1. Trang chủ
  2. » Khoa Học Tự Nhiên

Tài liệu Tìm hiểu Giải Nobel Vật lý pdf

34 438 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 34
Dung lượng 1 MB

Nội dung

Tìm hiểu Giải Nobel Vật Giải Nobel Vật Huy chương giải Nobel vật Giải Nobel về vật là một trong những giải Nobel được trao hàng năm cho các nhà vật và thiên văn có những khám phá và những đóng góp nổi trội trong lĩnh vực vật hàng năm. Diễn tiến về các sự nghiên cứu và phát minh dẫn đến các giải Nobel về vật được tóm tắt dưới đây. Trong khi tất cả các nhà vật đã đoạt giải này từ 1901 đến nay được liệt kê tại Danh sách những người đoạt giải Nobel Vật lý. Lịch sử Bối cảnh giải Nobel Vật Alfred Nobel đã viết trong di chúc cuối cùng rằng ông để dành tài sản và lấy lãi hàng năm để lập nên 5 giải Nobel (vật lý, hóa học, hay y học, văn học, và hòa bình) cho "những ai, trong những năm trước khi giải được trao đó, đã đưa đến những lợi ích nhất cho con người.", và …Giải thưởng cho vật và hóa học sẽ do viện Hàn lâm Thụy Điển trao tặng. [1][2] Dù Nobel đã viết nhiều di chúc trong suốt cuộc đời của ông, bản di chúc cuối cùng được viết gần 1 năm trước khi ông qua đời, và ký tại Câu lạc bộ Na Uy-Thụy Điển ở Paris ngày 27 tháng 11 năm 1895. [3][4] Nobel dành 94% tổng giá trị tài sản của mình, 31 triệu krona Thụy Điển (tương đương 186 triệu USD thời điểm năm 2008), để thiết lập 5 Giải Nobel. [5] Do mức độ hoài nghi quanh di chúc này, mãi đến ngày 26 tháng 4 năm 1897 thì |Storting (Quốc hội Na Uy) mới phê duyệt. [6][7] Từ vật cổ điển đến vật lượng tử Wilhelm Röntgen, người đầu tiên đạt giải Nobel Vật năm 1901 Năm 1901, khi giải Nobel đầu tiên được trao thì các lĩnh vực của vật cổ điển đã dựa trên một nền tảng vững chắc do các nhà vật và hóa học vĩ đại của thế kỉ 19 tạo nên. Tuy vậy, sự thỏa mãn về bức tranh vật đó kéo dài không được bao lâu. Thời điểm bước sang thế kỉ mới là thời điểm quan sát các hiện tượng mà vật lúc bấy giờ không giải được và những ý tưởng cực mới về cơ sở của vật thuyết được đưa ra. Tia X và phóng xạ Một trong những hiện tượng không giải thích được của vài năm cuối cùng của thế kỉ 19 đó là việc Wilhelm Conrad Röntgen, người được trao giải Nobel vật đầu tiên (1901) phát hiện ra tia X vào năm 1895. Năm 1896 Henri Becquerel phát hiện ra hiện tượng phóng xạ và hai vợ chồng nhà bác học Marie và Pierre Curie tiếp tục nghiên cứu bản chất của hiện tượng này. Nhờ công trình về hiện tượng phóng xạ, Becquerel và vợ chồng Curie được trao giải Nobel năm 1903. Cùng với công trình của Ernest Rutherford (người đạt giải Nobel về hóa học năm 1908) người ta hiểu rằng thực ra nguyên tử bao gồm một hạt nhân rất nhỏ chứ không phải như từng được nghĩ như trước đây là một phần tử không có cấu trúc. Cấu trúc nguyên tử Năm 1897, J.J. Thomson (Joseph John Thomson) phát hiện các tia phát ra từ ca-tốt trong một ống chân không là những hạt có mang điện tích. Ông đã chứng minh rằng các tia này gồm những hạt rời rạc mà sau này chúng ta gọi là các hạt điện tử (hay