1. Trang chủ
  2. » Thể loại khác

Applications of metagenomics to epidemiology

24 34 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 24
Dung lượng 2,92 MB
File đính kèm Lecture_16_NGS-Metagnomics.rar (3 MB)

Nội dung

Next generation molecular epidemiology: Lecture 16: Applications of metagenomics to epidemiology National Institute of Infectious Disease January 19, 2017 Types of sequencing applications • Targeted sequencing • Whole genome sequencing • Metagenomics (deep sequencing) • RNAseq WWW.clcbio.com www.sanger.ac.uk bgiamericas.com Metagenomics (deep or “shot‐gun” sequencing) • Applied to profile microbial community‐‐phylogenetic or taxonomic  diversity analysis of all microbes (bacteria, viruses, fungi, protozoa)  in an ecologic niche—complex or uniform • Not targeted to specific genes or microbial group • Based on fragments of all DNA extracted from a niche • Can assess taxonomic composition and functional genetic  composition Technology of metagenomics: Algorithms Quality  control Assembly Taxonomic  classification Functional  classification Metagenomics: Application to epidemiology • Characterizing … • surrogate microbiota to assess hidden social networks • microbial community protective against infection by a pathogen • an ecological niche from which clonal pathogenic strains are selected  and disseminate • pathogen microbial population structures associated with a new  disease syndrome • host commensal microbial population structures that determine non‐ communicable disease outcomes • a non‐communicable disease to be not associated with a suggested  pathogen Hidden social network determination  (Francis S & Plucinski M et al, J Epidem Commun Health 2015.) School of Public Health,  University of California: • 71 faculty and staff Metagenome (meta‐MLST) analysis of saliva samples: • 48 faculty and staff • 7 spouses • Strep viridans Social network Hidden transmission pattern Meta‐MLST 1. Targeted housekeeping genes of Streptococcus viridans group in saliva 2. PCR‐amplified ppaC, pyk, tuf, map, pfl, guaA, soda, and rpoB 3. Each PCR product barcoded to indicate source 4. Paired‐end sequenced (HiSeq Illumina) 5. ~2 million reads/subject generated 6. 14,997,671 unique reads created after denoising (phred score >40— 99.99% accuracy of base calling: error of 1/10,000) 7. 1485 unique pairwise comparisons found, and genetic relatedness  calculated Social network analysis: School of Public Health, Berkeley Empirically‐determined network in  School of Public Health, UC Berkeley Genetic distance of oral microbiota: meta‐MLST Social network analysis: School of Public Health, Berkeley  (Plucinski & Francis et al) Declared  contacts Genetic similarity Application of meta‐MLST • Identifying closest contacts during Ebola epidemic (or  other infectious disease transmission) • Demonstrating possible infectious etiology in clusters  of cancer (or other disease of unknown etiology) • Characterizing viral quasispecies population structure Pathogen microbial population structures associated with a  new disease syndrome • Zika virus quasispecies associated with microcephaly? Meta-MLST to characterize Zika virus infection  Zika virus has 10 protein-coding sequences  Target protein-coding sequences  Non-structural proteins:NS1, NS2A, NS4B  Structural protein coding regions: E, NS3  Construct a quasispecies population structure for each sample (5 trees per population) Metagenomics: Application to epidemiology  Characterizing …  surrogate microbes to assess hidden social networks  microbial community protective against infection by a pathogen  an ecological niche from which clonal pathogenic strains are selected and disseminate  pathogen microbial population structures associated with a new disease syndrome  host commensal microbial population structures that determine non-communicable disease outcomes  a non-communicable disease to be not associated with a suggested pathogen Metagenomics in epidemiology: Obesity http://zero‐drop.com/?cat=144 Psychiatric disorders  Diabetes Infectious Disease Malnutrition Microbe Obesity Cancer Microbiome Environment Host Evidence for the role of intestinal microbiota affecting body  physiology—mouse studies • Conventionally‐reared (CONV‐R) mice fed polysaccharide‐rich diet  weighed about 40% more than its germ‐free (GF) mice.  • GF mice given gut microbiota from CONV‐R mice gained weight.  (Backed, 2004; Turnbaugh, 2006) • Obese mice with mutation in the leptin gene (ob/ob), have a 50%  reduction in the Bacteroidetes population with a proportional  increase in Firmicutes (Ley et al, 2005) Evidence for the role of intestinal microbiota affecting body  physiology—human studies • Obese and lean pairs of adult female monozygotic and dizygotic twins  and their mothers show phylum‐level changes in the microbiota  (Turnbaugh, 2009) • Malawian twin study (Science. 2013;339:548‐54) • • • • 317 twins followed for 3 years 47% discordant for Kwashiorkar Fecal samples from twins transplanted to gnotobiotic mice Malawian diet plus Kwashiorkar microbiota caused weight loss in recipient  gnotobiotic mice • Fecal microbiota transplant (FMT): Recipient of FMT from obese  donor caused recipient to gain weight (Alang & Kelly, Open Forum ID, 2015) • Early exposure to antibiotics associated with later obesity (Trasande L et al,  International Journal of Obesity 2012) No association  between body wt and phylum level  composition of  the gut  microbiome Finucane, M et al, PLoS One, 2014 Future of NGS application to epidemiology • Continued reduction in cost and speed of performing NGS • Simplification and accessibility of bioinformatics tools to analyze NGS  data • Use of NGS data to develop simpler but more discriminatory  microdiversity genotyping methods • Expansion of NGS application to understand the role of microbiota in  human infectious and non‐infectious diseases • Construction and centralization of repository for NGS database • New courses on molecular epidemiology based on NGS applications References • Francis SS & Riley LW. Metagenomic epidemiology: a new frontier. J  Epidem Commun Health 2015 • Foxman, B. Molecular tools and Infectious Disease Epidemiology.  Academic Press (2012) ... Simplification and accessibility? ?of? ?bioinformatics tools? ?to? ?analyze NGS  data • Use? ?of? ?NGS data? ?to? ?develop simpler but more discriminatory  microdiversity genotyping methods • Expansion? ?of? ?NGS application? ?to? ?understand the role? ?of? ?microbiota in ... and phylum level  composition? ?of? ? the gut  microbiome Finucane, M et al, PLoS One, 2014 Future? ?of? ?NGS application? ?to? ?epidemiology • Continued reduction in cost and speed? ?of? ?performing NGS • Simplification and accessibility? ?of? ?bioinformatics tools? ?to? ?analyze NGS ... Applied? ?to? ?profile microbial community‐‐phylogenetic or taxonomic  diversity analysis? ?of? ?all microbes (bacteria, viruses, fungi, protozoa)  in an ecologic niche—complex or uniform • Not targeted? ?to? ?specific genes or microbial group

Ngày đăng: 06/09/2021, 07:49

TỪ KHÓA LIÊN QUAN