1. Trang chủ
  2. » Khoa Học Tự Nhiên

Sistemas de control automatico benjamin c kuo 7ed (solucionario)

378 9 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 378
Dung lượng 21,33 MB

Nội dung

http://www.elsolucionario.blogspot.com LIBROS UNIVERISTARIOS Y SOLUCIONARIOS DE MUCHOS DE ESTOS LIBROS LOS SOLUCIONARIOS CONTIENEN TODOS LOS EJERCICIOS DEL LIBRO RESUELTOS Y EXPLICADOS DE FORMA CLARA VISITANOS PARA DESARGALOS GRATIS Chapter MATHEMATICAL FOUNDATION 2-1 (a) Poles: s = 0, 0, Zeros: s = −1, −10; (b) Poles: s = −2, ∞, ∞, ∞ −2, −2; Zeros: s = The pole and zero at s = (c) Poles: s = 0, −1 + j, −1 − j; Zeros: s = (d) Poles: s = 0, −1, −2, ∞ −2 2-2 (a) (b) G (s) = ( s + 5) (c) G ( s) = (d) (s 4s (e) G ( s) = −1 cancel each other s ∞ G (s) +4 +4 = ) ∑e + G (s) s+ kT ( s + ) = k =0 −e 2-3 (a) g ( t ) = u s ( t ) − 2u s (t − 1) + u s( t − 2) − u s ( t − 3) + L G (s ) = s (1 − 2e − s + 2e−2 s − 2e −3s + L ) = gT (t ) = u s (t ) − 2us (t − 1) + us (t − 2) GT (s ) = s (1 − 2e − s + e −2s ) = ( − e − s ) 1−e ( −s s 1+ e −s 0≤ t ≤ 2 s ) −T ( s+5 ) = s + 4s +8 ∞ g(t ) ∞ ∑ = g T − 2k )us (t − 2k ) (t G (s) ∑s = k =0 −e (1 −s ) e −2 ks = k =0 −s 1− e s (1 + e −s ) (b) g ( t) = 2tu s ( t ) − 4(t − 0.5) u s (t − 0.5) + 4(t − 1) us (t − 1) − 4(t − 1.5)us (t − 1.5) + L G ( s) = g T (1 − 2e 2 s −0.5 s + 2e −s − 2e −1.5 s − 0.5 s ( ) + L) = −0.5 s s (1 + e ) 1−e = tu s ( t ) − ( t − 5) u s ( t − 5) + 2( t − ) u s ( t − ) (t ) (1 − 2e−0.5 s + e− s ) = s (1 − e−0.5 s ) GT ( s ) = s 2 ∞ g (t ) = ∑ k=0 G(s ) = ≤ t ≤1 ∞ g T ( t − k )us ( t − k ) ∑ s2 ( −e −0.5 s k=0 ) e − ks = ( −0.5 s ) −0.5s s (1 + e ) 1−e 2-4 g(t ) = ( t + ) u s ( t ) − ( t − ) u s ( t − ) − u s ( t − ) − ( t − ) u s ( t − ) + ( t − 3) u s ( t − 3) + u s ( t − 3) G ( s) = s 2-5 (a) (1 − e − s − e −2 s + e −3 s ) + s (1 −2e − s + e −3 s ) 1 Taking the Laplace transform of the differential equation, we get 1 ( s + 5s + 4) F ( s) = F (s) = s +2 ( s + 1)( s + )( s f (t ) = e −4 t + (b) sX ( s ) 1 e −t − − x1( ) = e −2 t t +4) = 6( s + 4) = X (s) = 2 s X (s) =1 x (0) s( s + s +1 + )( s + ) −1 (s + )( s + ) = + e −t − e 3( s + 1) − 2( s + 2) ≥0 sX (s) − x ( ) = −2 X ( s ) − X ( s ) + = = 2s + −1 s +1 s + +1 − 2( s + 2) s +2 Taking the inverse Laplace transform on both sides of the last equation, we get x (t ) Solving for X1 (s) and X2 (s), we have X ( s) + −2 t t ≥0 x (t ) = −e −t +e −2 t t ≥0 s x (0) =0 2-6 (a) G (s) (b) G (s) = (c) G (s ) = = 3s −2 ( 50 − s (s 20 = s − s s g(t ) = t e −0.5 t + s = s g(t ) +3 s +4 −1 g (t ) + 3) 3( s 30s + 20 +s+2 g (t ) = + 1.069e (e) − s +1 (d) G (s) + 1) + + 2) 2( s + +1 s − + ) e s − e = −2 e −t [ −s −2 t +s +2 − + e −3 t