Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 14 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
14
Dung lượng
0,92 MB
Nội dung
√ U L U R HD GIẢIĐỀ THI ĐH-CĐ 2013-2014 Môn thi: VẬT LÝ, khối A- A1 !"!#$ !!%&'()*+,-. /(0!%12!3!.456789(!: ;!%<=4=+>;?!5 I.- PHẦN CHUNG CHO TẤT CẢ THÍ SINH (40 câu, từ câu 1 đến câu 40): Câu 1:4!%@!A4!786B ! '!%C!DE!%/09074!%+(F .5555 *Hướng dẫn : #>;'(!'(!+G3*Chọn D. Câu 2:6/,1;'!%H;1?I' JKL/09:!MDN75&O=P7/,Q; /R GC!9S!%I'1T!%5$T!% N!1;'!%U;/,+(F .5 M'7# * x t cm π π = − 5 M'7# * x t cm π π = + 5 M'7# * x t cm π π = + 5 M'7# * x t cm π π = − Hướngdẫn : #>;/('+G3* Chọn D. Câu 3:V@!- osu c tV π = /(';'&!&W!83-%X@! Y Ω !<4 >< H π /(J@!4@!1!% F π − 5Z@!-[O%\;;@! Y9S!% V N @!-[O%\;;!<4+0!9S!%F .5]5]5 V 5 V Hướngdẫn : Chọn A. ^FG!I'E!%[ Câu 4:;'!+WT!41(+!+_+(/( _ I'Y !`!-H!%5Z/,!aU;;'!+W;!%Y/R GC!9S!%X!%O !' b!%/,!8c!%0!%7;'';'!+W1;'!%H;/0c!%9:!%4 '!%;V -d!%7'!%7'!%/0!;5e? t∆ +(D'<!%O%;!!%W!!fD=A+b !/,!83!+b;1C I' 7'!%7'!%!;5e R t ∆ %!% R!('!f7;CF .5757C. 0,45s5g7 Hướngdẫn : Chọn C Câu 5:&!C!4JD8(!%+0!NF .5)`!%+_!%+:!D3 :!%(!%!a55)`!%+_!%+:!D3(!%+0! 5)`!%+_!%+:!D3(!%!a55)`!%+_!%+:!D3 :!%(!%+0!55 Câu 6: :!7_1C(!X1(;8R!;!%474!%1A!%/0M!b74!%#D=<; 1C*5074!%U;74!% ! :!1C+(F .5M555M Mã đề thi 318 ( ) ( ) ( ) ( ) 0R 0L 2 2 R L R L L 0R 0L R U 220 V 11 Z 20 2 I A U 880 V 2 u u u u 1 u 440 V U U u 110 3 = = → = → = ⊥ → + = → = ÷ ÷ ÷ ÷ = F)N!N!/h7 ;-!.5 ]H!% '!%[!%/0 i /H!%!%'([!%/0 " 5 Câu 7:c!%& α 4!%!`!%gg6I]9W!/('&!C! g N ;!%[!%:!%C ;-<![!% g g N p O α + → + 5&- ''!9; ;I'-T!%/E!%%4/0-T!%9;0U;& α 5'D8+_!% &!C! g M j g j kkk j kkg p N o m u m u m u m u α = = = = 53 kM lu MeV c= 5 !%!`!%U;& g O +(F .5M6I]56I]5M6I]5gM6I]5 Hướngdẫn : 2 đ đp đO đO p 2mW 2 2 2 p O O p O đO p đp đ 7,7 E W W W 2,075MeV p p p p p p m W m W m W = α α α α + ∆ = + → = = + ↔ = + → = + uur uur uur Câu 8:;1;'!%H;c!%-T!%c!%!7849:!+!+_+(. Pj. PM/(+@ -;!; π 5;'!%m!%_-U;;1;'!%!(49:!9S!%F .55g55g Hướngdẫn : ( ) 2 2 1 2 1 2 A A A 2A A cos 17 cm= + + ϕ = Câu 9:V/(';!7Tf-U;93!-6 @!-L';4% R@1J!% ]5Z!8;!7Tf-U;93!-6 /(';![f-U;6 N@!-@ 1J!%Y;![f-U;6 =Y9S!