Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 30 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
30
Dung lượng
706 KB
Nội dung
DY KẩM TI NH - T:0909 64 65 97 THY GII TRề GII Chuyên đề hìnhgiảitích trong không gian Ch ơng 1 Mặt Phẳng Bài 1 Phơng trình mặt phẳng Bài 1 Lập phơng trình tham số của mặt phẳng (P) đi qua điểm M(2,3,2) và cặp VTCP là )1,2,3( );2,1,2( ba Bài 2: Lập phơng trình tham số của mặt phẳng (P) đi qua M(1,1,1) và 1) Song song với các trục 0x và 0y. 2) Song song với các trục 0x,0z. 3) Song song với các trục 0y, 0z. Bài 3: Lập phơng trình tham số của mặt phẳng đi qua 2 điểm M(1,-1,1) và B(2,1,1) và : 1) Cùng phơng với trục 0x. 2) Cùng phơng với trục 0y. 3) Cùng phơng với trục 0z. Bài 4: Xác định toạ độ của véc tơ n vuông góc với hai véc tơ )1,2,3( );3,1,6( ba . Bài 5: Tìm một VTPT của mặt phẳng (P) ,biết (P) có cặp VTCP là )4,2,3( );2,7,2( ba Bài 6: Lập phơng trình tổng quát của mặt phẳng (P) biết : 1) (P) đi qua điểm A(-1,3,-2) và nhận );4,3,2(n làm VTPT. 2) (P) đi qua điểm M(-1,3,-2) và song song với (Q): x+2y+z+4=0. Bài7: Lập phơng trình tổng quát của các mặt phẳng đi qua I(2,6,-3) và song song với các mặt phẳng toạ độ. B ài 8: (ĐHL-99) :Trong không gian 0xyz cho điểm A(-1,2,3) và hai mặt phẳng (P): x-2=0 , (Q) : y-z-1=0 .Viết phơng trình mặt phẳng (R) đi qua điểm A và vuông góc với hai mặt phẳng (P), (Q). Bài 2 Chuyển dạng phơng trình mặt phẳng Bà i1 Tìm một cặp VTCP của các mặt phẳng sau: 1) (P) : x-2y-1=0 2) );( 31 2 1 :)( 21 21 21 21 Rtt ttz tty ttx P ++= += ++= 3) (P) : x+4y+7z+16=0 Bài 2: Tìm một cặp VTPT của các mặt phẳng sau: BI TP HèNH HOC GII TCH * Trang 1 * GV: NGUYN VN HUY 1 DY KẩM TI NH - T:0909 64 65 97 THY GII TRề GII 1) );( 31 2 1 :)( 21 21 21 21 Rtt ttz tty ttx P ++= += ++= 2) (P): x-2y-1=0. 3) (P) :x+4y+7z+16=0. Bài 3: Chuyển dạng phơng trình tổng quát của (P) sang dạng tham, số trong các trờng hợp sau: 1) (P): x+2y+3z-12=0. 2) (P): 3x+2y+z-6=0. 3) (P): x+2y-4=0. 4) (P): 2y+3z-6=0. Bài 4: Chuyển dạng phơng trình tham số của (P) sang dạng tổng quát trong các trờng hợp sau: 1) );( 2 2 1 :)( 21 2 1 21 Rtt tz ty ttx P = = += 2) );( 31 2 1 :)( 21 21 21 21 Rtt ttz tty ttx P ++= += ++= Bài 5: Cho mặt phẳng (P) phơng trình tham số: );( 3 2 1 :)( 21 1 2 1 Rtt tz ty tx P = += += 1) Lập phơng trình tổng quát của (P). 2) Lập phơng trình tổng quát của (Q) đi qua điểm A(1,2,3) và song song với (P). Bài 6: Lập phơng trình tham số và phơng trình tổng quát của mặt phẳng (P) trong các trờng hợp sau: 1) Đi qua hai điểm A(0,-1,4) và có cặp VTCP là ( ) 1,2,3a và ( ) 1,0,3 b 2) Đi qua hai điểm B(4,-1,1) và C(3,1,-1) và cùng phơng với trục với 0x. Bài 7: Cho tứ diện ABCD có A(5,1,3) B(1,6,2) C(5,0,4) D(4,0,6) . 1) Viết phơng trình tham số và phơng trình tổng quát các mặt phẳng (ABC) (ACD) (ABD) (BCD). 2) Viết phơng trình tham số và phơng trình tổng quát của mặt phẳng (P) đi qua cạnh AB và song song vpí cạnh CD. Bài 8: Viết phơng trình tham số và tổng quát của (P) 1) Đi qua ba điểm A(1,0,0), B(0,2,0) , C(0,03) . 2) Đi qua A(1,2,3) ,B(2,2,3) và vuông góc với mặt phẳng (Q) : x+2y+3z+4=0 3) Chứa 0x và đi qua A(4,-1,2) , BI TP HèNH HOC GII TCH * Trang 2 * GV: NGUYN VN HUY 2 DY KẩM TI NH - T:0909 64 65 97 THY GII TRề GII 4) Chứa 0y và đi qua B(1,4,-3) Bài 9: Cho hai điểm A(3,2,3) B(3,4,1) trong không gian 0xyz 1) Viết phơng trình mặt phẳng (P) là trung trực của AB. 2) Viết phơng trình mặt phẳng (Q) qua A vuông góc vơi (P) và vuông góc với mặt phẳng y0z 3) Viết phơng trình mặt phẳng (R) qua A và song song với mặt phẳng (P). Bài 3 Vị trí tơng đối của hai mặt phẳng Bài 1: Xét vị trí tơng đối ciủa các cặp mặt phẳng sau: 1) (P 1 ): y-z+4=0, và ( ) ( ) Rtt ttz tty tx P = = += 21 21 21 1 2 ,, 45 41 23 : 2) (P 1 ): 9x+10y-7z+9=0 ( ) ( ) Rtt ttz tty ttx P ++= += ++= 21 21 21 21 2 ,, 43 27 321 : 3) (P 1 ): x+y-z-4=0và ( ) ( ) Rtt ttz tty ttx P ++= += += 21 21 21 21 2 ,, 1 22 1 : Bài 4 Chùm mặt phẳng Bài 1: Lập phơng trình mặt phẳng qua M(2,1,3) và chứa (d) , biết : 1) ( ) =+ =+ 012 0532 : zyx zyx d 2) ( ) += += = tz ty tx d 21 22: Bài 2:Lập phơng trình mặt phẳng đi qua điểm M(2,1,-1) và qua hai giao tuyến của hai mặt phẳng (P 1 ) và (P 2 ) có phơng trình : (P 1 ): x-y+z-4=0 và (P 2 ) 3x-y+z-1=0 BI TP HèNH HOC GII TCH * Trang 3 * GV: NGUYN VN HUY 3 DY KẩM TI NH - T:0909 64 65 97 THY GII TRề GII Bài 3: Lập phơng trình mặt phẳng chứa đờng thẳng ( ) = =+ 02 0323 : zx zyx d và song song với mặt phẳng (Q) có phơng trình : (Q): 11x-2y-15z-6=0. Bài 4: Lập phơng trình mặt phẳng qua giao tuyến của (P 1 ): y+2z-4=0 và (P 2 ) : x+y-z-3=0 và song song với mặt phẳng (Q):x+y+z-2=0. Bài 5: Lập phơng trình mặt phẳng chứa đờng thẳng ( ) = =+ 02 0323 : zx zyx d và vuông góc với (Q) có ph- ơng trình ; 1) (ĐHNNI-95): (Q): x-2y+z+5=0. 2) ( ) ( ) Rtt ttz tty ttx Q += += ++= 21 21 21 21 ,, 5 24 34 : Bài 6: Lập phơng trình của mặt phẳng qua hai giao tuyến của hai mặt phẳng (P 1 ): 3x-y+z-2=0 và (P 2 ): x+4y-5=0 và vuông góc với mặt phẳng : 2x-z+7=0. Bài 7: Lập phơng trình chứa mặt phẳng đờng thẳng : ( ) = =+ 02 0323 : zx zyx d và song song với đờng thẳng (d) có phơng trình : 1) ( ) =++ =+ 0323 0723 : zyx zyx d 2) ( ) 5 5 4 3 2 2 : + = = zyx d Bài 8:Lập phơng trình chứa mặt phẳng đờng thẳng : ( ) =+ = 0323 02 : zyx yx d và vuông góc đờng thẳng (d) có phơng trình : 1) ( ) =++ =+ 0323 0723 : zyx zyx d 2) ( ) 5 5 4 3 2 2 : + = = zyx d Bài 9: Lập phơng trình chứa mặt phẳng đờng thẳng và với mặt phẳng (Q) một góc 60 độ biết: BI TP HèNH HOC GII TCH * Trang 4 * GV: NGUYN VN HUY 4 DY KẩM TI NH - T:0909 