Hãy tải về r làm
- 1 - B GIÁO DC VÀ ÀO TO ÔN THI I HC MÔN TOÁN – 1 ( THAM KHO) Thi gian làm bài: 180 phút I. PHN BT BUC DÀNH CHO TT C THÍ SINH (7,0 đim) Câu I . (2 đim) Cho hàm s y = x 3 3x 2 + mx + 4, trong đó m là tham s thc. 1. Kho sát s bin thiên và v đ th ca hàm s đã cho, vi m = 0. 2. Tìm tt c các giá tr ca tham s m đ hàm s đã cho nghch bin trên khong (0 ; + ). Câu II . (2 đim) 1. Gii phng trình: 3 (2cos 2 x + cosx – 2) + (3 – 2cosx)sinx = 0 2. Gii phng trình: 2 24 1 2 log (x 2) log (x 5) log 8 0 Câu III . (1 đim) Tính din tích hình phng gii hn bi đ th hàm s y = x e1 , trc hoành và hai đng thng x = ln3, x = ln8. Câu VI . (1 đim) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cnh a, SA = SB = a, mt phng (SAB) vuông góc vi mt phng (ABCD). Tính bán kính mt cu ngoi tip hình chóp S.ABCD. Câu V. (1 đim) Xét các s thc dng x, y, z tha mãn điu kin x + y + z = 1. Tìm giá tr nh nht ca biu thc: 222 x(y z) y(z x) z(x y) P yz zx xy II. PHN T CHN (3,0 đim). Tt c thí sinh ch đc làm mt trong hai phn: A hoc B. A.Theo chng trình Chun: Câu VIa . (2 đim) 1.Trong mt phng vi h ta đ Oxy, cho đng tròn (C) có phng trình: x 2 + y 2 – 6x + 5 = 0. Tìm đim M thuc trc tung sao cho qua M k đc hai tip tuyn vi (C) mà góc gia hai tip tuyn đó bng 60 0 . 2.Trong không gian vi h ta đ Oxyz, cho đim M(2 ; 1 ; 0) và đng thng d có phng trình: x12t y1t zt Vit phng trình tham s ca đng thng đi qua đim M, ct và vuông góc vi đng thng d. Câu VIIa . (1 đim) Tìm h s ca x 2 trong khai trin thành đa thc ca biu thc P = (x 2 + x – 1) 6 B.Theo chng trình Nâng cao Câu VIb . (2 đim) 1.Trong mt phng vi h ta đ Oxy, cho đng tròn (C) có phng trình: x 2 + y 2 – 6x + 5 = 0. Tìm đim M thuc trc tung sao cho qua M k đc hai tip tuyn vi (C) mà góc gia hai tip tuyn đó bng 60 0 . 2.Trong không gian vi h ta đ Oxyz, cho đim M(2 ; 1 ; 0) và đng thng d có phng trình: x1 y1 z 211 . Vit phng trình chính tc ca đng thng đi qua đim M, ct và vuông góc vi đng thng d. Câu VIIb . (1 đim) Tìm h s ca x 3 trong khai trin thành đa thc ca biu thc P = (x 2 + x – 1) 5 -----------------------------------------Ht --------------------------------------------- 63 thi th i hc 2011 -1- http://www.VNMATH.com - 2 - B GIÁO DC VÀ ÀO TO ÔN THI I HC MÔN TOÁN – 2 ( THAM KHO) Thi gian làm bài: 180 phút . I. PHN BT BUC CHO TT C CÁC THÍ SINH (7,0 đim) Câu I. (2,0 đim) Cho hàm s 2 2 x y x , có đ th là (C) 1. Kho sát và v (C) 2. Vit phng trình tip tuyn ca (C), bit tip tuyn đi qua đim A(– 6 ; 5) Câu II. (2,0 đim) 1. Gii phng trình: cos x cos3x 1 2 sin 2x 4 . 2. Gii h phng trình: 33 223 xy1 xy 2xy y 2 Câu III. (1,0 đim) Tính tích phân 2x ln 3 xx ln 2 edx I e1 e2 Câu VI. (1,0 đim) Hình chóp t giác đu SABCD có khong cách t A đn mt phng SBC bng 2. Vi giá tr nào ca góc gia mt bên và mt đáy ca chóp thì th tích ca chóp nh nht? Câu V. (1,0 đim) Cho a,b,c 0 : abc 1. Chng minh rng: 111 1 ab1bc1ca1 II . PHN T CHN (3,0 đim). Tt c thí sinh ch đc làm mt trong hai phn: A hoc B. A. Theo chng trình Chun: Câu VIa . (2,0 đim) 