%M]5Z!8;U;![f-U;6 /0; ![f-U;6 N@!-@1J!%Y;!7Tf-U;6 =Y9S!%M]5aQ;?;' -G56 4n78%\;78/H!%1C!7'f-/(78/H!%![f-+(F .5555M *Hướng dẫn : ( ) 1 12 2 1 22 22 2 1 12 Gọi Xlàđiệnáphiệudụngđầuracuộn thứcấpM 200 M1) k X N X Nối cuộn sơ cấpM vàothứcấp M : k 8 12,5 N M2) X 25 V N X Nối cuộn thứcấpM vàothứcấp M : 50 N = = → = → = = Câu 10:[!`!%+_!%U; &!%1A!%U;!%:!o1 '_LR!9S!%9=[ n E eV n = − #!Pp*5)3!%:!o1 'f-J-''!4!`!%+_!%MMI]N9074!% !a!fU;9[L&(!%:!o1 '4=- ;+(F .5kg5 55 55 5g5 5 *Hướng dẫn : ( ) 8 4 2 4 min 41 4 1 hc *2,55eV E E Mứctốiđalà E 9,74.10 m E E − = − → → λ = λ = = − Câu 11:e0&!Q;!%@!U;D+'&+( gM m µ 5E!%'I+I '! ;DaD+'&9S!%F .5M5 q5M5 q5M5 k q5M5 k q5 Câu 12:6/,!a1;'!%H;I'Qr&'1(5;'!%!(49:!F .55555 Câu 13:6D!%1C12!-d!%1sN!\!,41@!G Q;Q;! J8L[!% #V-d!%D!%* '!%A O!%4/tT<[!%A/E!%%4/0 JQ;/(4+0! 5AE!%>&Q;D!%1C+(F .55 u955 u955 u955 u95 Câu 14:674!%N!7!;!% ! :! 7_1CI'1T!%U; JKL5 N!/hE<N!1&!%U;7_1C&O = #O!%!t[*/( P v#7* #O!%+!!t*5 &O= /,!8 U;=) :!C+( .5kl75Ml7 5Ml75kl7 Hướngdẫn : w;!7N!/hfQx!%O!%74!% ! '!%7_l9074!%yPlzP#7* O= =);!%+:!/ ;L P.{PM5|lPkl75 Đây là kiểu bài toán đồ thị. Có điều hình vẽ trong đề hơi khó nhìn. Cách 2 AN!/h1}1(!%fF cm = λ 8 !74!%F/PMlPMl7P~D•74!%FPlMP7 );!%Y]/(1;'!%+:!/N/,F] ) P] ;L P A ω Pkl7 Cách 3 Cách 4 Câu 15:e? D ε +(!`!%+_!%U;-''!!7!%a L ε +(!`!%+_!%U;-''!!7!%+J V ε +( !`!%+_!%U;-''!!7!%/(!%5W-L3-!('7;Cb!%F .5 V L D ε ε ε > > 5 L V D ε ε ε > > 5 L D V ε ε ε > > 5 D V L ε ε ε > > Câu 16:V@!- osu c ftV π = # f ;m_*/(';'&!&W!83-%X! <!4><"@! Yi/(J@!4@!1!%/0i €"5Z•P• N@!-@1J!% %\;;J@!&>&5Z•P• P• N@!-@1J!%%\;;@! Y&>&5Z •P• N@!-%\;;!<&>&‚ ";L 5e RU;‚ ";L %!% R!('!f7;CF .5M]5M]5Mg]5g]5 Hướngdẫn : Cách 1 Cách 2: I'E!%[ 2 2 Lmax Cmax 4 4 2 1 U.f U U f f = = − Cách 3 ƒ-1J!%F 2 2 C 2 2 Lmax L f U 1 U f + = ]0• 5• P• !:!• P• ;• " P• A4G!_F‚ ";L PM] Câu 17:V@!- osu U c t ω = #‚ /( ω DE!%m*/(';'&!&W!83-%X@! Yi J@!4@!1!%!<!4><";m_5Z"P" /("P" @!-@1J!% Y;!<4c!%% Rj+@-;U;@!-Y;'&!&7'/0O!%1H!%@! +!+_+(M ;1/(M ;15Z"P" @!-%\;;!<&>&j+@-;U;@!- ;'&!&7'/0O!%1H!%@!+( ϕ 5e RU; ϕ %!% R!('!f7;CF .5 ;1Mg ;15 ;15 ;15 Hướngdẫn vZ‚ ";L N„ "' P C C LL LL Z ZR ZZ ZZ + = + #* v](F Zc R R ZcZ Lo = − = ϕ ;! #* vVF;!