1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Tài liệu Arithmetic Circuits ppt

58 232 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 58
Dung lượng 1,63 MB

Nội dung

EE141 1 © Digital Integrated Circuits 2nd Arithmetic Circuits Digital Integrated Digital Integrated Circuits Circuits A Design Perspective A Design Perspective Arithmetic Circuits Arithmetic Circuits Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic January, 2003 EE141 2 © Digital Integrated Circuits 2nd Arithmetic Circuits A Generic Digital Processor A Generic Digital Processor MEM ORY DATAPATH CONTROL INPUT-OUTPUT EE141 3 © Digital Integrated Circuits 2nd Arithmetic Circuits Building Blocks for Digital Architectures Building Blocks for Digital Architectures Arithmetic unit - Bit-sliced datapath (adder, multiplier, shifter, comparator, etc.) Memory - RAM, ROM, Buffers, Shift registers Control - Finite state machine (PLA, random logic.) - Counters Interconnect - Switches - Arbiters - Bus EE141 4 © Digital Integrated Circuits 2nd Arithmetic Circuits An Intel Microprocessor An Intel Microprocessor 9-1 Mux9-1 Mux 5-1 Mux2-1 Mux ck1 CARRYGEN SUMGEN + LU 1000um b s0 s1 g64 sum sumb LU : Logical Unit SUMSEL a to Cache node1 REG Itanium has 6 integer execution units like this EE141 5 © Digital Integrated Circuits 2nd Arithmetic Circuits Bit-Sliced Design Bit-Sliced Design Bit 3 Bit 2 Bit 1 Bit 0 Register Adder Shifter Multiplexer Control Data-In Data-Out Tile identical processing elements EE141 6 © Digital Integrated Circuits 2nd Arithmetic Circuits Bit-Sliced Datapath Bit-Sliced Datapath Adder stage 1 Wiring Adder stage 2 Wiring Adder stage 3 B i t s l i c e 0 B i t s l i c e 2 B i t s l i c e 1 B i t s l i c e 6 3 Sum Select Shifter Multiplexers L o o p b a c k B u s From register files / Cache / Bypass To register files / Cache L o o p b a c k B u s L o o p b a c k B u s EE141 7 © Digital Integrated Circuits 2nd Arithmetic Circuits Itanium Integer Datapath Itanium Integer Datapath Fetzer, Orton, ISSCC’02 EE141 8 © Digital Integrated Circuits 2nd Arithmetic Circuits Adders Adders EE141 9 © Digital Integrated Circuits 2nd Arithmetic Circuits Full-Adder Full-Adder A B Cout Sum Cin Full adder EE141 10 © Digital Integrated Circuits 2nd Arithmetic Circuits The Binary Adder The Binary Adder S A B C i ⊕ ⊕ = A= BC i ABC i ABC i ABC i + + + C o AB BC i AC i + += A B Cout Sum Cin Full adder [...]... Digital Integrated Circuits2 nd 15 Arithmetic Circuits A Better Structure: The Mirror Adder VDD VDD A B A B B Kill "0"-Propagate A VDD A Ci B Ci Co Ci S Ci A "1"-Propagate Generate A B B A B A Ci B 24 transistors EE141 © Digital Integrated Circuits2 nd 16 Arithmetic Circuits Mirror Adder Stick Diagram VDD A B Ci B A Ci Co Ci A B Co S GND EE141 © Digital Integrated Circuits2 nd 17 Arithmetic Circuits The Mirror... EE141 © Digital Integrated Circuits2 nd 18 Arithmetic Circuits Transmission Gate Full Adder P VDD A A P P B VDD Ci Ci A A P Ci VDD S Sum Generation Ci B P A P VDD Co Carry Generation Ci Setup EE141 © Digital Integrated Circuits2 nd A P 19 Arithmetic Circuits Manchester Carry Chain Pi VDD Pi φ Co Ci Gi Co Ci VDD Gi Di Pi EE141 © Digital Integrated Circuits2 nd φ 20 Arithmetic Circuits Manchester Carry Chain... Integrated Circuits2 nd F tp∼ log2(N) 33 Arithmetic Circuits Carry Lookahead Trees Co , 0 = G 0 + P 0 Ci , 0 C o, 1 = G1 + P1 G0 + P 1 P 0 Ci, 0 C o, 2 = G2 + P2 G1 + P 2 P1 G0 + P2 P 1 P 0 C i, 0 = ( G2 + P 2 G1) + ( P 