1. Trong mt phng Oxy cho các đim A(1;0) ; B(–2;4) ;C(–1; 4) ; D(3 ; 5) và đng thng d: 3x – y – 5 = 0. Tìm đim M trên d sao cho hai tam giác MAB, MCD có din tích bng nhau. 2. Vit phng trình đng vuông góc chung ca hai đng thng sau: 12 x12t xy1z2 d : ; d : y 1 t 211 z3 Câu VIIa . (1,0 đim) Tìm s thc x, y tha mãn đng thc : x(3 + 5i) + y(1 – 2i) 3 = 7 + 32i B. Theo chng trình Nâng cao Câu VIb . (2,0 đim) 1.Trong mt phng vi h to đ Oxy cho đng thng d: x - 2y -2 = 0 và đim A(0;1) ; B(3; 4). Tìm to đ đim M trên đng thng d sao cho 2MA 2 + MB 2 là nh nht. 2.Trong không gian vi h to đ Oxyz cho hai đim A(1;7;-1), B(4;2;0) và mt phng (P): x + 2y - 2z + 1 = 0. Viêt phng trình hình chiu ca đng thng AB trên mt phng (P) Câu VIIb . (1,0 đim) Cho s phc z = 1 + 3 i. Hãy vit dng lng giác ca s phc z 5 . -----------------------------------------Ht --------------------------------------------- 63 thi th i hc 2011 -2- http://www.VNMATH.com - 3 - B GIÁO DC VÀ ÀO TO ÔN THI I HC MÔN TOÁN – 3 ( THAM KHO) Thi gian làm bài: 180 phút . I. PHN BT BUC DÀNH CHO TT C THÍ SINH (7,0 đim) Câu I (2 đim) Cho hàm s 32 y=x -3x +4 1. Kho sát s bin thiên và v đ th (C) ca hàm s. 2. Gi d là đng thng đi qua đim A(3; 4) và có h s góc là m. Tìm m đ d ct (C) ti 3 đim phân bit A, M, N sao cho hai tip tuyn ca (C) ti M và N vuông góc vi nhau. Câu II (2đim) 1. Gii h phng trình: 2 2 x+1+y(x+y)=4y (x +1)(x + y - 2) = y ( x, y R ) 2. Gii phng trình: 2 2 sin(x ).cos x 1 12 Câu III (1 đim) Tính tích phân 1 2 0 I = xln(x + x +1)dx Câu IV (1 đim) Cho hình lng tr ABC.A’B’C’ có đáy là tam giác đu cnh a, hình chiu vuông góc ca A’ lên mt phng ( ABC) trùng vi tâm O ca tam giác ABC. Mt mt phng (P) cha BC và vuông góc vi AA’, ct lng tr theo mt thit din có din tích bng 2 a3 8 . Tính th tích khi lng tr ABC.A’B’C’. CâuV (1 đim) Cho a, b, c là ba s thc dng tha mãn abc = 1. Tìm GTLN ca biu thc 22 22 22 111 P= + + a + 2b + 3 b + 2c + 3 c + 2a + 3 . II. PHN T CHN (3,0 đim). Tt c thí sinh ch đc làm mt trong hai phn: A hoc B. A. Theo chng trình Chun: Câu VIa (2 đim): 1. Trong mp vi h trc ta đ Oxy cho parabol (P): 2 y = x - 2x và elip (E): 2 2 x +y =1 9 .Chng minh rng ( P) giao ( E) ti 4 đim phân bit cùng nm trên mt đng tròn. Vit phng trình đng tròn đi qua 4 đim đó. 2. Trong không gian vi h trc ta đ Oxyz cho mt cu (S) có phng trình 222 x + y + z - 2x + 4y - 6z -11 = 0 và mt phng ( ) có phng trình 2x + 2y – z + 17 = 0. Vit phng trình mt phng ( ) song song vi ( ) và ct (S) theo giao tuyn là đng tròn có chu vi bng 6 . Câu VIIa (1 đim): Tìm h s ca s hng cha x 2 trong khai trin nh thc Niutn ca n 4 1 x+ 2x , bit rng n là s nguyên dng tha mãn: 23 n+1 01 2 n nnn n 2 2 2 6560 2C + C + C + + C = 23 n+1n+1 B. Theo chng trình Nâng cao: Câu VIb (2 đim): 1. Trong mt phng Oxy cho hai đng thng d 1 : x + y + 5 = 0, d 2 : x + 2y – 7 = 0 và tam giác ABC có A(2 ; 3), trng tâm là đim G(2; 0), đim B thuc d 1 và đim C thuc d 2 . Vit phng trình đng tròn ngoi tip tam giác ABC. 2. Trong không gian vi h trc ta đ Oxyz cho