#M*P;/(;!#M*P9N;4F;59P v;4F +=→= − = +=→= − = ZcRbZb R ZcZ ZcRaZa R ZcZ L L L L 5M;! 5M;! #* ;#*/('#*/(VLPil„ N;4$F #;v9*… ;595… #;v9*5…vPgM ;1 ]N;59P!:!$4!%@F…P!:!;! ϕ PgM ;1 Cách 2 Câu 18:V@!-4P'7#π*]5/(';'&!&%X@! Y4iP†J@!4 @!1!% C F π − = /(!<4>< L H π = 5=[U;O!%1H!%@! '!%&+(F A:P'7#πvπl*. B:P'7#πvπl*. C:P'7#ππl*. D:P'7#ππl*. Hướngdẫn : ( ) FX570ESPLUS u 220 2 0 11 i Z 5 4 100 100 200 i ∠ π = = → ∠ + − Câu 19:Z!4/-''!-9=!('10Cb!%F .5]0‡!7!%T!7W4!78LR!-''!;!%!`!%+_!%!!;5 5$''!4=X!& '!% &!%[!%:!5 5)`!%+_!%U;-''!(!%+0!D9074!%!7!%[!%/0-''!4(!%+0!5 5)`!%+_!%U;-''!!7!%G!aT!!`!%+_!%U;-''!!7!%a5 Câu 20:39!DG!'+( PM5 5!DG!Qr&'1A!%6 '!%!%:!o1 '+(F .5M5 55 55 5gg5 5 Hướngdẫn : r n = n 2 .r 0 = 47,7.10 -11 m Câu 21: '!%G!%@ˆC!%/%;'';!7!%!3;!7!%T!7W(+;9S!%!7!% T!7W(/(!%/(%\!%:!D@!DN :!(!Q;!7F .5Z'<!%/C!`!%+:!5Z'<!%/C!%<L8!%5 5/R R/C! !%C;m5Z'<!%/C!DE!%;m5 Câu 22: :!O!%d!%8R! '!%E O!%d!%0!%DE!%f-JC/(-<!L&C Y!%X!CD'<!%1_C4[O!%C+("jD1R=! ; L;!%X!C:kN[O!%C_+("#1*5Z'<!%1+(F .55k555 hướngdẫn : ( ) 2 2 Giaûi pt ñôngiaûn naøy d 9 9 L L 20 10 lg 20 10lg 1 d 1m d d + − − = ↔ = + → = ÷ ÷ Câu 23 :'&!&!83-%X!<!'&!&…/(J@!#N!/h*5ZV/(' ;.@!- # *os AB u U c t ω ϕ = + ]# U ω ϕ DE!%m*N M AN LC U V ω = = /( M MB U V = X!%O‚ .) 70-; π 7'/0‚ 6 5e RU;‚ +(F X C L M N B A M .5 M gV 5 M V 5 M gV 5 M V Hướngdẫn : 2 L C LC 1 u u 0 AN AM X AN MB X Y AN MB Y MB X NB u u u u u 2u u U U U u u u ω = ↔ + = = + → + = = ↔ + = = + uuuur uuuur uuur - '‚ 6 P‚ .) /( .) +@-; 6 %4 !:!;/h_%<!X/tT! :!5 ( ) 2 2 AB L X C X AB X 0AB 25 6 PQ 25 6 PI 2 OPI : OI OP PI 12,5 14 u u u u u U U 12,5 14 U 12,5 14. 2 25 7 V = → = ∆ = + = → = + + = ↔ = = → = = Cách 2 : #!(;T! :!* ( ) 2 L C LC 1 u u 0 AN AM X AN MB X MB X NB AN MB X 0X u u u u u 2u u u u 25 2 0 50 2 u u 25 14 3 u 0,71 U 25 7 V 2 2 2 ω = ↔ + = = + → + = = + π ∠ + ∠ + ↔ = = = ∠ → = Câu 24 :V@!- osu U c t ω = #‚ /( ω DE!%m*/(';'&!&%X!1CDE!%! <W!83-/0J@!4@!1!%#;m_*5ZP NO!%1H!%@! '!%& 70-;T!+( ϕ # π ϕ < < */(@!-@1J!%;!1C+(M]5ZP NO!% 1H!%@! '!%& }-;T!+( π ϕ ϕ = − /(@!-@1J!%;!1C+(M]5e R U;‚ %!% R!