Conduction

        • 29.2.1 Thermal Resistance

        • 29.2.2 Transient Thermal Impedance

      • 29.3 Heat Sinks

      • 29.4 Heat Transfer by Radiation and Convection

        • 29.4.1 Thermal Resistance due to Radiative Heat Transfer

        • 29.4.2 Thermal Resistance due to Convective Heat Transfer

        • 29.4.3 Example Heat Sink-Ambient Calculation

      • Summary

      • Problems

      • References

    • 30. Design of Magnetic Components

      • 30.1 Magnetic Materials and Cores

        • 30.1.1 Magnetic Core Materials

        • 30.1.2 Hysteresis Loss

        • 30.1.3 Skin Effect Limitations

        • 30.1.4 Eddy Current Loss in Laminated Cores

        • 30.1.5 Core Shapes and Optimum Dimensions

      • 30.2 Copper Windings

        • 30.2.1 Copper Fill Factor

        • 30.2.2 Winding Loss due to dc Resistance of Windings

        • 30.2.3 Skin Effect in Copper Windings

      • 30.3 Thermal Considerations

      • 30.4 Analysis of a Specific Inductor Design

        • 30.4.1 Inductor Parameters

        • 30.4.2 Characteristics of the Inductor

          • 30.4.2.1 Copper Fill Factor k_cu

          • 30.4.2.2 Current Density J and Winding Losses P_w

          • 30.4.2.3 Flux Densities and Core Losses

        • 30.4.3 Inductance L

        • 30.4.4 Temperatures in the Inductor

        • 30.4.5 Effect of an Overcurrent on the Hot Spot Temperature

      • 30.5 Inductor Design Procedures

        • 30.5.1 Inductor Design Foundation: The Stored Energy Relation

        • 30.5.2 Single-Pass Inductor Design Procedure Outline

        • 30.5.3 Iterative Inductor Design Procedure

        • 30.5.4 Inductor Design Example

      • 30.6 Analysis of a Specific Transformer Design

        • 30.6.1 Transformer Parameters

        • 30.6.2 Transformer Electrical Characteristics

          • 30.6.2.1 Areas of Primary and Secondary Conductors, A_pri and A_sec

          • 30.6.2.2 Winding Loss P_w

          • 30.6.2.3 Flux Density and Core Loss

          • 30.6.2.4 Leakage Inductance

        • 30.6.3 Temperature in the Transformer

        • 30.6.4 Effect of Overcurrents on Transformer Temperatures

      • 30.7 Eddy Currents

        • 30.7.1 Proximity Effect

        • 30.7.2 Optimum Conductor Size and Minimum Winding Loss

        • 30.7.3 Reduction of Loss in the Inductor Winding

        • 30.7.4 Sectioning Transformer Windings to Reduce Eddy Current Loss

        • 30.7.5 Optimization of Solid Conductor Windings

      • 30.8 Transformer Leakage Inductance

      • 30.9 Transformer Design Procedure

        • 30.9.1 Transformer Design Foundation: The Volt-Ampere Rating

        • 30.9.2 Single-Pass Transformer Design Procedure

        • 30.9.3 Transformer Design Example

      • 30.10 Comparison of Transformer and Inductor Sizes

      • Summary

      • Problems

      • References

    • Index

    • Contents of CD-ROM

  • 26932_30b

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • 27. Snubber Circuits

      • 27.1 Function and Types of Snubber Circuits

      • 27.2 Diode Snubbers

        • 27.2.1 Capacitive Snubber

        • 27.2.2 Effect of Adding a Snubber Resistance

        • 27.2.3 Implementation

      • 27.3 Snubber Circuits for Thyristors

      • 27.4 Need for Snubbers with Transistors

      • 27.5 Turn-off Snubber

      • 27.6 Overvoltage Snubber

      • 27.7 Turn-on Snubber

      • 27.8 Snubbers for Bridge Circuit Configurations

      • 27.9 GTO Snubber Considerations