64 65 97 THY GII TRề GII ( ) = =+ 02 0323 : zx zyx d và (Q):3x+4y-6=0 Bài 10: Lập phơng trình mặt phẳng chứa đờng thẳng ( ) =+ = 015 023 : zy zx d và có khoảng cách đến điểm A(1,-1,0) bằng 1. Bài 11: Cho đờng thẳng (d) và hai mặt phẳng ( ) =+ = 01 02 : zy zx d và (P 1 ): 5x+5y-3z-2=0 và (P 2 ):2x-y+z-6=0. Lập phơng trình mặt phẳng (P) chứa đờng thẳng (d) sao cho: ( ) ( ) 1 PP và ( ) ( ) 2 PP là hai đờng trực giao. Bài 12: (ĐHKT-93): cho hai đờng thẳng (d 1 ) và (d 2 ) có phơng trình : ( ) , 014 0238 : 1 =+ =+ zy zx d , ( ) =++ = 022 032 : 2 zy zx d . 1) Viết phơng trình các mặt phẳng ( ) 1 P , ( ) 2 P song song với nhau và lần lợt chứa ( ) 1 d ( ) 2 d 2) Tính khoảng cách giữa ( ) 1 d , ( ) 2 d 3) Lập phơng trình đờng thẳng (D) song song với trục Oz và cắt cả 2 đờng thẳng ( ) 1 d , ( ) 2 d B ài 5 Khoảng cách từ một điểm tới mặt phẳng Bài1:Tính khoảng cách từ điểm M(2,2,1) đến mặt phẳng (P) trong các trờng hợp sau: 1) (P): 2x+y-3z+3=0 2) ( ) Rt ttz tty ttx P += += ++= 21 21 21 21 , t 5 24 34 : Bài2:Trong không gian với hệ toạ độ trực chuẩn Oxyz , cho tứ diện có 4 đỉnh A(5,1,3) B(1,6,2) C(5,0,4) D(4,0,6) 1) Lập phơng trình tổng quát mặt phẳng (ABC) 2) Tính chiều dài đờng thẳng cao hạ từ đỉnh D của tứ diện, từ đó suy ra thể tích của tứ diện 3) Viết phơng trình mặt phẳng phân giác của góc nhị diện (A,BC,D) Bà3:Trong không gian với hệ toạ độ trực chuẩn Oxyz , cho tứ diện có 4 đỉnh A(1,1,1) B(-2,0,2) C(0,1,-3) D(4,-1,0) 1) (ĐH Luật 1996) Tính chiều dài đờng thẳng cao hạ từ đỉnh D của tứ diện 2) Viết phơng trình mặt phẳng phân giác của góc nhị diện (A,BC,D) BI TP HèNH HOC GII TCH * Trang 5 * GV: NGUYN VN HUY 5 DY KẩM TI NH - T:0909 64 65 97 THY GII TRề GII Ch ơng 2 Đờng thẳng trong không gian Bài 1 Phơng trình đờng thẳng Bài 1:Lập phơng trình đờng thẳng (d) trong các trờng hợp sau : 1) (d) đi qua điểm M(1,0,1) và nhận )3,2,3(a làm VTCP 2) (d) đi qua 2 điểm A(1,0,-1) và B(2,-1,3) Bài 2: Trong không gian Oxyz lập phơng trình tổng quát của các giao tuyến của mặt phẳng (P) : x-3y+2z-6=0 và các mặt phẳng toạ độ Bài 3: Viết phơng trình chính tắc của đờng thẳng đi qua điểm M(2,3,-5) và song song với đờng thẳng (d) có phơng trình ( ) =++ =+ 0323 0723 : zyx zyx d Bài 4: Cho đờng thẳng (D) và mặt phẳng (P) có phơng trình là : ( ) =+++ =++ 0732 0143 : zyx zyx d và (P): x+y+z+1=0 Tìm phơng trình chính tắc của đờng thẳng (t) đi qua A(1,1,1) song song với mặt phẳng (P) và vuông góc với đờng thẳng (D) Bài 5: Cho mặt phẳng (P) đi qua 3 điểm A(3,0,0), B(0,6,0), C(0,0,9). Viết phơng trình tham số của đờng thẳng (d) đi qua trọng tâm tam giác ABC và vuông góc với mặt phẳng chứa tam giác đó B ài 2 Chuyển dạng phơng trình đờng thẳng Bài 1:Tìm véc tơ chỉ phơng của các đờng thẳng sau 1) 3 1 4 2 3 1 :)( + = + = zyx d 2) ( ) =+ =++ 0642 0104 : zyx zyx d Bài 2:Cho đờng thẳng (d) có phơng trình : ( ) =+ =++ 0642 0104 : zyx zyx d . Hãy viết phơng trình tham số của đ- ờng thẳng đó Bài3:Cho đờng thẳng (d) có phơng trình : ( ) =+ =++ 0642 0104 : zyx zyx d . Hãy viết phơng trình chính tắc của đ- ờng thẳng đó BI TP HèNH HOC GII TCH * Trang 6 * GV: NGUYN VN HUY 6 DY KẩM TI NH - T:0909 64 65 97 THY GII TRề GII Bài4:Cho đờng thẳng (d) có phơng trình : ( ) R t, 21 22: += += = tz ty tx d . Hãy viết phơng trình tổng quát của đờng thẳng đó Bài5:Lập phơng trình tham số, chính tắc và tổng quát của đờng thẳng (d) đi qua điểm A(2,1,3) và vuông góc với mặt phẳng (P) trong các trờng hợp sau: 1) (P): x+2y+3z-4=0 2) ( ) Rt ttz tty ttx P += += ++= 21 21 21 21 , t 5 24 34 : . 3) ( ) Rt tz ty tx P = += += 21 2 2 1 , t 3 2 1 : Bài 6:Lập phơng trình tham số, chính tắc và tổng quát của đờng thẳng (d) đi qua điểm A(1,2,3) và song song với đờng thẳng (D) cho bởi : 1) ( ) R tz ty tx D += = += t 3 3 22 : . 2) ( ) =++ =+ 014 01 : zx yx D Bài 7:Lập phơng trình tham số, chính tắc và tổng quát của đờng thẳng (d) đi qua điểm A(1,2,3) và vuông góc với 2 đờng thẳng : ( ) =+ =+ 032 022 : 1 zx yx d , ( ) =+ =++ 0642 0104 : 2 zyx zyx d Bài8:Trong không gian Oxyz, lập phơng trình tham số, chính tắc và tổng quát của đờng thẳng (d) đi qua điểm A(3,2,1), song song với mặt phẳng (P) và vuông góc với đờng thẳng Biết mặt phẳng (P): x+y+z-2=0 và =++ =+ 014 01 :)( zy yx BI TP HèNH HOC GII TCH * Trang 7 * GV: NGUYN VN HUY 7 DY KẩM TI NH - T:0909 64 65 97 THY GII TRề GII B ài 3 Vị trí tơng đối của đờng thẳng và mặt phẳng Bài1: Xét vị trí tơng đối của đờng thẳng (d) và mặt phẳng (P) ,biết: 1) ( ) R t, 2 3 1 : += = += tz ty tx d (P): x-y+z+3=0 2) ( ) R t, 1 9 412 : += += += tz ty tx d (P): y+4z+17=0 3) ( ) 05 010632 : =+++ =++ zyx zyx d (P): y+4z+17=0 4) ( ) 01 03 : = =++ y zyx d (P): x+y-2=0 Bài 2: hãy tính số đo góc tạo bởi đờng thẳng (d) và mặt phẳng (P) cho bởi : 1) ( ) )(t 1 39 412 : R tz ty tx d += += += .và ( ) ), t( 3 2 1 : 21 2 2 1 Rt tz ty tx P = += += . 2) ( ) 05 010632 : =+++ =++ zyx zyx d ( ) ), t( 21 2 : 21 1 2 21 Rt tz ty ttx P = += = BI TP HèNH HOC GII TCH * Trang 8 * GV: NGUYN VN HUY 8 DY KẩM TI NH - T:0909 64 65 97 THY GII TRề GII 3) ( ) R t, 22 2 21 : += += += tz ty tx d (P): x-2y+2z+3=0. Bài 3: (ĐHNN_TH-98): Cho mặt phẳng (P) và đờng thẳng (d) có phơng trình (P) :2x+y+z=0 và ( ) 3 2 12 1 : + == zyx d . 1) Tìm toạ độ giao điểm A của (d) và (P) . 