('!f7;CF .5]5]5kM]5gM] Hướngdẫn : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) C0 C0 L L Z X Z Z ;Y Z 3 2 2 2 2 2 2 2 1 2 C0C0 L L 2 1 2 C0 L 2 2 C0 L 0 2 2 L I 135 3U U 3 8R 9Y X 1 45 I ZR Z Z R Z 3 tan .tan 1 R X.Y 2 4Z 10Z X 9Y U 3 2U 1 2 Z 5R 135 R Z U 45 2 V U 90 V 2 R 3Y R Y Z 2R = − = − ÷ ÷ = = ↔ = → + = + − + − ÷ ϕ ϕ = ↔ = = = → ↔ = → = + = → = → = = + = Câu 25 :;&1;'!%@!A+‰Y!%;!%41;'!%@!A>1'5@!GU;J@! '!% &1;'!%[!f/([;+!+_+(Q /(Q /0 g 5q q − + = QG!9S!%5ŠO= M√ M√ Y U uuur ‹ K $ w @!GU;J@!/(O!%1H!%@! '!%&1;'!%[!f+!+_+( k /(.O!% 1H!%@! '!%&1;'!%[;4+0!9S!%F .5.5.5.5.5 hướngdẫn : ( ) ( ) 2 9 2 17 9 2 2 dhpt 1 1 2 2 2 4. 10 q 1,3.10 q 3.10 C 8q .i 2q i 0 i 8mA − − − + = → = → + = → = Câu 26 :)8;>U;-@!L';-;/(';'&!&.W!83- %X@! Yk Ω !<4><"/(J@!4@!1!%g F µ 5aQ;@! Y! U;!1CU;-53 ''-4;V->5Z E'Q;/08! PM /H!%l-b'V! P/H!%l-bNE!%7f:JU;'&!&.+(!!;5><"4 % R%!% R!('!C7;CF .5g555 Hướngdẫn : Cách 1 ( ) ( ) 1 2 1 2 1 dd roto 2 KhiP P I I 0 0 2 2 2 2 90 .p 120 90E 120E E L 0,477 R 90 L 20 R 120 L 15 = ↔ = ω = π ω = ω → ω = π ω→ = → = + π − + π − : Cách 2f@!!%@1J!%U;!%X!@!FŒP ω)Φ P π•)Φ P‚#1' P* ]0•P!-!8Q;U; ''-78V->A '$ P$ ;4F‹ iP‹ iP~‹ P‹ 5 * # C LR ω ω ω −+ P * # C LR ω ω ω −+ P~ •* #Ž C LR ω ωω −+ P •* #Ž C LR ω ωω −+ ~ C L C LR ω ω ω ωωω −++ P C L C LR ω ω ω ωωω −++ ~ **## C L R −− ωω P *# ω ω ω ω − C P **## ωω ωωωω +− C ~# C L i * P ωω + #^*thay số tính L = 0,477H Câu 27 :@!!`!%_ !A!T-3!D1C!9S!%O!%1C-;/0@7f !<+(k•5';'-G@!!`!%n1'a;!@ :!O!%1C/(DE!%/_Q•5)3E!% 7f7o1J!%@!U;D1C!!(`!%•/(%\!%:!@!-Y!T-N@7f !<@! !`!% :!G!O!%1C4+(F .5gg•5k•5k•5M• Hướngdẫn : Cách 1 g VE!%78T!%[!% $ O!%1C#-* :J $ ‚ i•$ $ $ ‚ i•$ $ ( ) ( ) ( ) ( ) t1 1 1 1 1 2 2 2 2 t2 t1 2 2 2 2 2 t1 1 1 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 P 0,9P H 90% P 0,1P *t ăng hiệusuất nơi tiêuthụ.Gọi hiệusuất truyền tảiH P I U I P 1,2P H P 1,2 H H H 1 P 0,9I U 0,9I 1 H I P I R I 1 H P 1 H P 2 P 0,1.I I 0,1 I R Thay = = ↔ ∆ = = = ↔ = = = − ∆ − ∆ = − → = = → = ∆ ( ) ( ) ( ) 2 2 2 vào 1 H 87,7% hoặcH 12,3% loại→ = = Cách 2 e?E!%78 !< '!%; O!%_-!7;F $ j‚ i P ∆ $ $ j‚ i P ∆ $ ZE!%fG!m!%QD%<7o@78E!%7f9S!%5 "bF P$ l$ Pk/($ P$ v P ∆ #* ;F $ P$ lk/( P ∆ P$ lk #* "b7;F $ P$ #`!