t ≥0 + te g (t ) = 50 − 20e = −t − (t −1) + e −3 t t ≥0 ] us (t − 1) − 30cos2(t − 1) − 5sin2(t − 1) s s Taking the inverse Laplace transform, +s+2 [ sin1.323t + sin (1.323t − 69.3o ) ] = + e−0.5 t (1.447sin1.323t − cos1.323t ) −t t ≥0 2-7  −1  A =  −2     −1 −3 −1  2-8 0  B = 1    0  u (t ) = (a)  u1( t)   u ( t)    (b) Y (s ) = R (s ) 3s + Y (s) s + s +5s + = R (s ) (c) s + 10 s + s + (d) Y (s ) R (s ) = s ( s + 2) Y (s ) s + 10 s + s + s + R (s ) = 1+ 2e −s 2s + s + t≥0 (c) T = 0.01 sec Forward-path Transfer Function Ωm ( z ) E (z) Ωm ( z ) Closed-loop Transfer Function R (z ) = = − 6785 z z z 047354 − 6312 z + 005974 04735 z z − 69032 z + 005875 − 03663 3z + 3748 − 03663 3z + 3689 z − 72695 Characteristic Equation: − 6312 Characteristic Equation Roots: z z = 789 , + 3748 z + 921 T = 0.001 sec Forward-path Transfer Function Ω m ( z ) −1.43 × 10 = −6 z −6 z j 27 , + 98 × 10 −4 z − 9635 z −4 + 98 × 10 R (z ) − 963 z z + 9271 z j 27 − 384 × 10 z −7 z − 89 × 10 z − 89 × 10 −4 − 9636 z − 384 × 10 + 9271 z − 921 E (z) Closed-loop Transfer Function Ω m ( z ) −1.43 × 10 = − 72695 = z −7 −4 − 9641 Characteristic Equation: z − 963 + 9271 z z − 9641 = Characteristic Equation Roots: z = 99213 , + 98543 j 02625 , − 98543 j 02625 (d) Error Constants: K ∗ p = lim ∗ Kv ∗ z →1 = Ka = lim ( z z →1 T T G ho G p ( z ) − 1) = lim z →1 + 1.7117 z − 3064 − 1)( z − 65)( z − 038 368 z (z G ho G p ( z ) 368 z = − lim z →1 lim  ( z − 1) Gho Gp ( z)  = z →1 T − 65)( (z z →1 Steady-state Errors: Step Input: Ramp Input: e e ∗ ss ∗ ss = = 1+ K K ∗ + 7117 ( 3.368 z lim 2 ∗ =0 p = v 366 T 14 177 =∞ ) z z − 3064 − 038 = 14 177 ) T + 1.7117 z − 0.3064 ( z − 1)( z − 0.038) ) ( z − 1) = e Parabolic Input: I-27 ∗ ss = K =∞ ∗ a (a) Forward-path Transfer Function: (no zero-or der hold) T = 0.5 sec G (z) 1836 zK = z z − 0821 z + 0821 1836 zK = (z − )( z − 0821 T = 0.1 sec G (z) = 0787 zK − 6065 z + 6065 367 = 0787 zK (z − 1)( z − 6065) ) (b) Open-loop Transfer Function: (with zero-order hold) T = 0.5 sec G (z) = K ( 06328 z − 0821 + 02851 z + 08021 K ( 00426 z + 003608 z ) = 06328 K ( z (z + 4505) − )( z − 0821 ) T = 0.1 sec G (z) = z I-28 − 6065 Forward-path Transfer Function: G( z) = z + 6065 ( ) = 00426 K ( z (z − )( z − 6065) ) + 2.4644 z − 0.7408 ) 0.0001546 K z + 3.7154 z + 0.8622 ( z z − 2.7236 z 2 368 + 8468 ) I-29 (a) P (z ) = z −1 Q (z) = z + z − = ( z − 5)( The system is unstable for all values of K 369 z + 2) I-30 (a) Bode Plot: The system is stable (b) Apply w-transformation, z Then G = ho + wT − wT G(w) The Bode diagram of G ho = G ho G ( z ) G (w ) z= + wT = 10( − wT − 0025 w (1 + w ) is plotted as shown below The gain and phase