      • Summary

      • Problems

      • References

    • 28. Gate and Base Drive Circuits

      • 28.1 Preliminary Design Considerations

      • 28.2 dc-Coupled Drive Circuits

        • 28.2.1 dc-Coupled Drive Circuits with Unipolar Output

        • 28.2.2 dc-Coupled Drive Circuits with Bipolar Output

      • 28.3 Electrically Isolated Drive Circuits

        • 28.3.1 Need for and Types of Electrical Isolation

        • 28.3.2 Optocoupler Isolated Drive Circuits

        • 28.3.3 Transformer-Isolated Drive Circuits Providing Both Signal and Power

      • 28.4 Cascode-Connected Drive Circuits

        • 28.4.1 Open-Emitter BJT Drive Circuit

        • 28.4.2 Cascode Drive Circuits for Normally on Power Devices

      • 28.5 Thyristor Drive Circuits

        • 28.5.1 Gate Current Pulse Requirements

        • 28.5.2 Gate Pulse Amplifiers

        • 28.5.3 Commutation Circuits

      • 28.6 Power Device Protection in Drive Circuits

        • 28.6.1 Overcurrent Protection

        • 28.6.2 Blanking Times for Bridge Circuits

        • 28.6.3 "Smart" Drive Circuits for Snubberless Switching

      • 28.7 Circuit Layout Considerations

        • 28.7.1 Minimizing Stray Inductance in Drive Circuits

        • 28.7.2 Shielding and Partitioning of Drive Circuits

        • 28.7.3 Reduction of Stray Inductance in Bus Bars

        • 28.7.4 Current Measurements

        • 28.7.5 Capacitor Selection

          • 28.7.5.1 Aluminum Electrolytic Capacitors

          • 28.7.5.2 Metallized Polypropylene Capacitors and Ceramic Capacitors

      • Summary

      • Problems

      • References

    • 29. Component Temperature Control and Heat Sinks

      • 29.1 Control of Semiconductor Device Temperatures

      • 29.2 Heat Transfer by Conduction

        • 29.2.1 Thermal Resistance

        • 29.2.2 Transient Thermal Impedance

      • 29.3 Heat Sinks

      • 29.4 Heat Transfer by Radiation and Convection

        • 29.4.1 Thermal Resistance due to Radiative Heat Transfer

        • 29.4.2 Thermal Resistance due to Convective Heat Transfer

        • 29.4.3 Example Heat Sink-Ambient Calculation

      • Summary

      • Problems

      • References

    • 30. Design of Magnetic Components

      • 30.1 Magnetic Materials and Cores

        • 30.1.1 Magnetic Core Materials

        • 30.1.2 Hysteresis Loss

        • 30.1.3 Skin Effect Limitations

        • 30.1.4 Eddy Current Loss in Laminated Cores

        • 30.1.5 Core Shapes and Optimum Dimensions

      • 30.2 Copper Windings

        • 30.2.1 Copper Fill Factor

        • 30.2.2 Winding Loss due to dc Resistance of Windings

        • 30.2.3 Skin Effect in Copper Windings

      • 30.3 Thermal Considerations

      • 30.4 Analysis of a Specific Inductor Design

        • 30.4.1 Inductor Parameters

        • 30.4.2 Characteristics of the Inductor

          • 30.4.2.1 Copper Fill Factor k_cu

          • 30.4.2.2 Current Density J and Winding Losses P_w

          • 30.4.2.3 Flux Densities and Core Losses

        • 30.4.3 Inductance L

        • 30.4.4 Temperatures in the Inductor

        • 30.4.5 Effect of an Overcurrent on the Hot Spot Temperature

      • 30.5 Inductor Design Procedures

        • 30.5.1 Inductor Design Foundation: The Stored Energy Relation

        • 30.5.2 Single-Pass Inductor Design Procedure Outline

        • 30.5.3 Iterative Inductor Design Procedure

        • 30.5.4 Inductor Design Example

      • 30.6 Analysis of a Specific Transformer Design