%•E!%7f7o1J!%* "&4F $ P$ v P ∆ P$ v P ∆ #* 6VD R U P P =∆ j R U P P =∆ P~ k 55 P PP P P P =∆=∆ #* ;#*/('#* X93!m;;/-T!% N!F 5k =+− PPPP ;N_!%@U;$ I'$ F k MMM PP − = /( k MMM PP + = v]0!%@[!fF k MMM PP + = j/(x4$ < P$ 7 ;FP$ < l$ Pgg• v]0!%@[!fF k MMM PP − = j/(x4$ < P$ 7 ;FP$ < l$ P• Cách 3 Câu 28: '!%C!DE!%!7!%49074!%+0!!f '!%78!7!%a/(!%+;G+(F .5!7!%/(!%5!7!%G5!7!%+;5!7!%a5 Câu 29:6'!+W+HL'%X/,!a4D8+_!%%/(+HL' 4[!%)l_V :!V-d!%!S!%;!%DE!%; 75],!a;!%!S:!Y/R GC!9S!%&P1J!%+> ‘P)+:!/,!a#N!/h*''!+W1;'!%H;3!O = t s π = N!%A!%1J!%+>‘5 ;'!%H;U;'!+W7;DDE!%H!+>‘1J!%4% R9:!%!% R!('!f7; CF .5k5g5M55 Hướngdẫn : ( ) ( ) ( ) ( ) ( ) ( ) 0 2 2 2 2 2 Khicólựcvật DĐquanhVTCBcáchVT lò xokhông biếndạngđọan F l A 5 cm k T T t T Khingừngtácdụnglựcvật ở cách VTCB cũ lúccólực 10 3 A 3 đoạn2,5 cm và cóv 2 5 3 2 A' x v 5 2,5 5 3 cm 8,66 cm ∆ = = = π = → = + → ω = ω ÷ ÷ → = + = + + = = ω Câu 30: '!%G!%@ˆC!%/%;'';!7!%9074!%!7!%T!7W+(!D'<!% %\;;DIs-+(D'<!%AV-d!%[;;DI3!(!+(5Z'<!%/C!Q;!7 _ :!(!4% R9S!%F .5M555k Câu 31:6!%X!-74!%1;'!%H;&' ;74!% H!X!%CK ! :!V!0/090 74!% λ 5;=6/()V!0!S :!;-T!% !74!%(-!o!01;'!%5 3K6P λ jK)P λ /(K6/E!%%4K)5 :!'&!6)78=(-!o!01;'!%!%_ -;/01;'!%U;!%X!K+(F k F ur .5M55g55 0!%12! ( ) ( ) ( ) ( ) 2 2 2 GiảihệBPT 1 1 1 24 OMN vuông OH OH ON OM 13 24 d 2k 1 8 2 2 d 13 2k 1 d 2k 1 có6giátròcủa k 2 24 d 2k 1 12 2 13 ∆ → = + → = λ λ ≤ = + ≤ λ π λ = + π → = + → → λ λ ≤ = + ≤ λ Câu 32:;!('7;CDE!%-<+(;-4!%L&F .5; γ 5; β + 5; α 5;…5 Câu 33:6&4D8+_!%!%n 5I'3T!%8D8+_!%!%#D8+_!%T!%8G!* U;&!(D=!!%/08#+(8!7!% '!%C!DE!%*+(F .5gM 5M 5 5M 5 Câu 34:6/,!aD8+_!%%1;'!%H;/0DN7/(T!`!%+(q#83!`!% &/R GC!9S!%*j+f π = 5&+ cm n78!%!`!%/(3!`!%+(F .5555 Hướngdẫn : ( ) tạiđó 2 2 đ t W 1 A W m A A 6cm x 3 2 cm 1 2 W 2 = ω → = → = = → = Câu 35:6+H-<![!%-C!&4E!%7f6u5' S!%'(!9!`!%+_!%(+H-<![!%!( 7! ;1'7>-C!&U; M ‚/(X!%/R!(n9R:;'9YQ N!-C!&5'‡!`4 M!%(j‡-C!&7! ;6I]j78./E%; ') . P5 '+ 5Z8+_!% M ‚(+H-<! [!%:J '!%!`+(F .5%5D%5D%5% Hướngdẫn : ( ) 6 26 13 A P.t 200.10 .3.365.86400 N N 5,913.10 m .235 230,8 kg E N 200.1,6.10 − = = = → = = ∆ Câu 36:e?6)‹+(= :!+HL'!s_ I'd!%[!