1. Trang chủ
  2. » Giáo án - Bài giảng

kiem tra hk 1

5 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 258,99 KB

Nội dung

Vận dụng được tính chất của phân thức để tìm đk cho phân thức có nghĩa, bằng một giá trị cho trước 1 1 1.. Hiểu được định nghĩa đường trung bình của hình thang.[r]

(1)Cấp độ Chủ đề Chủ đề Phép nhân và chia các đa thức ( 21 tiết ) Số câu hỏi Số điểm Tỉ lệ % Chủ đề Phân thức đại số ( 19 tiết ) Số câu hỏi Số điểm Tỉ lệ % Chủ đề Tứ giác ( 25 tiết ) Số câu hỏi Số điểm Tỉ lệ % Chủ đề Đa giác – diện tích đa giác ( tiết ) Số câu hỏi Số điểm Tỉ lệ % Tổng số câu Tổng số điểm Tỉ lệ % MA TRẬN ĐỀ KIỂM TRA HỌC KI I MÔN TOÁN LỚP Năm học : 2011 – 2012 Vận dung Nhận biêt Thông hiểu Cấp độ Thấp Cấp độ Cao TNKQ TL TNKQ TL TNKQ TL TNKQ TL Hiểu qui tắc nhân đơn thức với đa thức Hiểu và phân tích các đa thức thành nhân tử 1 Vận dụng thành thạo việc rút gọn các biểu thức 0,5 0,5 5% Vận dụng tốt chia đa thức để tìm đk phép tính chia hết 1 5% Cộng 10% 3,0 10% 30% Nắm các qui tắc cộng, trừ, nhân, chia phân thức để thực các phép biến đổi đơn giản Vận dụng các qui tắc cộng, trừ, nhân, chia phân thức để tìm đa thức chưa biết Vận dụng tính chất phân thức để tìm đk cho phân thức có nghĩa, giá trị cho trước 1 1 10% 10% Hiểu định nghĩa đường trung bình hình thang 10% 3,0 10% Vận dụng linh hoạt các dấu hiệu nhận biết để chứng minh tứ giác là hbhành, hcnhật,hình thoi,hình vuông 1 0,5 5% 30% Tìm điều kiện để tứ giác là hbh, hcn,hình thoi,hình vuông 5% 3,5 10% 25% Hiểu các khái niệm diện tích các hình 1 0,5 0,5 5% 5% 4 2,0 20% 2,5 20% 3,5 35% KIỂM TRA HỌC KÌ I Năm học: 2011 – 2012 14 20% 10 100% (2) MÔN : TOÁN LỚP ( Thời gian làm bài : 90 phút – không kể thời gian phát đề ) Họ và tên :………………………………………… Chữ kí giám thị Mã phách Lớp : …………… Phòng thi : …………… SBD :……………………  …………………………………………………………………………………………………………… …… Điểm số Điểm chữ Chữ kí giám khảo Chữ kí giám khảo Mã phách ĐỀ I: I Phần trắc nghiệm: (3đ) Câu 1: (1đ) Điền chữ Đ chữ S ô vuông tương ứng với phát biểu sau: a ( a + )( a – ) = a2 –  b x – = (x – ) ( x + x + )  c Hình bình hành có tâm đối xứng là giao điểm hai đường chéo  d Hai tam giác có diện tích thì  Câu 2: (2đ) Khoanh tròn chữ cái trước câu trả lời đúng nhất: Đa thức x2 – 6x + x = có giá trị là: A B C D 25 Giá trị x để x ( x + 1) = là: A x = B x = - C x = ; x = D x = ; x = -1 Một hình thang có độ dài hai đáy là cm và 11 cm Độ dài đường trung bình hình thang đó là : A 14 cm B cm C cm D Một kết khác Một tam giác cạnh dm thì có diện tích là: C dm2 A dm2 B dm2 II Phần tự luận: (7đ) Bài 1: (3đ) D 6dm2 9x 3x 6x : : a 11y 2y 11y x  49 x b x  1    c  x  x  x  x Bài 2: (3đ) Cho hình bình hành ABCD Gọi E, F, G, H là trung điểm các cạnh AB, BC, CD, DA a) Chứng minh tứ giác EFGH là hình bình hành b) Khi hình bình hành ABCD là hình chữ nhật; hình thoi thì EFGH là hình gì? Chứng minh Bài 1: (1đ) 2 Cho các số x, y thoả mãn đẳng thức 5x  5y  8xy  2x  2y  0 Tính giá trị biểu thức M  x  y  2007   x  2 2008   y  1 2009 (3) Đáp án: I Trắc nghiệm: Câu 1: (1điểm) Chọn điền chữ thích hợp, kết 0,25 điểm a S b Đ C Đ d S Câu 1: (2điểm) Mỗi kết đúng 0,5 điểm B D C A II Tự luận: Bài 1: (3điểm) a) Biến phép chia thành phép nhân với phân thức nghịch đảo và rút gọn đúng 9x 2y 11y 1 11y 3x 6x Kết quả: (1điểm) b) Thực đúng kết quả: x  49  x  x   x  2x  x (1điểm) c)Vận dụng tính chất kết hợp phép cộng phân thức, qui đồng mẫu thức và thu gọn đúng kết quả: 2 4       2 4 1 x 1 x 1 x 1 x 1 x  x8 Bài 2: (3điểm)- Vẽ hình đúng - a) Từ tính chất đường trung bình tam giác nêu được: EF  AC EF // AC và GH  AC GH // AC và (1điểm) A E B H (0,5điểm) F (0,5điểm) D G Chỉ EF // GH Và EF = GH và kết luận ÈGH là hình bình hành (0,5điểm) - b) Khi hình bình ABCD là hình chữ nhật thì EFGH là hình thoi Khi hình bình ABCD là hình thoi thì EFGH là hình chữ nhật C/m: * Vẽ lại hình với ABCD là hình chữ nhật ABCD là hình chữ nhật có thêm AC = BD Do đó EF = EH => ĐPCM * Vẽ lại hình với ABCD là hình thoi Khi hình bình ABCD là hình thoi, có thêm AC  BD  Do đó EF  EH ; FEH 90 => ĐPCM Bài 2: (1điểm) C (0,25điểm) (0,25điểm) (0,5điểm) (0,5điểm)   x  2xy  y    x  2x  1   y  2y  1 0 2 Biến đổi   x  y    x  1   y  1 0 Lập luận: Đẳng thức có và tính đúng M  x  y  2007 x  y  x 1 y     x  2 2008   y  1 2009 0   1 (0,5điểm) (4) KIỂM TRA HỌC KÌ I Năm học: 2011 – 2012 MÔN : TOÁN LỚP ( Thời gian làm bài : 90 phút – không kể thời gian phát đề ) Họ và tên :………………………………………… Chữ kí giám thị Mã phách Lớp : …………… Phòng thi : …………… SBD :……………………  ………………………………………………………………………………………………………… ……… Điểm số Điểm chữ Chữ kí giám khảo Chữ kí giám khảo Mã phách ĐỀII: I/ PHẦN TRẮC NGHIỆM : xy y xy ; ; 2 Câu : Cho các phân thức x  y xy  x y  xy có mẫu thức chung là : A x  y ; B x  x  y  ; C xy  x  y  D xy  x  y  2 Câu : Tập các giá trị x để 2x 3x 2  3 C   D 0;  3  2  Câu : Kết phép tính x+4 x  16 là : x x x A ; B ; C ; x+4 x+4 x  16 x  10 x  : 2 3xy x y là : Câu : Kết phép tính A  0 B 6y ; x2 C C M N 1200 ; P Q 600 ; x ; y2 D 2x-5 x  16 x 6y Câu : Tứ giác MNPQ là hình thoi thoả mãn điều kiện M : N : P : Q 1: : :1 đó : A M N 600 ; P Q 1200 ; B M P 600 ; N Q 1200 ; A 6y ; x 3 B   ; 2 D D M Q 600 ; P N 1200 ; Câu : Tứ giác có cặp cạnh đối song song và hai đường chéo là : A Hình thang cân B Hình Chữ Nhật C Hình Vuông D Hình thoi II/ PHẦN TỰ LUẬN : Bài : Phân tích đa thức sau thành nhân tử : 2 a/ x  2x + 2y  xy b/ x +4xy  16 +4y Bài : Tìm a để đa thức x + x  x +a chia hết cho x +     a K     :   a  a  a   a 1 a   Bài : Cho biểu thức a/ Tìm điều kiện a để biểu thức K xác định và rút gọn biểu thức K b/ Tính gí trị biểu thức K a (5) Bài : Cho ABC cân A Trên đường thẳng qua đỉnh A song song với BC lấy hai điểm M và N cho A là trung điểm MN ( M và B cùng thuộc nửa mặt phẳng bờ là AC ) Gọi H, I K là trung điểm các cạnh MB, BC, CN a/ Chứng minh tứ giác MNCB là hình thang cân ? b/ Tứ giác AHIK là hình gì ? Tại ? Bµi : Cho xyz = 2006 2006 x y z Chứng minh : xy +2006 x +2006 + yz+ y +2006 + xz + z+ =1 Đáp án: I/ PHẦN TRẮC NGHIỆM : 1/C 2/D 3/D 4/D II/ PHẦN TỰ LUẬN : Bài : a/ (x-2)(x-y) b/ (x+2y+4)(x+2y-4) Bài : Phần dư a-2=0 Suy : a=2 Bài : a/ Điều kiện : a 0;  1;1 Suy : K 5/D 6/A a2  a 3 a  K  2 b/ Bài : a/ Tứ giác MNCB là hình thang cân Vì MN//BC & BMN=CNM b/ Tứ giác AHIK là hình thoi Vì có cạnh Bµi : Ta có : 2006 x y z   1 xy  2006 x  2006 yz  y  2006 xz  z  2006 x xy 2006    1    xy  2006 x  2006 xy  2006 x  2006 xy  2006 x  2006 MAB=NAC  c.g.c  (6)

Ngày đăng: 17/09/2021, 09:47

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w