electron). Ông đã đo tỉ số giữa khối lượng của hạt với điện tích (âm) của hạt đó và thấy rằng giá trị đó chỉ bằng một phần rất nhỏ so với giá trị dự đoán của các nguyên tử mang điện. Và ngay sau đó người ta thấy rằng các hạt có khối lượng nhỏ bé mang điện tích âm đó phải là những viên gạch cùng với hạt nhân mang điện tích dương đã tạo nên tất cả các loại nguyên tử. Thomson nhận giải Nobel năm 1906. Trước đó một năm (1905), Philipp E.A. von Lenard đã làm sáng tỏ rất nhiều tính chất thú vị của những tia phát ra từ ca-tốt như là khả năng đi sâu vào những tấm kim loại và tạo ra huỳnh quang. Sau đó, vào năm 1912, Robert A. Millikan lần đầu tiên đo chính xác điện tích của điện tử bằng phương pháp giọt dầu (tiếng Anh: oil-drop), và việc này dẫn ông đến giải Nobel năm 1923. Millikan cũng được trao giải cho những công trình về hiệu ứng quang điện. Sự phá sản của ê-te Vào đầu thế kỉ 20, Albert Abraham Michelson đã phát triển một phương pháp giao thoa, theo phương pháp này thì khoảng cách giữa hai vật thể có thể được đo bằng số các bước sóng ánh sáng (hoặc là những phần nhỏ của chúng). Điều này làm cho việc xác định chiều dài chính xác hơn trước đó rất nhiều. Dùng chiếc giao thoa kế đó, Michelson và Edward Morley đã tiến hành một thí nghiệm nổi tiếng (Thí nghiệm Michelson-Morley, thí nghiệm đó kết luận rằng vận tốc ánh sáng không phụ thuộc vào chuyển động tương đối của nguồn ánh sáng và người quan sát. Thí nghiệm này bác bỏ giả thuyết trước đó coi ê-te là môi trường truyền ánh sáng. Michelson nhận giải Nobel năm 1907. Nguyên tử và từ trường Các cơ chế phát xạ ánh sáng bởi các hạt tải điện đã được Hendrik Lorentz nghiên cứu. Ông cũng là người đầu tiên áp dụng các phương trình Maxwell vào việc dẫn điện trong vật chất. thuyết của ông có thể được áp dụng vào bức xạ gây ra bởi dao động giữa các nguyên tử, và vào bối cảnh đó, tuyết có thể giải thích một thí nghiệm cực kì quan trọng. Vào năm 1896, Pieter Zeeman khi nghiên cứu về các hiệu ứng điện từ của ánh sáng đã tìm ra một hiện tượng quan trọng, đó là các vạch phổ của natri khi bị đốt cháy trong một từ trường mạnh bị tách thành một vài thành phần. Hiện tượng này có thể được giải thích rất chi tiết bằng thuyết của Lorentz khi thuyết này được áp dụng cho các dao động của các điện tử. Lorentz và Zeeman chia nhau giải Nobel năm 1902. Sau đó, Johannes Stark chứng minh ảnh hưởng trực tiếp của điện trường lên phát xạ ánh sáng nhờ việc phát ra một chùm các nguyên tử (chùm tia a-nốt gồm các nguyên tử hoặc phân tử) trong một điện trường mạnh. Ông đã quan sát được sự tách phức tạp của các vạch phổ cũng như dịch chuyển Doppler phụ thuộc và vận tốc của nguồn phát. Stark nhận giải Nobel năm 1919. Ứng dụng của tia X và xác định cấu trúc lớp điện tử Bắt đầu từ giữa thế kỉ 19, người ta đã có một tài liệu thực nghiệm đó là những vạch phổ đặc trưng phát ra trong những vùng khả kiến từ những loại nguyên tử khác nhau. Bức xạ tia X đặc trưng do Charles Glover Barkla (giải Nobel năm 1917) phát hiện bổ sung thêm cho tài liệu đó. Barkla phát hiện điều đó sau khi Max von Laue (giải Nobel năm 1914) xác định bản chất sóng của bức xạ và nhiễu xạ tia X. Phát hiện của von Laue trở thành một nguồn thông tin quan trọng về cấu trúc bên trong của nguyên tử. Karl Manne Georg Siegbahn nhận thấy rằng đo phổ tia X đặc trưng của tất cả các nguyên tố sẽ cho biết một cách có hệ thống các lớp điện tử kế tiếp được thêm vào như thế nào khi đi từ các nguyên tố nhẹ tới các nguyên tố nặng. Ông đã thiết kế các quang phổ kế cực kì chính xác cho mục đích này. Và nhờ đó sự khác nhau về năng lượng của các lớp điện tử khác nhau cũng như các qui tắc cho việc dịch chuyển bức xạ giữa các lớp đó được xác định. Ông nhận giải Nobel vật năm 1924. Tuy vậy, hóa ra là để hiểu sâu hơn cấu trúc của nguyên tử, người ta cần nhiều hơn rất nhiều những khái niệm thông thường của vật cổ điển mà lúc bấy giờ, khó ai có thể tưởng tượng nổi. Sự ra đời của thuyết lượng tử Vật cổ điển coi chuyển động là liên tục cũng như việc trao đổi năng lượng cũng là liên tục. Vậy thì tại sao các nguyên tử lại phát ra những bức xạ có một đỉnh cực đại? Wilhelm Wien nghiên cứu về bức xạ của vật đen (tiếng Anh: black body) từ những vật rắn nóng (tương phản với bức xạ của các nguyên tử khí có phân bố tần số liên tục). Sử dụng điện động học cổ điển , ông đi tới một biểu thức cho phân bố tần số của bức xạ này và cho sự dịch chuyển của bước sóng có cường độ cực đại khi nhiệt độ của một vật đen bị thay đổi ( định luật dịch chuyển Wien, rất hiệu quả trong việc xác định nhiệt độ của Mặt Trời chẳng hạn). Ông được trao giải Nobel năm 1911. Max Planck, cha đẻ thuyết lượng tử Tuy vậy, Wien không thể rút ra một công thức phân bố phù hợp với thực nghiệm cho cả hai vùng bước sóng dài và bước sóng ngắn. Vấn đề đó không được giả quyết cho đến khi Max Planck đưa ra một ý tưởng hoàn toàn mới là năng lượng phát xạ chỉ phát ra từng lượng gián đoạn có một giá trị nhất định gọi là lượng tử. Một lượng tử năng lượng bằng hằng số Planck nhân với tần số của lượng tử đó. Đây được coi là sự ra đời của vật lượng tử. Wien nhận giải Nobel năm 1911 và Planck nhận giải Nobel năm 1918. Các bằng chứng quan trọng chứng minh ánh sáng phát ra theo từng lượng tử năng lượng cũng được củng cố bằng lời giải thích của Albert Einstein về hiệu ứng quang điện (được Heinrich Rudolf Hertz quan sát lần đầu tiên vào năm 1887), hiệu ứng này cho thấy ánh sáng không chỉ được phát ra theo từng lượng tử mà còn được hấp thụ theo từng lượng tử. Hiệu ứng quang điện bao gồm phần mở rộng của thuyết Planck. Einstein nhận giải Nobel vật năm 1921 về hiệu ứng quang điện và về những đóng góp cho vật thuyết. Trong các thí nghiệm sau này, James Franck và Gustav Ludwig Hertz đã chứng minh hiệu ứng quang điện ngược (tức là khi một điện tử va chạm với một nguyên tử thì cần một năng lượng tối thiểu để sinh ra các lượng tử ánh sáng với năng lượng đặc trưng phát ra từ va chạm đó) và chứng minh tính đúng đắn của thuyết Planck và hằng số Planck. Franck