%Y=K8R!5Z+HL'4 1(>!:!NK6P6)P)‹P5eW!/,!a/('10‹U;+HL'/(DGG=/,1;' !%H;I'-T!%d!%[!%5 '!%Q N!1;'!%n78+0!+>Dt'+0!!f/(+0!+> Dt'!a!f1J!%+:!K9S!%j+HL'%x!jD'<!%+0!!f%\;;=6/()+(5 "f π = 5],1;'!%/0!78+(F .5kB5MB5MB5gB5 Hướngdẫn : ( ) ( ) ( ) ( ) ( ) 0 max min 0 0 2 0 k l A F 3 g F k l A l 4 cm 5 10 5 f 2,5 Hz Lò xodãn cựcđại l A 2.3 6 cm ∆ + = = ∆ − → ∆ = = → ω = = π → = ω = ∆ + = = Câu 37:6/,!a1;'!%H;I'-T!% N! '7x A t π = #G!9S!%7*5G!APjD'<!% O%;!!%W!!f=%;8U;/,4+0!9S!%!o;+0!%;8>&+(F .57575g75M7 Câu 38:e<7o/@!1c!% '!% !E!%;!%[!%:!7'/0VfY;'LR! '!%V-d!%…G&' fjO!%d!%!8/@!/0C fQ;D!3!78*5' f!Q<9!DG!+(gDjD8+_!%+(5 D%/(DNQ;Q;! JU;!4+(j S!%78f-12!ePg5 )5 lD% 54!%>!%W!•~6B-A/@! !d!%3!= !S :!…G&' f '!%D'<!%D!!('10CF .5AD!M ’ 3!D!M ’ 5AD!gk ’ 3!D!Egk ’ 5AD! ’ 3!D! ’ 5AD! ’ 3!D! ’ K 6 ) [...]... PO2Q có giá trị lớn nhất thì phần tử nước tại P khơng dao động còn phần tử nước tại Q dao động với biên độ cực đại Biết giữa P và Q khơng còn cực đại nào khác Trên đoạn OP, điểm gần P nhất mà các phần tử nước dao động với biên độ cực đại cách P một đoạn là: A 3,4cm B 2,0cm C 2,5cm D 1,1cm Hướngdẫn : - Gọi PO2Q = φ = φ2 – φ1 y tan ϕ = tan ( ϕ2 − ϕ1 ) = tan ϕ2 − tan ϕ1 1 + tan ϕ2 tan ϕ1 8 4,5 − 3,5 y y... xoay chi u u = U 2cosωtV vào hai đầu một điện trở thuần R = 110Ω thì cường độ dòng điện qua điện trở có giá trị hiệu dụng bằng 2A Giá trị của U bằng: A 220 2V B 220V C 110V D.110 2V Câu 48: Một vật dao động điều hòa với biên độ 4cm và chu kí 2s Qng đường vật đi được trong 4s là: A 64cm B 16cm C 32cm D 8cm Câu 49: Một mạch dao động LC lý tưởng đang thực hiện dao động điện từ tự do Biết điện tích cực đại. .. điện cực đại trong mạch là I0 Tại thời điểm cường độ dòng điện trong mạch bằng 0,5I0 thì điện tích của tụ điện có độ lớn: 12 q0 2 q 3 B 0 2 2 Hướngdẫn : Dùng hệ thức độc lập giữa i và q A C q0 2 D q0 5 2 Câu 50: Một con lắc đơn có chi u dài 121cm, dao động điều hòa tại nơi có gia tốc trọng trường g Lấy π 2 = 10 Chu kì dao động của con lắc là: A 0,5s B 2s C 1s D 2,2s PHH sưu tầm & chỉnh lí 26-12 -2013. . .Hướng dẫn : Vệ tinh là Vệ tinh địa tĩnh, lực hấp dẫn là lực hướng tâm nên ta c 2 G.M 2π