        • 30.6.1 Transformer Parameters

        • 30.6.2 Transformer Electrical Characteristics

          • 30.6.2.1 Areas of Primary and Secondary Conductors, A_pri and A_sec

          • 30.6.2.2 Winding Loss P_w

          • 30.6.2.3 Flux Density and Core Loss

          • 30.6.2.4 Leakage Inductance

        • 30.6.3 Temperature in the Transformer

        • 30.6.4 Effect of Overcurrents on Transformer Temperatures

      • 30.7 Eddy Currents

        • 30.7.1 Proximity Effect

        • 30.7.2 Optimum Conductor Size and Minimum Winding Loss

        • 30.7.3 Reduction of Loss in the Inductor Winding

        • 30.7.4 Sectioning Transformer Windings to Reduce Eddy Current Loss

        • 30.7.5 Optimization of Solid Conductor Windings

      • 30.8 Transformer Leakage Inductance

      • 30.9 Transformer Design Procedure

        • 30.9.1 Transformer Design Foundation: The Volt-Ampere Rating

        • 30.9.2 Single-Pass Transformer Design Procedure

        • 30.9.3 Transformer Design Example

      • 30.10 Comparison of Transformer and Inductor Sizes

      • Summary

      • Problems

      • References

    • Index

    • Contents of CD-ROM

  • cd_contents

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • Index

    • Contents of CD-ROM

      • Chapter Slides

        • Chapter 1

        • Chapter 2

        • Chapter 3

        • Chapter 4

        • Chapter 5

        • Chapter 6

        • Chapter 7

        • Chapter 8

        • Chapter 9

        • Chapter 10

        • Chapter 11

        • Chapter 12

        • Chapter 13

        • Chapter 14

        • Chapter 15

        • Chapter 16

        • Chapter 17

        • Chapter 18

        • Chapter 19

        • Chapter 20

        • Chapter 21

        • Chapter 22

        • Chapter 23

        • Chapter 24

        • Chapter 25

        • Chapter 26

        • Chapter 27

        • Chapter 28

        • Chapter 29

        • Chapter 30

      • New Problems

        • Supplemental Problems to Chapters 1-18

        • Supplemental Problems to Chapters 19-30

      • PSpice-Based Examples

        • Read Me - PSpice

        • PSpice Quick Setup and User Guide

        • PSpice Examples

      • Transformer and Inductor Design

        • Read Me - Magnetic Components

  • 26932_indxa

    • Front Matter

    • Table of Contents

    • Part I. Introduction

    • Part II. Generic Power Electronic Converters

    • Part III. Power Supply Applications

    • Part IV. Motor Drive Applications

    • Part V. Other Applications

    • Part VI. Semiconductor Devices

    • Part VII. Practical Converter Design Considerations

    • Index

      • A

      • B

      • C

      • D

      • E

      • F

      • G

      • H

      • I

      • J

      • K

      • L

      • M

      • N

      • O

      • P

      • Q

      • R

      • S

      • T

      • U

      • V

      • W

      • Z

    • Contents of CD-ROM

Nội dung

POWER ELECTRONICS Converters, Applications, and Design THIRD EDITION NED M O W Department of Electrical Engineering University of Minnesota Minneapolis, Minnesota TORE M UNDELAND Department of Electrical Power Engineering Norwegian Uniuersity of Science and Technolom, NTNU Trondheim, Norway WILLIAM P ROBBINS Department of Electrical Engineering University of Minnesota Minneapolis, Minnesota JOHN WILEY & SONS, INC E!XECUIIVE EDROR SENIOR EDlTORIAL ASSISTANT MARI

Ngày đăng: 18/10/2021, 07:14

TỪ KHÓA LIÊN QUAN

w