and Hertz cùng nhận giải Nobel năm 1926. Cũng vào khoảng thời gian đó, Arthur Compton (người nhận nửa giải Nobel vật năm 1927) nghiên cứu sự mất mát năng lượng của quang tử (lượng tử sóng điện từ) tia X khi tán xạ lên các hạt vật chất và cho thấy rằng các lượng tử của chùm tia X có năng lượng lớn hơn năng lượng của ánh sáng nhìn thấy 10.000 lần và chúng cũng tuân theo các qui tắc lượng tử. Charles Thomson Rees Wilson (xem dưới đây) nhận một nửa giải Nobel năm 1927 vì tạo ra dụng cụ quan sát tán xạ năng lượng cao có thể được dùng để chứng minh tiên đoán của Compton. Mô hình nguyên tử của Bohr Mô hình của Dalton, Thompson, Rutherford, Bohr và mô hình lượng tử về nguyên tử Niels Bohr làm việc với mô hình hành tinh nguyên tử trong đó các điện tử quay xung quanh hạt nhân. Ông thấy rằng các vạch phổ sắc nét phát ra từ các nguyên tử có thể được giải thích nếu cho rằng điện tử quay xung quanh hạt nhân trên các quĩ đạo tĩnh đặc trưng bởi một mô-men góc bị lượng tử hóa. Ông cũng cho thấy năng lượng phát xạ chính bằng sự khác nhau giữa các trạng thái năng lượng bị lượng tử hóa đó. Giả thiết ông đưa ra có xuất phát điểm từ vật cổ điển hơn là từ thuyết của Plank. Mặc dầu giả thiết trên chỉ giải thích được một số đặc điểm đơn giản của quang phổ và nguồn gốc của nó nhưng người ta cũng sớm chấp nhận nó vì phương pháp của Bohr là một điểm khởi đầu đúng đắn, ông nhận giải Nobel năm 1922. Lưỡng tính sóng-hạt Năm 1923, Louis de Broglie (Louis-Victor P. R. de Broglie) đã phát biểu rằng các hạt vật chất cũng có những tính chất sóng và rằng sóng điện từ cũng thể hiện những tính chất của các hạt dưới dạng các quang tử. Ông đã phát triển các công thức toán học cho tính lưỡng tính này, trong đó có một công thức mà sau này gọi là bước sóng de Broglie cho các hạt chuyển động. Các thí nghiệm ban đầu của Clinton Davisson đã chỉ ra rằng thực ra các điện tử thể hiện tính chất phản xạ giống như các sóng khi đập vào một tinh thể và các thí nghiệm này được lặp lại nhiều lần chứng minh giả thiết lưỡng tính của de Broglie. Một thời gian sau George Paget Thomson (con trai của J.J. Thomson) đã đưa ra nhiều thí nghiệm đã được cải tiến rất nhiều cho biết hiện tượng tán xạ khi các điện tử năng lượng cao đi sâu vào trong các tấm kim loại. De Broglie nhận giải Nobel năm 1929 và sau đó Davisson và Thomson chia nhau giải Nobel năm 1937. Erwin Schrödinger phát triển thêm ý tưởng của de Broglie và viết một bài báo cơ bản về Lượng tử hóa như là một bài toán trị riêng vào đầu năm 1926. Ông đã tạo ra một cái gọi là cơ học sóng. Nhưng một năm trước đó Werner Heisenberg đã bắt đầu một phương pháp toán học hoàn toán khác gọi là cơ học ma trận và bằng cách đó ông cũng thu được các kết quả tương tự như các kết quả mà Schrödinger đưa ra sau đó. thuyết này cũng ngụ ý rằng có những giới hạn tự nhiên trong việc xác định chính xác đồng thời các đại lượng vật Hệ thức bất định Heisenberg. Heisenberg được trao giải Nobel năm 1932 cho sự phát triển của cơ học lượng tử, trong