margins are determined as follows: GM = 32 dB PM = 17.7 deg 370 w ) Bode plot of I-31 G ho G (w ) : 16.67 N  − e −Ts   0.000295 ( z + 3.39 z + 0.714)  G hoG ( z ) = Z    =  s  s ( s + 1)( s + 12.5)  ( z − 1) ( z − 0.9486 )( z − 0.5354 ) The Bode plot of G ho G(z) is plotted as follows The gain margin is 17.62 dB, or 7.6 Thus selecting an integral value for N, the maximum number for N for a stable system is Bode Plot of G ho G ( z ) 371 I-32 (a) G (s) c =2+ 200 s Backward-rectangular Integration Rule: Gc ( z ) = + 200T z −1 = z − + 200T z −1 = + ( 200T − ) z 1− z −1 −1 Forward-rectangular Integration Rule: Gc ( z ) = + 200Tz = z −1 ( + 200T ) z − ( + 200T ) − z = z −1 1−z −1 −1 Trapazoidal Integration Rule: 200T ( z + 1) Gc ( z ) = + (b) G (s) c ( z − 1) = ( + 200T ) z + 200T ( z − 1) −2 = ( + 200T ) + ( 200T − ) z ( 1−z −1 ) = 10 + s The controller transfer function does not have any integration term The differentiator is realized by backward difference rule G c ( z ) = 10 + (c) G (s) c = + s + 0.1 ( z − 1) = (10T + 0.1) z − 0.1 Tz z = (10T + 0.1) − 0.1z s Backward-rectangular Integration Rule: Gc ( z ) = + 0.2 ( z − 1) + Tz 5T ( z − 1) = ( T + 0.2 ) − 0.2 z −1 + T 5Tz −1 1− z −1 Forward-rectangular Integration Rule: Gc ( z ) = + 0.2 ( z − 1) + Tz 5Tz z −1 = ( T + 0.2 ) − 0.2 z −1 T + 5T 1− z −1 Trapezoidal Integration Rule: Gc ( z ) = + 0.2 ( z − 1) Tz + 5T ( z + 1) ( z − 1) = 372 ( T + 0.2 ) − 0.2z T −1 + ( ) (1 − z ) 5T + z −1 −1 −1 −1 I-33 (a) G (s) c = 10 s T = 0.1 sec + 12 ( Gc (z ) = − z −1  ( 10 ( s + 1.5 ) s + 10 ( Gc (z ) = − z ( (c) s = G (s) c ( G (z) c = I-35  −1 )  z − − z − e z z −1.2  = 0.5825  z − 0.301 T = sec  10 ( s + 1.5 )  ) Z  s ( s + 10)  = ( − z ) Z    )  z − + z − e 1.5 z 8.5 −1 −1 1.5 s +   s + 10  8.5  = 10 ( z − 0.9052)   z − 0.368 −1 ) Z  s + 1.55  = ( − z )  z − e  z −1   −0.155  = z −1   z − 0.8564 + 01 s Gc (z ) = − z I-34 1 + s ( −1 T = 0.1 sec + 55 s Gc (z ) = − z (d) −1 −1 = 1− z 10  = 0.8333 − z (b) G c ( s ) =  ) Z  s ( s + 12)  = 0.8333( − z ) Z  s − s + 12  −1 ) Z   −1  0.025 z + 0.975z  = 40  z − 0.975  = 40 ( − z ) Z     z − z − e−10   z − 0.0000454   s (1 + 0.01 s )  + 0.4 s (a) Not physically realizable, since according to the form of Eq (11-18), (b) Physically realizable (c) Physically realizable (d) Physically realizable (e) Not physically realizable, since the leading term is 0.1z (f) Physically realizable (a) G (s) c = + 10 s K P =1 K D = 10 373 Thus Gc ( z ) = b ≠0 but a = ( T + 10) z − 10 Tz ( ) Z  s4  = 2T ( z + 1) G ho Gp ( z ) = − z −1  G ( z ) = G c ( z ) Gho G p ( z ) = ( z − 1) 2T ( z + 1) [(T + 10 ) z − 10 ] z ( z − 1)  2 By trial and error, when T = 