tam giác ABC vi A(1; 2; 5), B(1; 4; 3), C(5; 2; 1) và mt phng (P): x – y – z – 3 = 0. Gi M là mt đim thay đi trên mt phng (P). Tìm giá tr nh nht ca biu thc 222 MA + MB + MC . Câu VIIb (1 đim): Tìm các giá tr ca tham s thc m sao cho phng trình (m - 3) x + ( 2- m)x + 3 - m = 0 có nghim thc 63 thi th i hc 2011 -3- http://www.VNMATH.com - 4 - B GIÁO DC VÀ ÀO TO ÔN THI I HC MÔN TOÁN – 4 ( THAM KHO) Thi gian làm bài: 180 phút I. PHN BT BUC DÀNH CHO TT C THÍ SINH (7,0 đim) Câu I (2 đim): Cho hàm s y = 23 2 x x có đ th là (C) 1. Kho sát s bin thiên và v đ th (C) ca hàm s trên. 2. Tìm trên (C) nhng đim M sao cho tip tuyn ti M ca (C) ct 2 tim cn ca (C) ti A, B sao cho AB ngn nht. Câu II (2 đim): 1. Gii phng trình: 33 sin x.sin3x + cos xcos3x 1 =- 8 tan x - tan x + 63 2. Gii h phng trình: 33 3 22 8x y 27 18y (1) 4x y 6x y (2) Câu III (1 đim): Tính tích phân I = 2 2 6 1 sin x sin x dx 2 Câu IV (1 đim): Cho hình chóp S. ABC có góc ((SBC), (ACB)) =60 0 , ABC và SBC là các tam giác đu cnh a. Tính theo a khong cách t B đn mt phng (SAC). Câu V (1 đim): Cho x, y, z là các s thc dng .Tìm giá tr ln nht ca biu thc A = xyz x (x y)(x z) y (y x)(y z) z (z x)(z y) II. PHN T CHN (3,0 đim). Tt c thí sinh ch đc làm mt trong hai phn: A hoc B. A. Theo chng trình Chun: Câu VIa (2 đim): 1. Cho ABC có B(1; 2), phân giác trong góc A có phng trình (): 2x + y – 1 = 0; khong cách t C đn () bng 2 ln khong cách t B đn (). Tìm A, C bit C thuc trc tung. 2. Trong không gian Oxyz cho mp (P): x – 2y + z – 2 = 0 và hai đng thng : (d 1 ) x1 3y z2 112 ; (d 2 ) x12t y2t(t ) z1t . Vit phng trình tham s ca đng thng nm trong mp (P) và ct c 2 đng thng (d 1 ), (d 2 ). Câu VIIa (1đim): T các s 0 , 1 , 2 , 3, 4, 5, 6. Lp đc bao nhiêu s có 5 ch s khác nhau mà nht thit phi có ch s 5 B. Theo chng trình Nâng cao: Câu Vb (2đim): 1. Cho ABC có din tích bng 3/2; A(2;–3), B(3;–2), trng tâm G (d) 3x – y –8 =0. Tìm bán kính đng tròn ni tip ABC. 2. Trong không gian Oxyz cho đng thng (d) là giao tuyn ca 2 mt phng: (P): 2x – 2y – z +1 = 0, (Q): x + 2y – 2z – 4 = 0 và mt cu (S): x 2 + y 2 + z 2 + 4x – 6y +m = 0. Tìm tt c các giá tr ca m đ (S) ct (d) ti 2 đim MN sao cho MN = 8. Câu VIIb (1 đim): Gii h phng trình x-y x+y x+y e + e = 2(x +1) e=x-y+1 ( x, y R ) -----------------------------------------Ht -------------------------------------------- 63 thi th i hc 2011 -4- http://www.VNMATH.com - 5 - B GIÁO DC VÀ ÀO TO ÔN THI I HC MÔN TOÁN – 5 ( THAM KHO) Thi gian làm bài: 180 phút . I. PHN BT BUC DÀNH CHO TT C THÍ SINH (7,0 đim) Câu I (2 đim): Cho hàm s 21 1 x y x (C) 1. Kho sát s bin thiên và v đ th (C) ca hàm s. 2. Tìm m đ đng thng d: y = x + m ct (C) ti hai đim phân bit A, B sao cho OAB vuông ti O. Câu II (2 đim) 1. Gii phng trình: x xx xx sin12 cossin 1cos.cos 2 2. Gii h phng trình: 411 3 22 22 yx xyyx Câu III (1 đim): Tính tích phân: 2 0 cos 2sin.sin xdxxe x Câu IV (1đim): Cho hình chóp S.ABCD có đáy ABCD là hình vuông cnh a. SA (ABCD) và SA = a. Gi M, N ln lt là trung đim AD, SC. 1. Tính th tích t din BDMN và khong cách t D đn mp (BMN). 