khi đó Schrödinger và Paul Dirac cùng nhận giải vào năm sau đó. Dirac sửa đổi các công thức khi tính đến thuyết tương đối hẹp của Einstein và cho thấy rằng một thuyết như vậy không chỉ bao gồm những thông số tương ứng cho sự tự quay của điện tử xung quanh mình, gọi là spin, mà còn tiên đoán sự tồn tại của một loại hạt hoàn toàn mới gọi là các phản hạt có khối lượng bằng khối lượng của điện tử nhưng mang điện tích dương. Phản hạt đầu tiên của điện tử do Carl David Anderson (được trao một nửa giải Nobel năm 1936) phát hiện năm 1932 được gọi là phản điện tử (positron). Nguyên loại trừ Max Born, thầy của Heisenberg vào những năm đầu của thập niên 1920 có những đóng góp quan trọng về miêu tả toán học và giải thích vật lý. Ông nhận một nửa giả Nobel vào năm 1954 cho công trình của ông về ý nghĩa thống kê của hàm sóng. Wolfgang Pauli đã đưa ra nguyên loại trừ (mỗi trạng thái lượng tử chỉ có thể có một điện tử mà thôi) dựa trên cơ sở thuyết bán cổ điển của Bohr. Sau này, người ta cũng thấy nguyên Pauli liên quan đến tính đối xứng của hàm sóng của các hạt có spin bán nguyên nói chung gọi là các fermion để phân biệt với các hạt boson có spin là một số nguyên lần của hằng số Plank chia cho 2*pi. Nguyên loại trừ có nhiều hệ quả quan trọng trong nhiều lĩnh vực của vật và Pauli nhận giải Nobel năm 1945. Năm 1947, Polykarp Kusch tìm ra rằng mô-men từ của một điện tử không có giá trị đúng như Dirac tiên đoán mà khác với một đại lượng rất nhỏ. Vào cùng thời gian đó Willis Lamb cũng nghiên cứu một vấn đề tượng tự về spin của điện tử tương tác với các trường điện từ bằng việc nghiên cứu cấu trúc siêu tinh tế của quang phổ phát ra từ nguyên tử hydrogen. Ông quan sát thấy rằng sự tách cấu trúc siêu tinh tế luôn luôn sai khác với giá trị của Dirac một lượng đáng kể. Kusch và Lamb cùng nhận giải Nobel năm 1955. Điện động lực học lượng tử và sắc động lực học lượng tử Richard Feynman, người có đóng góp đáng kể cho điện động lực học lượng tử Trong điện động lực học lượng tử (còn được biết theo chữ viết tắt tiếng Anh là QED - quantum electrodynamics), thuyết nhiễu loạn lượng tử miêu tả các hạt tích điện tương tác thông qua trao đổi các quang tử. Mô hình cũ của điện động lực học lượng tử chỉ bao gồm trao đổi quang tử riêng lẻ, nhưng Sin-Itiro Tomonaga, Julian Schwinger và Richard Feynman nhận ra rằng tình huống lại phức tạp hơn rất nhiều vì tán xạ điện tử-điện tử có thể bao gồm trao đổi một vài quang tử. Một điện tích điểm trần trụi không tồn tại trong bức tranh của họ. Điện tích luôn tạo ra một đám các cặp hạt-phản hạt ảo ở xung quanh nó, do đó, mô men từ hiệu dụng của nó thay đổi và thế năng Coulomb cũng bị biến đổi tại các khoảng cách ngắn. Các tính toán từ mô hình này đã tái tạo lại các dữ liệu thực nghiệm của Kusch và Lamb với một độ chính xác ngạc nhiên và mô hình điện động lực học lượng tử mới được coi là một thuyết chính xác nhất đã từng có. Tomonaga, Schwinger và Feynman cùng nhận giải Nobel vật năm 1965. Phát triển này của