1. Trang chủ
  2. » Kinh Doanh - Tiếp Thị

Engineering materials 2nd ed volume 1

323 5 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 323
Dung lượng 13,7 MB

Nội dung

www.elsolucionario.net EDITION 'A' AN INTRODUCTION TO THEIF; PROPERTIES & APPLICATIONS Michael F Ashby David R H Jones www.elsolucionario.net SECOND www.elsolucionario.net Engineering Materials www.elsolucionario.net A n lntroduction to their Properties and Applications www.elsolucionario.net Other titles of interest Materials Selection in Mechanical Design Engineering Materials Plastics Materials, 6th Edition Selection and Use of Engineering Materials, 2nd Edition Plastics Engineering, 2nd Edition Introduction to Dislocations, 3rd Edition Engineering Materials Tribology Handbook, 2nd Edition Corrosion, 3rd Edition Metals and Materials The Language of Rubber www.elsolucionario.net Ashby Ashby and Jones Brydson Charles and Crane Crawford Hull and Bacon Jones Neale Shreir et al Smallman and Bishop Smith www.elsolucionario.net Engineering Materials An Introduction to their Properties and Applications by Michael F Ashby and David R H Jones Department of Engineering, University of Cambridge, UK U T T E R W O R T H E I N E M A N N OXFORD AMSTERDAM BOSTON LONDON NEW YORK PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO www.elsolucionario.net Second Edition www.elsolucionario.net Butterworth-Heinemann An imprint of Elsevier Science Linacre House, Jordan Hill, Oxford OX2 8DP 225 Wildwood Avenue, Wobum, MA 01801-2041 First published 1980 Second edition 1996 Reprinted 1997, 1998 (twice), 2000,2001,2002 1980, 1996, Michael F Ashby and David R H Jones All rights reserved No part of this publication may be reproduced in any material form (including photocopying or storing in any medium by electronic means and whether or not transiently or incidentall to some other use of this publication) without the written permission of the copyright holder except in accordance with the provisions of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London, England WIT 4LP Applications for the copyright holder’s written permission to reproduce any part of this publication should be addressed to the publishers British Library Cataloguingin Publication Data Ashby, Michael E Engineering materials an introduction to their properties and applications - 2nd ed Materials Mechanics I Title 11 Jones, David R H (David Rayner Hunkin), 1945-620.1’1 ISBN 7506 3081 Library of Congress Cataloguing in Publication Data Ashby, Michael E Engineering materials an introduction to their properties and applicationsby Michael F Ashby and David R H Jones - 2nd ed p cm Rev.ed of Engineering materials 1980 Includes bibliographical references and index ISBN 7506 3081 Materials I Jones, David R H (David Rayner Hunkin), 1945- 11 Ashby, M.F Engineering materials III Title TA403.A69 96-1677 620.1’1-dc20 CIP For information on all Butterworth-Heinemann publications visit our website at www.bh.com Typeset by Genesis Typesetting, Rochester, Kent Printed and bound in Great Britain by MFG Books Ltd, Bodmin, Comwall www.elsolucionario.net The right of Author name to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988 www.elsolucionario.net General introduction Engineering Materials and their Properties A Price and availability The Price and Availability of Materials what governs the prices of engineering materials, how long will supplies last, and how can we make the most of the resources that we have? 15 B The elastic moduli The Elastic Moduli stress and strain; Hooke’s Law; measuring Young’s modulus; data for design 27 Bonding Between Atoms the types of bonds that hold materials together; why some bonds are stiff and others floppy 36 Packing of Atoms in Solids how atoms are packed in crystals - crystal structures, plane (Miller) indices, direction indices; how atoms are packed in polymers, ceramics