0.01 sec, the maximum overshoot of When T = 0.01 sec, G( z) = 0.02 ( z + 1) (10.01 z − 10 ) z ( z − 1) Y ( z) R (z ) = y ( kT ) is less than percent 0.02 ( z + 1)( 10.01 z − 10 ) z − 1.7998 z + 1.0002 z − 0.2 When the input is a unit-step function, the output response y ( kT ) is computed and tabulated in the following for 40 sampling periods The maximum overshoot is 0.68%, and the final value is Sampling Periods k y ( kT ) I-36 1  s3 (a) G ho Gp ( z ) = ( − z −1 ) Z   = 2T ( z + 1)   ( z − )2 G ( z ) = G c ( z ) Gho G p ( z ) = = Characteristic Equation: ( K PTz + KD ( z − ) 2T ( z + 1) ( z − 1) 2 Tz ( K PT + KD ) z2 + K P Tz − K D  2T z ( z − 1) ) ( ) z + K PT + K DT − z + 2K PT + z − K DT = 2 For two roots to be at z = 0.5 and 0.5, the characteristic equation should have z − z + 25 as a factor Dividing the characteristic equation by z − z + 25 and solving for zero remainder, we get 374 4K T P Solving for K P and K + K D T − 25 = D K The third root is at z − K P T − K D T + 25 = a nd from these two equations, we have P = 0139 T K 0972 = D T = − K P T − K D T = 7778 T f or = 01 sec The forward-path transfer function is G( z) = Y (z) R( z ) = 0.2222 ( z + 1) ( z − 0.8749) z ( z − 1) z + 0278 2222 z − 7778 z z + 0278 − 1944 z − 1944 Unit-step Response: (b) (b) KP = 1, T = 0.01 sec G (z) = G c ( z ) G ho G p ( z ) = = 2T δ+ ι + − β− γ δ + ι + β− γ T K z D z z 02 01 Tz K D KD z z z 01 z − KD The unit-step response of the system is computed for various values of K D The results are tabulated below to show the values of the maximum overshoot KD Max overshoot (%) 1.0 14 5.0 0.9 6.0 0.67 7.0 0.5 375 8.0 0.38 9.0 0.31 9.1 0.31 9.3 0.32 9.5 0.37 10.0 0.68 I-37 (a) Phase-lead Controller Design: ( G ( z ) = G ho Gp ( z ) = − z −1 ) Z  s  = 0.02 ( z + 1)   z ( z − 1)  T = 0.1 sec Closed-loop Transfer Function: Y (z ) R (z ) = Gho Gp ( z) 0.02 ( z + 1) = + G ho Gp ( z ) = z With the w-transformation, T G ( jω w ) +w = T From the Bode plot of The system is unstable z − 1.98 z + 1.02 20 +w 20 −w G ( w) = (1 − 0.05 w ) w −w the phase margin is found to be −5.73 degrees For a phase margin of 60 degrees, the phase-lead controller is G (w ) c = + aTw + Tw = + 1.4286 w + 0197 w The Bode plot is show below The frequency-domain characteristics are: PM = 60 deg M GM = 10.76 dB r = 1.114 The transfer function of the controller in the z-domain is Gc ( z ) = 21.21 ( z − 0.9222 ) ( z + 0.4344) (b) Phase-lag Controller Design: Since the phase curve of the Bode plot of G ( jω w ) is always below −180 degrees, we cannot design a phase-lag controller for this system in the usual manner 376 Bode Plots for Part (a): G ho G p ( z ) = Λ ε− ϕΜ Μ Ν β+ z −1 4500 K Z s s Ο β + Π = γΠ Θ β− γβ− K 002008 361 377 z z z 001775 697 γ γ I-38 (a) Forward-path Transfer Function: ∗ Kv = T lim z →1 [ ( z − 1) G ] G p ( z ) = lim ho K ( 2.008 z + 1.775) = 1000 z − 0.697 z →1 Thus K ∗ v = 80 (b) Unit-step Response: Maximum overshoot = 60 percent (c) Deadbeat-response Controller Design: (K = 80.1) G ho Gp ( z ) = G ho G p ( z −1 ) = Q(z P(z −1 −1 ) = 0.16034 z + 0.14217 ( z − 1) ( z − 0.697 ) 16034 z −1 − 697 z ) + 14217 −1 + 697 z z −2 Q (1 ) −2 = 3025 Digital Controller: −1 Gc ( z ) = −1 P (z ) −1 Q (1) − Q (z ) = = − 1.697 z + 0.697 z −1 0.3025 − 0.16034 z − 0.14217z z − 0.53 z − 0.47 M (z) Closed-loop system transfer function: Unit-step response: Y (z) −2 3.3057 ( z − ) ( z − 0.697 ) G ( z ) = G c ( z ) Gho G p ( z ) = Forward-path transfer function: −2 = 53 z 378 −1 +z −2 +z = −3 3.3057 ( z − ) ( z − 0.697 ) z − 0.53 z − 0.47 53 z +L z + 47 Deadbeat Response: I-39 G p (s) 2500 = ( G hoG ( z ) = − z G ho T = 0.05 sec + 25) s(s −1 ) Z   2.146 z + 1.4215 =   s ( s + 25 )  ( z − ) ( z − 0.2865 ) 2500 ( ) = 2.146 z + 1.4215 z G( z ) = P ( z ) − 1.2865 z + 0.2865z Q z −1 −1 −1 −1 −2 −1 Q (1 ) −2 = 5675 Deadbeat Response Controller Transfer Function: ( )=Q Gc z −1 ( ) = − 2.865z + 0.2865z (1) − Q ( z ) 3.5675 − 2.146 z − 1.4215 z P z −1 −1 −2 −1 −1 −2 G (z) c Forward-path Transfer Function: G (z) = G c ( z ) G ho G p ( z ) = 146 z 5675 z + 1.4215 − 146 z 6015 z + 3985 − 1.4215 Closed-loop System Transfer Function: M (z) Unit-step response: Y (z) = = + 6015 z 379 −1 z +z −2 +z −3 +L = (z − )( z − 285) 5675 z − 146 z − 1.4215 I-40 The characteristic equation is z + ( − 1.7788 + 0.1152 k1 + 22.12 k ) z + 0.7788 + 4.8032 k1 − 22.12 k = For the characteristic equation roots to be at 0.5 and 0.5, the equation should be z − z + 25 = Equating like coefficients in the last two equations, we have − 1.7788 + 1152 7788 Solving for the value of k and k + 8032 k k 1 + 22 12 k = − − 22 12 k = 25 from the last two equations, we have 380 k = 058 and k = 035 ... function: Ec ( s) G ( s) = = E (s ) + R 2C s + ( R1 + R ) Cs (b) Block diagram: (c) Forward-path transfer function: Ωm ( s) = E (s ) [1 + ( R K (1 + R 2C s ) + R ) Cs ] ( K b Ki + Ra JL s ) (d) Closed-loop... 5-8 (c) ,  C  V =  CA  =  2 CA   0 − 0    −4  Since V is singular, the OCF transformation cannot be conducted (d) From Problem 5-8(d),  3 1 M =  0    0 Then,  C ... transfer function: Ωm ( s) Fr ( s ) (e) = Gc ( s) = [1 + ( R E c ( s) = Kφ K (1 + R 2C s ) + R2 ) Cs] ( K b K i + Ra J L s ) + Kφ KK e N (1 + R 2C s ) (1 + R C s ) E (s ) Forward-path transfer function:

Ngày đăng: 07/10/2021, 11:42

TỪ KHÓA LIÊN QUAN

w