2) Lập phơng trình đờng thẳng (d 1 ) qua A vuông góc với (d) và nằm trong mặt phẳng (P) . Bài 4: (ĐH Khối A-2002): Trong không gian 0xyz ,cho mặt phẳng (P) và đờng thẳng (d m ) có ph- ơng trình : (P) :2x-y+2=0 , ( ) 024)12( 01)1()12( : =++++ =+++ mzmmx mymxm d m xác định m để (d m )//(P) B ài 4 Vị trí tơng đối của hai đờng thẳng Bài 1: sử dụng tích hỗn tạp xác định vị trí tơng đối của hai đờng thẳng (d 1 ) và (d 2 ) có phơng trình cho bởi: 1) ( ) R tz ty tx d += += += t 46 32 23 : 1 , ( ) =+ =+ 015 0194 : 2 zx yx d 2) ( ) R tz ty tx d += += += t 33 2 21 : 1 , ( ) 13 23 2 : 2 += += += uz uy ux d 3) ( ) 01 012 : 1 =++ =++ zyx yx d , ( ) 012 033 : 2 =+ =++ yx zyx d Bài 2: Trong không gian 0xyz ,cho hai đờng thẳng (d 1 ),(d 2 ) có phơng trình cho bởi : ( ) 5 1 25 : 1 = = += tz ty tx d , ( ) ( ) R tz ty tx d = = += 1 1 1 1 2 tt, 1 3 23 : 1) Chứng tỏ rằng hai đờng thẳng (d 1 ),(d 2 ) song song với nhau . BI TP HèNH HOC GII TCH * Trang 9 * GV: NGUYN VN HUY 9 DY KẩM TI NH - T:0909 64 65 97 THY GII TRề GII 2) Viết phơng trình đờng thẳng (d) song song ,cách đều (d 1 ),(d 2 ) và thuộc mặt phẳng chứa (d 1 ), (d 2 ) . Bài 3: Cho hai đờng thẳng (d 1 ),(d 2 ) có phơng trình cho bởi : ( ) 4 9 1 5 3 7 : 1 = = + zyx d , ( ) 4 18 1 4 3 : 2 + = + = zyx d 1) Chứng tỏ rằng hai đờng thẳng (d 1 ),(d 2 ) song song với nhau . 2) Viết phơng trình đờng thẳng (d) song song ,cách đều (d 1 ),(d 2 ) và thuộc mặt phẳng chứa (d 1 ),(d 2 ). Bài 4: Trong không gian 0xyz ,cho hai đờng thẳng (d 1 ),(d 2 ) có phơng trình cho bởi : ( ) R t 46 2 23 : 1 += += += tz ty tx d , ( ) 015 0194 : 2 =+ =+ zx yx d 1) Chứng tỏ rằng hai đờng thẳng (d 1 ),(d 2 ) cắt nhau . 2) Viết phơng trình đờng phân giác của (d 1 ),(d 2 ) Bài5: Trong không gian 0xyz ,cho hai đờng thẳng (d 1 ),(d 2 ) có phơng trình cho bởi : ( ) 3 4 1 2 2 1 : 1 = + = zyx d ( ) ( ) t 32 1 : 2 R tz ty tx d += = += 1) Chứng tỏ rằng hai đờng thẳng (d 1 ),(d 2 ) cắt nhau. 2) Viết phơng trình đờng phân giác của (d 1 ),(d 2 ) Bài 6: Trong không gian 0xyz ,cho hai đờng thẳng (d 1 ),(d 2 ) có phơng trình cho bởi : ( ) 1 1 : 1 = = = z ty tx d , ( ) ( ) R tz ty tx d = += = 1 1 1 1 2 tt, 1 2 : 1) Chứng tỏ rằng hai đờng thẳng (d 1 ),(d 2 ) chéo nhau. 2) Viết phơng trìnhmặt phẳng(P) song song ,cách đều (d 1 ),(d 2 ) . Bài 7: Trong không gian 0xyz ,cho hai đờng thẳng (d 1 ),(d 2 ) có phơng trình cho bởi : ( ) =+ =++ 0104z-y 0238zx : d 1 , ( ) 022 032 : 2 =++ = zy zx d 1) Chứng tỏ rằng hai đờng thẳng (d 1 ),(d 2 ) chéo nhau. 2) Viết phơng trìnhmặt phẳng(P) song song, cách đều (d 1 ),(d 2 ) . Bài8: Trong không gian 0xyz ,cho hai đờng thẳng (d 1 ),(d 2 ) có phơng trình cho bởi : ( ) 3 3 2 2 1 1 : 1 = = zyx d ( ) 0532 02 : 2 =+ =+ zyx zyx d BI TP HèNH HOC GII TCH * Trang 10 * GV: NGUYN VN HUY 10 . (P) : x+4y+7z+16=0 Bài 2: Tìm một cặp VTPT của các mặt phẳng sau: BI TP HèNH HOC GII TCH * Trang 1 * GV: NGUYN VN HUY 1 DY KẩM TI NH - T:0909 64 65 97 THY. với mặt phẳng (Q) : x+2y+3z+4=0 3) Chứa 0x và đi qua A(4,-1,2) , BI TP HèNH HOC GII TCH * Trang 2 * GV: NGUYN VN HUY 2 DY KẩM TI NH - T:0909 64 65 97 THY