and glasses 45 The Physical Basis of Young’s Modulus how the modulus is governed by bond stiffness and atomic packing; the glass transition temperature in rubbers; designing stiff materials man-made composites 58 Case Studies of Modulus-limited Design the mirror for a big telescope; a stiff beam of minimum weight; a stiff beam of minimum cost 66 www.elsolucionario.net examples of structures and devices showing how we select the right material for the job www.elsolucionario.net vi Contents The Yield Strength, Tensile Strength, Hardness and Ductility definitions, stress-strain curves (true and nominal), testing methods, data 77 Dislocations and Yielding in Crystals the ideal strength; dislocations (screw and edge) and how they move to give plastic flow 93 10 Strengthening Methods and Plasticity of Polycrystals solid solution hardening; precipitate and dispersion strengthening; work-hardening; yield in polycrystals 104 11 Continuum Aspects of Plastic Flow the shear yield strength; plastic instability; the formability of metals and polymers 111 12 Case Studies in Yield-limited Design materials for springs; a pressure vessel of minimum weight; a pressure vessel of minimum cost; how metals are rolled into sheet 119 D Fast fracture, toughness and fatigue 13 Fast Fracture and Toughness where the energy comes from for catastrophic crack growth; the condition for fast fracture; data for toughness and fracture toughness 131 14 Micromechanisms of Fast Fracture ductile tearing, cleavage; composites, alloys - and why structures are more likely to fail in the winter 140 15 Fatigue Failure fatigue testing, Basquin’s Law, Coffin-Manson Law; crack growth rates for pre-cracked materials; mechanisms of fatigue 146 16 Case Studies in Fast Fracture and Fatigue Failure fast fracture of an ammonia tank; how to stop a pressure vessel blowing up; is cracked cast iron safe? 155 E Creep deformation and fracture 17 Creep and Creep Fracture high-temperature behaviour of materials; creep testing and creep curves; consequences of creep; creep damage and creep fracture 169 www.elsolucionario.net C Yield strength, tensile strength, hardness and ductility www.elsolucionario.net vii 18 Kinetic Theory of Diffusion Arrhenius's Law; Fick's first law derived from statistical mechanics of thermally activated atoms; how diffusion takes place in solids 179 19 Mechanisms of Creep, and Creep-resistant Materials metals and ceramics - dislocation creep, diffusion creep; creep in polymers; designing creep-resistant materials 187 20 The Turbine Blade - A Case Study in Creep-limited Design requirements of a turbine-blade material; nickel-based super-alloys, blade cooling; a new generation of materials? - metal-matrix composites, ceramics, cost effectiveness 197 F Oxidation and corrosion 21 Oxidation of Materials the driving force for oxidation; rates of oxidation, mechanisms of oxidation; data 211 22 Case Studies in Dry Oxidation making stainless alloys; protecting turbine blades 219 23 Wet Corrosion of Materials voltages as driving forces; rates of corrosion; why selective attack is especially dangerous 225 24 Case Studies in Wet Corrosion how to protect an underground pipeline; materials for a light-weight factory roof; how to make motor-car exhausts last longer 232 G Friction, abrasion and wear 25 Friction and Wear surfaces in contact; how the laws of friction are explained by the asperity-contact model; coefficients of friction; lubrication; the adhesive and abrasive wear of materials 241 26 Case Studies in Friction and Wear the design of a journal bearing; materials for skis and sledge runners; 'non-skid' tyres 250 www.elsolucionario.net Contents www.elsolucionario.net viii Contents 27 Materials and Energy in Car Design the selection and economics of materials for automobiles 261 Appendix Examples 273 Appendix Aids and Demonstrations 290 Appendix Symbols