2. Tính góc gia hai đng thng MN và BD Câu V (1 đim): Chng minh rng: 2 x x ecosx2x ,xR 2 II. PHN T CHN (3,0 đim). Tt c thí sinh ch đc làm mt trong hai phn: A hoc B. A. Theo chng trình Chun: Câu VIa (2 đim): 1. Lp phng trình đng thng d đi qua đim A(1; 2) và ct đng tròn (C) có phng trình 2512 22 yx theo mt dây cung có đ dài bng 8. 2. Chng t rng phng trình 222 2 2os . 2sin . 4 4 4sin 0xyz c x yz luôn là phng trình ca mt mt cu. Tìm đ bán kính mt cu là ln nht. Câu VIIa (1 đim): Lp s t nhiên có 5 ch s khác nhau t các ch s {0; 1; 2; 3; 4; 5; 6; 7}. Hãy tính xác sut đ lp đc s t nhiên chia ht cho 5. B. Theo chng trình Nâng cao: Câu VIb (2 đim): 1. Cho ABC bit: B(2; -1), đng cao qua A có phng trình d 1 : 3x - 4y + 27 = 0, phân giác trong góc C có phng trình d 2 : x + 2y - 5 = 0. Tìm to đ đim A. 2. Trong không gian Oxyz , cho đim A( 3 ; 4 ; 2) ; (d) yz-1 x= = 23 và m.phng (P): 4x +2y + z – 1 = 0 a) Tìm ta đ đim H là hình chiu vuông góc ca đim A lên mt phng (P) . b) Vit phng trình mt phng () cha (d) và vuông góc vi mt phng (P) . Câu VIIb (1 đim): Tính tng: 1004 2009 2 2009 1 2009 0 2009 . CCCCS . -----------------------------------------Ht --------------------------------------------- 63 thi th i hc 2011 -5- http://www.VNMATH.com - 6 - B GIÁO DC VÀ ÀO TO ÔN THI I HC MÔN TOÁN – 6 ( THAM KHO) Thi gian làm bài: 180 phút . I. PHN BT BUC DÀNH CHO TT C THÍ SINH (7,0 đim) Câu I . (2,0 đim) Cho hàm s mxxmxy 9)1(3 23 , vi m là tham s thc. 1. Kho sát s bin thiên và v đ th ca hàm s đã cho ng vi 1 m . 2. Xác đnh m đ hàm s đã cho đt cc tr ti 21 , xx sao cho 2 21 xx . Câu II . (2,0 đim) 1. Gii phng trình: ) 2 sin(2 cossin 2sin cot 2 1 x xx x x . 2. Gii phng trình: )12(log1)13(log2 3 5 5 xx . Câu III. (1,0 đim) Tính tích phân 5 1 2 13 1 dx xx x I . Câu IV . (1,0 đim) Cho hình lng tr tam giác đu '''. CBAABC có ).0(',1 mmCCAB Tìm m bit rng góc gia hai đng thng ' AB và 'BC bng 0 60 . Câu V . (1,0 đim) Cho các s thc không âm zyx ,, tho mãn 3 222 zyx . Tìm giá tr ln nht ca biu thc zyx zxyzxyA 5 . II. PHN T CHN (3,0 đim). Tt c thí sinh ch đc làm mt trong hai phn: A hoc B. A. Theo chng trình Chun: Câu VIa . (2,0 đim) 1. Trong mt phng vi h to đ ,Oxy cho tam giác ABC có )6;4(A , phng trình các đng thng cha đng cao và trung tuyn k t đnh C ln lt là 0132 yx và 029136 yx . Vit phng trình đng tròn ngoi tip tam giác ABC . 2. Trong không gian vi h to đ , Oxyz cho hình vuông MNPQ có )4;3;2(),1;3;5( PM . Tìm to đ đnh Q bit rng đnh N nm trong mt phng .06:)( zyx Câu VIIa . (1,0 đim) Cho tp 6,5,4,3,2,1,0E . T các ch s ca tp E lp đc bao nhiêu s t nhiên chn gm 4 ch s đôi mt khác nhau? B. Theo chng trình Nâng cao: Câu VIb. (2,0 đim) 1. Trong mt phng vi h to đ ,Oxy xét elíp )(E đi qua đim )3;2( M và có phng trình mt đng chun là .08 x Vit phng trình chính tc ca ).(E 2. Trong không gian vi h to đ , Oxyz cho các đim )2;3;0(),0;1;0(),0;0;1( CBA và mt phng .022:)( yx Tìm to đ ca đim M bit rng M cách đu các đim CBA ,, và mt phng ).