điện động lực học lượng tử lại có một tầm quan trọng vĩ đại nhất cho cả việc miêu tả các hiện tượng vật năng lượng cao. Khái niệm sinh cặp từ trạng thái chân không của một trường lượng tử là một khái niệm cơ sở trong thuyết trường hiện đại của các tương tác mạnh và của sắc động lực học lượng tử (quantum chromodynamics). Khám phá về tính đối xứng Khía cạnh cơ bản khác của cơ học lượng tử và thuyết trường lượng tử là tính đối xứng của các hàm sóng và các trường. Năm 1956, Chính Đạo (Tsung-Dao Lee) và Dương Chấn Ninh (Chen Ning Yang) đã chỉ ra rằng các tương tác vật có thể không tuân theo đối xứng gương. Điều này có nghĩa là tính chất chẵn lẻ của hàm sóng, kí hiệu là P, không được bảo toàn khi hệ bị đặt dưới một tương tác như vậy và tính chất đối xứng gương có thể bị thay đổi. và Dương cùng nhận giải Nobel năm 1957. James Watson Cronin và Val Logsdon Fitch phát hiện sự phân rã của hạt meson K vi phạm nguyên bảo toàn điện tích và tính chẵn lẻ năm 1964 và họ cùng nhau nhận giải Nobel năm 1980. Năm 1960, khi Sheldon Lee Glashow, Abdus Salam và Steven Weinberg đưa ra thuyết thống nhất tương tác yếu và tương tác điện từ. Họ cùng nhau chia giải Nobel năm 1979 về thuyết thống nhất này và đặc biệt là tiên đoán của họ về một loại tương tác yếu đặc biệt được điều hòa bởi dòng neutron đã được thực nghiệm kiểm chứng mới gần đây. Giải Nobel vật cuối cùng của thế kỷ 20 được trao cho Gerardus 't Hooft và Martinus J. G. Veltman . Họ đã tìm ra cách để tái chuẩn hóa thuyết điện-yếu, và loại bỏ các điểm kỳ dị trong các tính toán lượng tử. Từ thế giới vi mô đến thế giới vĩ mô [...]... của các hạt mang điện (ví dụ như proton) cảm ứng Ông nhận giải Nobel vật năm 1938 Vật hạt nhân Một nhánh của vật gọi là vật hạt nhân đã được hình thành dựa trên giả thiết hạt nhân được tạo thành từ các proton và neutron và một vài thành tựu quan trọng đã được ghi nhận bằng các giải Nobel Ernest Lawrence, người nhận giải Nobel vật năm 1939 đã xây máy gia tốc đầu tiên trong đó các hạt được... chất dùng cho vật laser cũng như sinh học phân tử Ông cùng nhận giải Nobel vật với Philip W Anderson và Sir Nevill F Mott (xem dưới đây) Các nguyên tử từ có thể có các mô men từ sắp xếp theo cùng một phương trong một thể tích nhất định (vật liệu như vậy được gọi là vật liệu sắt từ), hoặc các mô men có cùng độ lớn nhưng lại sắp xếp đan xen thuận rồi đến nghịch (vật liệu nghịch từ, vật liệu phản sắt... nhận giải Nobel vật năm 1910 Jean B Perrin nghiên cứu chuyển động của các hạt nhỏ phân tán trong nước và nhận giải Nobel năm 1926 Nghiên cứu của ông cho phép khẳng định thuyết thống kê của Einstein về chuyển động Brown cũng như các định luật điều khiển quá trình cân bằng của các hạt phân tán trong chất lỏng khi chịu tác dụng của trọng lực Năm 1930, Sir C Venkata Raman nhận giải Nobel vật cho... Arno Allan Penzias và Robert Woodrow Wilson tìm ra vào năm 1960 Họ cùng nhận giải Nobel vật năm 1978 Hans Bethe lần đầu tiên miêu tả chu kì hiđrô và cacbon trong đó năng lượng