2 P 1 ) ( G0 + P0 Ci , 0 ) = G 2:1 + P 2:1 C o, 0 Can continue building the tree hierarchically EE141 © Digital Integrated Circuits2 nd 34 Arithmetic Circuits S0 EE141 © Digital Integrated Circuits2 nd... B A B B Ci A X Ci VDD Ci A Ci A B B VDD A B Co Ci A B 28 Transistors EE141 © Digital Integrated Circuits2 nd 13 Arithmetic Circuits Inversion Property A Ci A B FA S Co Ci B FA Co S S ( A, B, C i ) = S ( A, B , C i ) C ( A, B, C ) = C ( A, B , C ) o i o i EE141 © Digital Integrated Circuits2 nd 14 Arithmetic Circuits Minimize Critical Path by Reducing Inverting Stages Even cell A0 Ci,0 B0 FA A1 Co,0 S0... Manchester Carry Chain VDD φ P0 P1 P2 P3 C3 Ci,0 G1 G0 G3 G2 φ C0 EE141 © Digital Integrated Circuits2 nd C1 C2 C3 21 Arithmetic Circuits Manchester Carry Chain Stick Diagram Propagate/Generate Row VDD Pi Ci - 1 Gi φ Pi + 1 Gi + 1 φ Ci Ci + 1 GND Inverter/Sum Row EE141 © Digital Integrated Circuits2 nd 22 Arithmetic Circuits Carry-Bypass Adder Ci,0 G1 FA P0 C o,0 P0 G1 Ci,0 FA FA P0 C o ,0 G1 P2 C o ,1 G1... EE141 © Digital Integrated Circuits2 nd 23 Arithmetic Circuits Carry-Bypass Adder (cont.) Bit 0–3 Bit 4–7 Setup tsetup Setup Bit 8–11 tbypass Bit 12–15 Setup Setup Carry propagation Carry propagation Carry propagation Carry propagation Sum Sum Sum tsum Sum M bits tadder = tsetup + Mtcarry + (N/M-1)tbypass + (M-1)tcarry + tsum EE141 © Digital Integrated Circuits2 nd 24 Arithmetic Circuits Carry Ripple versus... Carry Ripple versus Carry Bypass tp ripple adder bypass adder 4 8 EE141 © Digital Integrated Circuits2 nd N 25 Arithmetic Circuits Carry-Select Adder Setup P,G "0" "0" Carry Propagation "1" "1" Carry Propagation Co,k-1 Multiplexer Co,k+3 Carry Vector Sum Generation EE141 © Digital Integrated Circuits2 nd 26 Arithmetic Circuits Carry Select Adder: Critical Path Bit 0–3 Bit 4–7 Bit 8–11 Bit 12–15 Setup Setup... Generation Sum Generation Sum Generation S2-4 S5-8 S0-1 EE141 © Digital Integrated Circuits2 nd Sum Generation S9-13 29 Sum S14-19 (9) Arithmetic Circuits Adder Delays - Comparison 50 Ripple adder tp (in unit delays) 40 30 Linear select 20 10 0 Square root select 0 20 40 60 N EE141 © Digital Integrated Circuits2 nd 30 Arithmetic Circuits LookAhead - Basic Idea A A1, B1 Ci,0 P0 Ci,1 S0 ••• P1 S1 AN-1, BN-1... = Gk + P k Co , k – 1 EE141 © Digital Integrated Circuits2 nd 31 Arithmetic Circuits Look-Ahead: Topology Expanding Lookahead equations: VDD C o, k = Gk + Pk (Gk – 1 + Pk – 1 Co , k – 2 ) G2 G1 All the way: G0 C o, k = Gk + Pk ( Gk – 1 + P k – 1( … + P1 ( G0 + P0 Ci , 0 ) ) ) Ci,0 Co,3 P0 P1 P2 P3 EE141 © Digital Integrated Circuits2 nd 32 Arithmetic Circuits Logarithmic Look-Ahead Adder F A0 A1 A2 A3... (P) = A + B EE141 © Digital Integrated Circuits2 nd 11 Arithmetic Circuits The Ripple-Carry Adder A0 Ci,0 B0 FA A1 Co,0 (= Ci,1) S0 B1 FA A2 Co,1 S1 B2 FA A3 Co,2 S2 B3 FA S3 Worst case delay linear with the number of bits td = O(N) tadder = (N-1)tcarry + tsum Goal: Make the fastest possible carry path circuit EE141 © Digital Integrated Circuits2 nd 12 Arithmetic Circuits Complimentary Static CMOS Full . Integrated Circuits 2nd Arithmetic Circuits Digital Integrated Digital Integrated Circuits Circuits A Design Perspective A Design Perspective Arithmetic Circuits. Circuits Arithmetic Circuits Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic January, 2003 EE141 2 © Digital Integrated Circuits 2nd Arithmetic Circuits

Ngày đăng: 23/12/2013, 03:16

TỪ KHÓA LIÊN QUAN

w