( Câu VIIb. (1,0 đim) Khai trin và rút gn biu thc n xnxx )1( .)1(21 2 thu đc đa thc n n xaxaaxP .)( 10 . Tính h s 8 a bit rng n là s nguyên dng tho mãn n CC nn 171 32 . -----------------------------------------Ht --------------------------------------------- 63 thi th i hc 2011 -6- http://www.VNMATH.com - 7 - B GIÁO DC VÀ ÀO TO ÔN THI I HC MÔN TOÁN – 7 ( THAM KHO) Thi gian làm bài: 180 phút . I. PHN BT BUC DÀNH CHO TT C THÍ SINH (7,0 đim) Câu I (2 đim). 1. Kho sát và v đ th hàm s y = x 4 – 4x 2 + 3 2. Tìm m đ phng trình 42 2 43logx xm có đúng 4 nghim. Câu II (2 đim). 1. Gii bt phng trình: 3 2 51 51 2 0 xx x 2. Gii phng trình: 2 (2) 1 2x xxx Câu III (1 đim) Tính gii hn sau: 12 3 1 tan( 1) 1 lim 1 x x ex x Câu IV (1 đim). Cho hình chóp S.ABCD có đáy là hình thoi , BAD = . Hai mt bên (SAB) và (SAD) cùng vuông góc vi mt đáy, hai mt bên còn li hp vi đáy mt góc . Cnh SA = a. Tính din tích xung quanh và th tích khi chóp S.ABCD. Câu V (1 đim). Cho tam giác ABC vi các cnh là a, b, c. Chng minh rng: 333 22 2 2 22 3()()()abc abcabc bca cab II. PHN T CHN (3,0 đim). Tt c thí sinh ch đc làm mt trong hai phn: A hoc B. A. Theo chng trình Chun Câu VIa. ( 2 đim) 1. Trong mt phng ta đ Oxy cho đng thng : 2 3 0xy và hai đim A(1; 0), B(3; - 4). Hãy tìm trên đng thng mt đim M sao cho 3MAMB nh nht. 2.Trong không gian vi h ta đ Oxyz cho hai đng thng: 1 1 :2 2 x t dyt zt và 2 :13 1 xt dy t zt . Lp phng trình đng thng đi qua M(1; 0; 1) và ct c hai đng thng d 1 và d 2 . Câu VIIa. (1 đim) Tìm s phc z tha mãn: 2 20zz B. Theo chng trình Nâng cao Câu VIb. (2đim) 1.Trong mt phng ta đ cho hai đng tròn (C 1 ): x 2 + y 2 = 13 và (C 2 ): (x - 6) 2 + y 2 = 25 ct nhau ti A(2; 3). Vit phng trình đng thng đi qua A và ct (C 1 ), (C 2 ) theo hai dây cung có đ dài bng nhau. 2.Trong không gian vi h ta đ Oxyz cho hai đng thng: 1 1 :2 2 x t dyt zt và 2 :13 1 xt dy t zt . Lp phng trình mt cu có đng kính là đon vuông góc chung ca d 1 và d 2 . Câu VIIb . (1 đim) Trong các s phc z tha mãn điu kin 12 1zi , tìm s phc z có modun nh nht. -----------------------------------------Ht --------------------------------------------- 63 thi th i hc 2011 -7- http://www.VNMATH.com - 8 - B GIÁO DC VÀ ÀO TO ÔN THI I HC MÔN TOÁN – 8 ( THAM KHO) Thi gian làm bài: 180 phút . I. PHN BT BUC DÀNH CHO TT C THÍ SINH (7,0 đim) Câu I (2 đim): Cho hàm s y = - 3 x 3 + x 2 + 3x - 3 11 1. Kho sát s bin thiên và v đ th (C) ca hàm s đã cho. 2. Tìm trên đ th (C) hai đim phân bit M, N đi xng nhau qua trc tung Câu II (2 đim): 1. Gii phng trình: 2cos3x + 3 sinx + cosx = 0 2. Gii h phng trình 22 22 91 2 (1) 91 2 (2) xyy yxx Câu III (1 đim): Cho s thc b ln2. Tính J = x ln10 b 3 x edx e2 và tìm bln2 lim J. Câu IV (1 đim): Cho hình lng tr đng ABCD.A’B’C’D’ có đáy ABCD là mt hình thoi cnh a, góc BAD = 60 0 . Gi M là trung đim AA’ và N là trung đim ca CC’. Chng minh rng bn đim B’, M, N, D đng phng. Hãy tính đ dài cnh AA’ theo a đ t giác B’MDN là hình vuông. Câu V (1 đim) Cho x, y, z là