and Formulae 297 Index 303 www.elsolucionario.net Final case study www.elsolucionario.net Appendix Symbols and formulae 299 apleer 8: Nominal and True Stress and Strain, Energy of Deformation F F cr, = -; AD u = - I-I, E,=-=- A! 10 lo , il,p dl E = = In (t), E = 111 (1 4- €,) Work of deformation, per unit volume: le, €2 ern de, = cr de For linear-elastic deformation only Hardness, H = F/A, u, = nominal stress, A&,) = initial area (length), A(1)= current area (length); E = true strain Chapters and IO: Dislocations The dislocation yield-strength, cry = 3TY, T = line tension (about b / ) ;b = Burgers vector; L = obstacle spacing; Z = constant (Z = for strong obstacles; E < for weak obstacles); cry = yield strength www.elsolucionario.net A,I, = AE for plastic deformation; or for elastic or elastic/plastic deformation when v = 0.5 Hence www.elsolucionario.net 300 Engineering Materials Chapter 11: Plasticity Shear yield stress, k = oy/2 Hardness, H = 3u, Necking starts when de Chapter 13 and Fast Fracture The stress intensity Fast fracture occurs when K = K, = JEG,, a = crack length; Y = dimensionless constant; K , = critical stress intensity or fracture toughness; G = critical strain energy release rate or toughness Chapter Fatigue No pre-cracks Basquin's Law (high cycle) AuNY C1 Coffin-Manson Law (low cycle) Ad'' NF = C2 Goodman's Rule www.elsolucionario.net - - - u www.elsolucionario.net Appendix Symbols and formulae 301 Miner's [Pulefor cumulative damage For pre-cmcked materials Crack Growth Law da ~ dN = AAK" = tensile stress range; AeP1 = plastic strain range; AK = stress intensity range; hJ= cycles; N f = cycles to failure; C1, Cz, a, b, A, rn = constants; urn= tensile mean stress; uTS = tensile strength; a = crack length Acp apter 17: Creep and Creep Fracture E,, E,, T = Ag" e-Q/ET, = steady-state tensile strain-rate; Q = activation energy; = absolute temperature; A, YE = constants : Kinetic = universal gas constant; Theory of Diffusion Fick's Law Diffusion coefficient D = Doe-Q/RTf D = diffusion coefficient; c = concentration; x exponential exponential factor j' = diffusive flux; = distance; Do= pre- www.elsolucionario.net Failure by crack growth www.elsolucionario.net 302 Engineering Materials Chapter 21: Oxidation Linear Growth Law kL = ALe-Q/'T Am = kLt; Parabolic Growth Law Am2 = kpt; k p = Ape-QlXT Am = mass gain per unit area; kL, kp, A L , AP = constants True contact area P = contact force Magnitudes of prop rties The listed properties lie, for most structural materials, in the range shown Moduli of elasticity, E Densities, p Yield strengths, cry Toughnesses, G, Fracture toughnesses, K, to 200 GN m-' to 10 Mg m-3 20 to 200 MN m-2 0.2 to 200 kJ m-2 0.2 to 200 MN m-3/2 www.elsolucionario.net Chapter Friction and Wear www.elsolucionario.net Abundance of elements 19 Aids and demonstrations 290 Alkali halides 37, 52 properties see Data Alumina 206, 217, 222 properties see Data Aluminium and alloys 69, 125, 160, 212, 222, 229, 235,263 properties see Data Amorphous structures 54 Anelasticity 78, 256 Arrhenius's Law 179 Availability of materials 15, 18, 20 Basquin's Law 148 Bearings 250 Biaxial tension 28 Body-centred cubic structure 51 Bond stiffness 43, 58, 60 Bonding 36 Boundary diffusion 186, 189, 190 Bulk diffusion 179, 185, 188, 190, 191 Bulk modulus 32 Case studies car design 261 corrosio -I 232 creep 197 fatigue 160, 162 fracture 155 friction 250 moduli 66 oxidation 219 wear 250 yield 119 Cast iron, properties see Data Ceramics 5, 93, 104, 143, 171, 192, 206, 244, 245, 254 properties see Data CFILD 62, 69, 123, 125, 144, 194 properties see Data Cleavage 742, 156 Close-packed hexagonal structure 46, 48 Close-packed pianes, directions 45 Coffin-Menson Law 148 Composites 5, 62, 69, 194, 205, 264 fracture 144 propertis see Data Composition of earth's crust 18 Compression test 80 Condensed states of matter 42 