được giải phóng trong các ngôi sao bởi sự kết hợp của proton thành hạt nhân hêli Vì đóng góp này, ông nhận giải Nobel vật vào năm 1967 Subramanyan Chandrasekhar đã tính toán thuyết quá trình tiến hóa của các ngôi sao,... trong việc xác định cấu trúc điện từ của nhiều vật liệu và Mössbauer nhận một nửa giải Nobel vật năm 1961 cùng với R Hofstadter Vật và kỹ thuật Giải Nobel 1912 đã được trao cho Nils Gustaf Dalén cho phát minh về van mặt trời tự động được dùng rộng rãi trong các cột mốc và phao trong ngành hàng hải Phát minh đó dựa trên sự khác nhau về bức xạ nhiệt từ các vật có độ phản xạ ánh sáng khác nhau Hiệu ứng... bởi sự kết cặp spin-quĩ đạo rất mạnh của các lực hạt nhân Mô hình của họ giải thích tại sao hạt nhân lại đặc biệt ổn định với một số xác định (con số kì diệu) các proton Họ chia nhau giải Nobel vật năm 1963 cùng với Eugene Wigner, người đã công thức hóa các nguyên đối xứng cơ bản rất quan trọng trong vật hạt nhân và vật hạt Hạt nhân có số nucleon khác với con số kì diệu thì lại không phải... từ), hoặc sắp xếp đan xen nhưng độ lớn lại khác nhau (vật liệu ferri từ) Louis E F Néel đã đưa ra các mô hình cơ bản miêu tả các vật liệu phản sắt từ và ferri từ, đó là các thành phần quan trọng trong nhiều dụng cụ chất rắn Các vật liệu đó được nghiên cứu rất nhiều bằng kĩ thuật nhiễu xạ neutron đã nói trên đây Néel nhận một nửa giải Nobel vật năm 1970 Trật tự của các nguyên tử trong tinh thể chất... Mott chia nhau một nửa giải Nobel năm 1977 và một nửa giải được trao cho John H Van Vleck cho các nghiên cứu thuyết về cấu trúc điện tử của các hệ từ và mất trật tự Tính chất nhiệt của chất rắn Một giải Nobel vật trước đây (1920) đã được trao cho Charles E Guillaume cho phát hiện cho thấy rằng giãn nở nhiệt của một số thép-nikel (hợp kim được gọi là invar) bằng không Giải Nobel này được trao chủ... vài nhà vật thuyết được trao giải cho những công trình về mô hình hóa thuyết các hệ nhiều hạt như: Eugene Wigner, Maria Goeppert-Mayer và J Hans D Jensen vào năm 1963 và Aage Niels Bohr, Ben Roy Mottelson và Leo James Rainwater vào năm 1975 Vật năng lượng cao Ngay từ năm 1912 Victor F Hess (giải Nobel năm 1936 cùng với Carl David Anderson) thấy rằng các bức xạ có khả năng đi sâu vào vật chất... nhỏ hơn năng lượng tạo thành khi kết cặp (Eg) thuyết BCS này được trao giải Nobel vật năm 1972 Đột phá trong việc hiểu cơ sở cơ học năng lượng này dẫn đến các tiến bộ trong các mạch siêu dẫn: Brian D Josephson đã phân tích sự dịch chuyển của các hạt tải điện giữa hai kim loại siêu dẫn được ngăn cách bởi một lớp vật liệu dẫn điện thường rất mỏng Ông tìm thấy rằng pha lượng tử xác định tính chất . Tìm hiểu Giải Nobel Vật lý Giải Nobel Vật lý Huy chương giải Nobel vật lý Giải Nobel về vật lý là một trong những giải Nobel được trao. những người đoạt giải Nobel Vật lý. Lịch sử Bối cảnh giải Nobel Vật lý Alfred Nobel đã viết trong di chúc cuối cùng rằng ông để dành tài sản và lấy lãi

Ngày đăng: 22/12/2013, 16:15

TỪ KHÓA LIÊN QUAN

w