các s dng tho mãn 111 2010 xyz . Tìm giá tr ln nht ca biu thc: P = 111 222 x yz x yz xy z . II. PHN T CHN (3,0 đim). Tt c thí sinh ch đc làm mt trong hai phn: A hoc B. A. Theo chng trình Chun: Câu VIa (2 đim): 1. Phng trình hai cnh ca mt tam giác trong mp ta đ là 5x - 2y + 6 = 0; 4x + 7y – 21 = 0. Vit phng trình cnh th ba ca tam giác đó, bit rng trc tâm ca nó trùng vi gc ta đ O. 2. Trong không gian Oxyz, tìm trên Ox đim cách đu đ.thng (d) : x1y z2 12 2 và mp (P): 2x – y – 2z = 0. Câu VIIa (1 đim): Cho tp hp X = 0,1,2,3, 4,5,6,7 . Có th lp đc bao nhiêu s t nhiên gm 5 ch s khác nhau đôi mt t X sao cho 1 trong 3 ch s đu tiên phi bng 1. B. Theo chng trình Nâng cao: Câu VIb (2 đim): 1. Trong mt phng ta đ cho hai đng tròn (C 1 ): x 2 + y 2 = 13 và (C 2 ): (x - 6) 2 + y 2 = 25 ct nhau ti A(2; 3). Vit phng trình đng thng đi qua A và ct (C 1 ), (C 2 ) theo hai dây cung có đ dài bng nhau. 2. Trong không gian Oxyz cho hai đng thng: (d 1 ): 4z ty t2x ; (d 2 ) : x3t yt z0 . Chng minh (d 1 ) và (d 2 ) chéo nhau. Vit pt mt cu (S) có đng kính là đon vuông góc chung ca (d 1 ) và (d 2 ). Câu VIIb (1 đim): Gii pt sau trong C: z 4 – z 3 + 6z 2 – 8z – 16 = 0. -----------------------------------------Ht -------------------------------------------- 63 thi th i hc 2011 -8- http://www.VNMATH.com - 9 - B GIÁO DC VÀ ÀO TO ÔN THI I HC MÔN TOÁN – 9 ( THAM KHO) Thi gian làm bài: 180 phút . I. PHN BT BUC DÀNH CHO TT C THÍ SINH (7,0 đim) Câu I (2 đim): Cho hàm s: 42 yx 4x m (C) 1. Kho sát hàm s vi m = 3. 2. Gi s đ th (C) ct trc hoành ti 4 đim phân bit. Tìm m đ hình phng gii hn bi đ th (C) và trc hoành có din tích phn phía trên và phn phía di trc hoành bng nhau. Câu II (2 đim): 1. Gii bt phng trình: 22 x3x2 2x3x1x1 2. Gii phng trình: 3 3 2 cos x cos3x sin x sin 3x 4 Câu III (1 đim): Tính tích phân: I = 2 3 0 7sinx 5cosx dx (sin x cos x) Câu IV (1 đim): Cho hình chóp đu S.ABCD có đ dài cnh đáy bng a, mt bên to vi mt đáy góc 60 o . Mt phng (P) cha AB và đi qua trng tâm tam giác SAC ct SC, SD ln lt ti M, N. Tính th tích hình chóp S.ABMN theo a. Câu V (1 đim) Cho 4 s thc a, b, c, d tho mãn: a 2 + b 2 = 1;c – d = 3. Cmr: 962 Facbdcd 4 . II. PHN T CHN (3,0 đim). Tt c thí sinh ch đc làm mt trong hai phn: A hoc B. A. Theo chng trình Chun: Câu VIa (2 đim): 1. Tìm phng trình chính tc ca elip (E), bit tiêu c là 8 và (E) qua đim M(– 15 ; 1). 2. Trong không gian vi h to đ Oxyz cho 2 đng thng 1 xyz d: 112 và 2 x12t d:y t z1t . Xét v trí tng đi ca d 1 và d 2 . Vit phng trình đng thng qua O, ct d 2 và vuông góc vi d 1 . Câu VIIa (1 đim): Mt hp đng 5 viên bi đ, 6 viên bi trng và 7 viên bi vàng. Ngi ta chn ra 4 viên bi. Hi có bao nhiêu cách chn đ trong s bi ly ra không có đ c 3 màu? B. Theo chng trình Nâng cao: Câu VIb (2 đim): 1.Trong mt phng vi h trc to đ Oxy cho Hypebol (H) có phng trình: 1 916 22 yx . Vit phng trình chính tc ca elip ( E) có tiêu đim trùng vi tiêu đim ca (H) và ngoi tip hình ch nht c s ca (H). 