Copper alloys, properties see Data Core diffusion 186, 190, 191 Corrosion 225 case studies 232 cracking 156, 229 data 227, 229 fatigue 230 mechanisms 226 protection 232 rates 229 voltage 227, 228 Covalent bond 37,39 Cracks 131, 140, 150, 155, 229 Creep 169 case studies 197 damage 176, 191, 201 fracture 176, 191 mechanisms 187 of ceramics 187 of metals 187 of polymers 193 resistant materials 177, 192, 194, 197 testing 173 Crystal structure 45 Crystallography 47 Cumulative damage 149 Data for coefficient of friction 245 corrosion 227, 229 density 55 diffusion 184, 185 ductility 86 energy content of materials 22 fracture toughness 136, 137, 138 melting temperatures 169, 170 normalised yield strength 94 oxidation 212, 213, 215 prices 16 softening temperatures 169, 170 tensile strength 86 toughness 136, 138 yield strength 85, 86 Young's modulus 34,35 Deformation-mechanism diagrams 190, 191 Density 57 data 55, 56 properties see Data www.elsolucionario.net I www.elsolucionario.net Index Diamond 40, 61, 249 Diffusion 179 boundary 186, 189, 190 core 186,190, 191 data 184, 185 Ficks Law 180,216 interstitial 185 mechanisms 185 substitutional 185 Diffusional creep 189 Dilatation 30 Direction indices 50 Directional solidification 201, 205 Dislocations 93 climb 188 core 186 creep 187 edge 95 energy 102 force on 101 line tension 102 screw 98 yield strength 104, 107 Dispersion strengthening 105 Doubling time for consumption 19 Drawing of polymers 117 DS alloys 201 DS eutectics 205 Ductile tearing 140 Ductile-to-brittle transition 143 Ductility 77, 91 data 86 Edge dislocation 95 Elastic limit 77, 91 Elastic moduli see Moduli Embrittlement 144 Energy content of materials 22 expended in deformation 90 in car design 261 of a dislocation 102 of atomic bonds 38 Examples 273 Exponential growth 19 doubling time 19 law 19 Extrapolation of creep data 192 Face-centred cubic structure 46, 48 Fast fracture 131 case studies 155 mechanisms 140 Fatigue 146 case studies 160, 162 crack growth 150 high cycle 148 low cycle 148 mechanisms 151 Filled polymers 62, 64, 144, 195 Foamed polymers 69 properties see Data Force on a dislocation 101 Forming of metals 125, 200, 201, 202, 269 of polymers 269 Fracture 131 case studies 155 data 86, 136, 137, 138 mechanisms 140 Fracture toughness 131 data 136, 137, 138 of adhesives 132 of ceramics 136, 137, 138, 140, 142 of composites 136, 137, 138, 140, 144 of metals 136, 137, 138, 140, 143 of polymers 136,137,138, 140, 143 Friction 241 case studies 250 data 245 mechanisms 241 of ceramics 244, 245, 254 of metals 244, 245, 250 of polymers 244, 245, 255 of rubber 244,245,255 Galvanising 234 GIass 55, 66, 123 properties see Data transition temperature 61 GFRP 62, 69, 125, 144, 194, 264 properties see Data Goodman's Rule 149 Grain boundaries 108 diffusion 186, 189, 190 Hardness 77, 113, 247, 251 relation to yield 87, 113 test 87 High cycle fatigue 148 Hooke's Law 31 Hydrogen bond 37,42 Hydrostatic compression 28 Hysteresis 256 Ice 42 friction 254 properties see Data structure 42 Ideal strength 93 Intergranular attack 156,212,219 Intrinsic strength 104 Ionic bond 37 KFRP 62 Kinetic friction 241 Kinetic theory 179 www.elsolucionario.net 304 Leathery state of polymers 62 Line tension of dislocations 102 Linear elasticity 31, 77, 80 Low cycle fatigue 148 Lubrication 246, 250, 254 Liiders bands 118 Magnitude of properties 302 Material data see Data Material-efficient design 22 Material prices 15 data 16 Material properties see Data Melting temperature 169, 170 Metal properties see Data Metallic bond 37, 40 Miller indices 49 Miner's rule 149 Moduli 31, 58 calculation of 58 case studies 66 data 34, 35 measurement 32 of composites 62 of rubbers 61 Necking 334 Nickel alloys, properties see Data Nimonics '-99, 206 properties see Data Nominal stress and strain 30, 83, 88, 89 Non-crystalline solids 52 N-on-destructive testing 87 