thay so R + h = 42297523,87m → ÷ ( R + h) = 2 ( R + h) 86400 với h là độ cao của về tinh so với mặt đất Vùng phủ sóng nằm trong miền... vng góc với mặt phẳng chứa hai khe ra xa cho đến khi vân giao thoa tại M chuyến thành vân tối lần thứ hai thí khoảng dịch màn là 0,6m Bước sóng λ bằng: A 0, 6 µ m B 0,5µ m C 0, 7 µ m D 0, 4 µ m kλ D Hướngdẫn : - Lúc đầ u vân sáng k = 5: x = (1) a - Khi màn ra xa dầ n thì D và kéo theo i tăng dầ n, lúc M là vân tớ i lầ n thứ 2 thì nó là vân tớ i thứ 4: (k '+ 0,5)λ ( D + 0, 6) k’ =... y+ y y y 3,5 cosi tan ϕ ≤ → ↔ y = 6 = O1O2 2 36 O2 φ2 φ1 d2Q d2P O1 x P Q λ O2 P − O1P = ( 2k + 1) Dó: 2 O Q − O Q = kλ 1 2 k = 1 vì P,Q thuộc cực đại và cực tiểu cùng bậc (thu) → λ = 2 ( cm ) Điểm cực đại gần P nhất thuộc O1P ứng với k = 2 d 2 − d1 = 2.λ = 4 d 2 = 6,5 → 2 → → điểm đócách P đoạn x = O1P − d1 = 2 ( cm ) 2 2 d1 = 2,5 d 2 − d1 = 6 Câu 40:... của 235U và 238U lần lượt là 7,00.108năm và 4,50.109 năm Cách đây bao nhiêu năm, urani tự nhiên có tỷ lệ số hạt 235U và số hạt 238U là 3/100? A 2,74 tỉ năm B 1,74 tỉ năm C 2,22 tỉ năm D 3,15 tỉ năm Hướngdẫn : −λ t −λ t N N1 N 01e 1 1 7 7e 2 1 = = → 01 = N 2 N 02 e−λ2 t1 1000 N 02 100e −λ1t1 * N 01e −λ1t 2 N 02 e −λ2 t 2 = −λ t −λ t 3 7e 2 1 e 1 2 3 30 ( λ −λ ) ∆t ↔ = ↔ = e 1 2 → ∆t = 1,74 −λ1t1 −λ2... nước, hai nguồn sóng kết hợp dao động cùng pha đặt tại hai điểm A và B cách nhau 16cm Sóng truyền trên mặt nước với bước sóng 3cm Trên đoạn AB, số điểm mà tại đó phần tử nước dao động với biên độ cực đại là: A 9 B 10 C 11 D 12 Câu 42: Thực hiện thí nghiệm Y âng về giao thoa với ánh sáng có bước sóng λ Khoảng cách giữa hai khe hẹp là 1mm Trên màn quan sát, tại điểm M cách vân trung tâm 4,2mm có vân... vạch phát xạ, phát biểu nào sau đây là sai? A.Quang phổ vạch phát xạ của một ngun tố là hệ thống những vạch sáng riêng lẻ, ngăn cách nhau bởi những khoảng tối B Quang phổ vạch phát xạ của ngun tố hóa học khác nhau thì khác nhau C Quang phổ vạch phát xạ do chất rắn hoặc chất lỏng phát ra khi bị nung nóng D Trong quang phổ vạch phát xạ của ngun tử hidro , ở vùng ánh sáng nhìn thấy có bốn vạch đặc trưng