2. Trong không gian vi h trc to đ Oxyz cho 052: zyxP và 31 2 3 :)( zy x d , đim A( -2; 3; 4). Gi là đng thng nm trên (P) đi qua giao đim ca ( d) và (P) đng thi vuông góc vi d Tìm trên đim M sao cho khong cách AM ngn nht. Câu VIIb (1 đim): Tìm h s ca x 3 trong khai trin n 2 2 x x bit n tho mãn: 13 2n123 2n 2n 2n C C . C 2 . -----------------------------------------Ht -------------------------------------------- 63 thi th i hc 2011 -9- http://www.VNMATH.com - 10 - B GIÁO DC VÀ ÀO TO ÔN THI I HC MÔN TOÁN – 10 ( THAM KHO) Thi gian làm bài: 180 phút . I. PHN BT BUC DÀNH CHO TT C THÍ SINH (7,0 đim) Câu I (2 đim) Cho hàm s 1 12 x x y có đ th (C). 1. Kho sát s bin thiên và v đ th hàm s . 2. Vi đim M bt k thuc đ th (C) tip tuyn ti M ct 2 tim cn ti Avà B . Gi I là giao hai tim cn , tìm v trí ca M đ chu vi tam giác IAB đt giá tr nh nht. Câu II (2 đim) 1. Gii phng trình: 2 cos.2sin 2sin x -2x 3sin xx 2. Gii h phng trình : 0222 0964 22 224 yxyx yyxx . Câu III (1 đim) Tính tích phân sau: I= dx. .cos.sin. 3 2 0 sin 2 xxe x Câu IV (1 đim) Cho hình chóp t giác đu S.ABCD có cnh bên bng a , mt bên hp vi đáy góc . Tìm đ th tích ca hình chóp đt giá tr ln nht. Câu V (1 đim) Cho 3 s dng x, y, z tho mãn : x +3y+5z 3 .Chng minh rng: 46253 4 zxy + 415 4 xyz + 4815 4 yzx 45 5 xyz. II. PHN T CHN (3,0 đim). Tt c thí sinh ch đc làm mt trong hai phn: A hoc B. A.Theo chng trình Chun: Câu VIa (2 đim) 1. Trong mt phng vi h to đ Oxy cho hình ch nht ABCD có tâm I( 2 1 ; 0) . ng thng cha cnh AB có phng trình x – 2y + 2 = 0 , AB = 2AD. Tìm to đ các đnh A, B, C, D, bit A có hoành đ âm . 2.Trong không gian vi h to đ Oxyz cho 2 đng thng )( 1 d và )( 2 d có phng trình . Lp phng trình mt phng cha (d 1 ) và )( 2 d . Câu VIIa (1 đim) Tìm m đ phng trình x10 1).12(48 22 xxmx .có 2 nghim phân bit B.Theo chng trình Nâng cao Câu VIb (2 đim) 1. Trong mt phng vi h to đ Oxy cho hình vuông ABCD bit M(2;1); N(4; -2); P(2;0); Q(1;2) ln lt thuc cnh AB, BC, CD, AD. Hãy lp phng trình các cnh ca hình vuông. 2. Trong không gian vi h to đ Oxyz cho 2 đng thng ( ) và ( )' có phng trình . 4t'2 t'2y t'2-2x : ; 4 2t-1y t3x : ' zz Vit phng trình đng vuông góc chung ca ( ) và ( )' Câu VIIb (1 đim) Gii và bin lun phng trình : 1mx (.243)22 2322 xxxmxxm 3 3 9 1 6 4-x :)(d ; 1 2-z 3 1y 2 1 );( 21 zyx d 63 thi th i hc 2011 -10- http://www.VNMATH.com [...]...63 B ( thi th i h c 2011 GIÁO D C VÀ ÀO T O THAM KH O) ÔN THI I H C MÔN TOÁN – Th i gian làm bài: 180 phút I PH N B T BU C DÀNH CHO T T C THÍ SINH (7,0 i m) 2x 3 Câu I: (2 i m) Cho hàm s y x 2 1 Kh o sát s bi n thi n và v th (C) c a hàm s 2 Cho M là i m b t kì trên (C) Ti p tuy n c a (C) t i M c t các ng tròn... 1 xy ng tròn (C) là giao c a (P) và (S) 3.2 y 3x x 1 -11- 11 - http://www.VNMATH.com 63 B ( thi th i h c 2011 GIÁO D C VÀ ÀO T O THAM KH O) ÔN THI I H C MÔN TOÁN – Th i gian làm bài: 180 phút I PH N B T BU C DÀNH CHO T T C THÍ SINH (7,0 i m) 2x 1 có th là (C) Câu I (2 i m): Cho hàm s y x 2 1 Kh o sát s bi n thi n và v th c a hàm s 2 Ch ng minh ng th ng d: y = -x + m luôn