Non-linear elasticity 78, 256 Normaiised yield strength 94 Oxidation 211 case studies 219 data 212, 213, 215 measurement 213 mechanisms 215 of ceramics 211 of metals 211 of polymers 211 protection 219 sates 212 Oxides, pnperties see Data Oxygen 18, 211, 215, 226, 232 Paclung of atoms 45 Plastic flow 81, 111, 125 mstabiliiy 114 work 83, 90 zone 141 Poisson's ratio 30 Polycrystals 108 creep 189 yield strength 109, 112 Polyethylene 52, 117, 232 properties see Data Polymers 51, 60, 62, 123, 144, 193, 244, 255 properties see Data rheology 193 Polystyrene 53 properties see Data Power-law creep 173 mechanism 187 Precipitation strengthening 105, 200 Prices of materials 15 data 16 turbine blades 200, 202 Primary bonds 37 Proof stress 84, 91 properties of materials see Data Protection against corrosion 232 against oxidation 219 PTFE 244, 245, 246, 255 Pure shear 30 Recycling 23 Reserves of materials 20 Resources and resource base 20 Rubber 61,78 friction 244, 245, 255 moduli 61 properties see Data structure 53 Sacrificial protection 232, 234 Screw dislocation 98 Selection of materials (see also Data) car design 261 corrosion-limited 225, 232 creep-limited 195, 197 density-limited 66, 124, 261 fast-fracture-limited 155 fatigue-limited 162 friction-limited 250 modulus-limited 66 oxidation-limited 219 price-limited 72, 125 wear-Iirrtited 250 yield-limited 119 Shear modulus 32 Shear stress 28, 96, 99, 102, 109, 112 Shear yield strength 111 Silicon carbide 206 properties see Data Silicon nitride 206 properties see Data Sodium chloride 37, 52 Solid solution strengthening 105 Stainless alloys 219 Stainless steels 237 properties see Data Steels, properties see Data www.elsolucionario.net www.elsolucionario.net www.elsolucionario.net Index Stiffness of atomic bonds 43, 58, 60 Strain 30, 81, 83, 84, 89 Strain hardening 79, 91, 107, 116,121 Strengthening mechanisms 104 Stress 27, 81, 83, 84, 88 concentration factor 141, 142 corrosion 156, 229 intensity factor 135 relaxation 175 states 29 Substitution 22 Substitutional solid solution 105 Symbols and formulae 297 Taylor factor 109 Tensile strength 84 data 86 Tensile test 79, 83, 91 Thermal fatigue 198 Toughness 131 data 136, 138 measurement 132, 136 True stress and strain 81, 83, 88, 89 Turbine materials 197, 220 Uranium dioxide 52 Uses of materials 17 Van der Waals bonds 37,41, 61 Wear 241 case studies 250 mechanisms 246 Weld decay 237 Wood 62, 69, 72, 254, 264 fracture 144 properties see Data Work hardening 79, 91, 107, 116, 121 Yield strength 77, 84, 91, 109 case studies 119 data 85, 86 of ceramics 93 of metals 77, 111 of polycrystals 109, 112 of polymers 87, 118 Young's modulus 31,58 calculation 58 case studies 66 data 34, 35 measurement 32 of composites 62 www.elsolucionario.net 306 www.elsolucionario.net www.elsolucionario.net www.elsolucionario.net www.elsolucionario.net www.elsolucionario.net www.elsolucionario.net www.elsolucionario.net www.elsolucionario.net www.elsolucionario.net www.elsolucionario.net www.elsolucionario.net www.elsolucionario.net ENGINEERING www.elsolucionario.net data for soking problems involving the selection www.elsolucionario.net of underlying each property is examined to ... 5000 8000 -1 2000 12 00-2000 13 00-3000 18 00-2300 12 00 -1 250 11 50 -12 00 910 -12 00 910 -930 12 00 -1 A00 11 00 -14 00 2500-3200 12 00 -1 800 680 -1 200 10 0-3000 000 -13 00 10 00 -11 00 550-800 500-550 450 -1 500 500-700... x 10 4 2.25-3.75 x lo4 3300-4950 3750- 810 0 41 25-4800 2700-3750 7500-22500 12 000 -1 8000 18 00-3000 19 50-4500 2700-3450 18 00 -1 875 17 25 -1 800 13 65 -1 800 13 65 -1 395 18 00- 210 0 16 50- 210 0 3750-4800 18 00-2700... 10 20 -1 800 16 50-4500 15 00 -1 950 15 00 -1 650 825 -1 200 750-825 675-2250 750 -1 050 825- 900 900 -1 200 600 -1 500 900-975 675 -1 800 450 -1 500 480-675 375-525 300-525 270-300 15 0-450 19 2-270 15 0-21

Ngày đăng: 06/10/2021, 20:01

w