luôn c t th (C) t i hai i m... -H t -12- 12 - http://www.VNMATH.com 63 B ( thi th i h c 2011 GIÁO D C VÀ ÀO T O THAM KH O) ÔN THI I H C MÔN TOÁN – Th i gian làm bài: 180 phút I PH N B T BU C DÀNH CHO T T C THÍ SINH (7,0 i m) Câu I (2 i m): Cho hàm s y = x3 – 3(m+1)x2 + 9x – m (1), m là tham s th c 1 Kh o sát s bi n thi n và v th c a hàm s (1) khi m = 1 2 Xác nh các giá tr m hàm s (1) ngh ch bi... sách Toán, 6 cu n V t lý, 7 cu n Hoá h c (các cu n sách cùng lo i gi ng nhau) làm gi i th ng cho 9 h c sinh, m i h c sinh c 2 cu n sách khác lo i Trong 9 h c sinh trên có hai b n Ng c và Th o Tìm sác xu t hai b n Ng c và Th o có ph n th ng gi ng nhau -H t -13- 13 - http://www.VNMATH.com 63 B thi th i h c 2011 GIÁO D C VÀ ÀO T O ( THAM KH O) ÔN THI I H C MÔN TOÁN... -H t -14- 14 - http://www.VNMATH.com 63 B ( thi th i h c 2011 GIÁO D C VÀ ÀO T O THAM KH O) ÔN THI I H C MÔN TOÁN – Th i gian làm bài: 180 phút 15 I PH N B T BU C DÀNH CHO T T C THÍ SINH (7,0 i m) Câu I (2 i m) x 3 Cho hàm s y = x 1 th (C) c a hàm s ã cho 1 Kh o sát s bi n thi n và v 2 Cho i m Mo(xo;yo) thu c th (C) Ti p tuy n c a (C) t i Mo c t các ti m c... n 25000? -H t -15- 15 - http://www.VNMATH.com c 63 B ( thi th i h c 2011 GIÁO D C VÀ ÀO T O THAM KH O) ÔN THI I H C MÔN TOÁN – Th i gian làm bài: 180 phút I PH N B T BU C DÀNH CHO T T C THÍ SINH (7,0 i m) Câu I: (2 i m): x Cho hàm s y (C) x 1 1 Kh o sát s bi n thi n và v th (C) c a hàm s ã cho 2 Vi t ph ng trình ti p tuy n v i th (C) , bi t r ng kho ng cách... -H t -16- 16 - http://www.VNMATH.com 63 B ( thi th i h c 2011 GIÁO D C VÀ ÀO T O THAM KH O) ÔN THI I H C MÔN TOÁN – Th i gian làm bài: 180 phút 17 I PH N B T BU C DÀNH CHO T T C THÍ SINH (7,0 i m) x3 (2m 1) x 2 m 1 (1) m là tham s Câu I (2 i m): G i (Cm) là th c a hàm s y 1.Kh o sát s bi n thi n và v th c a hàm s (1) khi m = 1 ng th ng y 2mx m 1 2.Tìm th (Cm) ti p xúc... 5 -H t -18- 18 - http://www.VNMATH.com 63 B ( thi th i h c 2011 GIÁO D C VÀ ÀO T O THAM KH O) ÔN THI I H C MÔN TOÁN – Th i gian làm bài: 180 phút 19 I PH N B T BU C DÀNH CHO T T C THÍ SINH (7,0 i m) Câu I (2 i m): Cho hàm s y x 4 mx 3 2x 2 3mx 1 (1) 1 Kh o sát s bi n thi n và v th (C) c a hàm s (1) khi m = 0 2 nh m hàm s (1) có hai c c ti u Câu II (2 i m):... -H t -19- 19 - http://www.VNMATH.com 63 B ( thi th i h c 2011 GIÁO D C VÀ ÀO T O THAM KH O) ÔN THI I H C MÔN TOÁN – Th i gian làm bài: 180 phút I PH N B T BU C DÀNH CHO T T C THÍ SINH (7,0 i m) Câu I (2 i m) Cho hàm s y = x3 + (1 – 2m)x2 + (2 – m)x + m + 2 (m là tham s ) (1) 1 Kh o sát s bi n thi n và v th c a hàm s (1) khi m = 2 2 Tìm các giá tr c a m th hàm s (1) có... -H t -20- 20 - http://www.VNMATH.com 63 B ( thi th i h c 2011 GIÁO D C VÀ ÀO T O THAM KH O) ÔN THI I H C MÔN TOÁN – Th i gian làm bài: 180 phút 21 I PH N B T BU C DÀNH CHO T T C THÍ SINH (7,0 i m) Câu I (2 i m): 1 Cho hàm s y = x3 – mx2 +(m2 – 1)x + 1 ( có th (Cm) ) 3 1 Kh o sát s bi n thi n và v th (C) c a hàm s khi m = 2 2 Tìm m, hàm s (Cm) có c c i, c c ti u và