Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 46 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
46
Dung lượng
434,72 KB
Nội dung
Mục lục Chủ đề Các toán liên quan đến bậc hai Chủ đề Hàm số bậc nhất-bậc hai Chủ đề Phương trình Chủ đề Hệ phương trình 14 Chủ đề Giải toán cách lập phương trình-hệ pt 18 Chủ đề Bất đẳng thức 19 Chủ đề Số học 23 Chủ đề Hình học 31 Vũ Ngọc Thành Phân loại đề thi tuyển sinh vào trường chuyên 2021-2022 PHÂN LOẠI THEO CHỦ ĐỀ ĐỀ THI TUYỂN SINH VÀO TRƯỜNG CHUYÊN 2021-2022 Tài liệu tổng hợp từ 50 đề thi tuyển sinh vào trường chuyên; Ngày 03/8/2021 Người tổng hợp: Vũ Ngọc Thành Xem lời giải Chủ đề Các toán liên quan đến bậc hai Å Câu [ts373](Chuyên Ninh Bình 2021-2022) Cho biểu thức: A = √ ã √ a+2 a a−1 √ √ √ : + + a a−1 a+ a+1 1− a với a ≥ 0; a = a) Rút gọn biểu thức A b) Tìm giá trị lớn biểu thức A Å Câu [ts235](Chuyên Gia Lai) Rút gọn biểu thức P = √ √ ã √ x2 − x x+2 x x+1 √ √ − +3 · , với x > x−1 x+ x+1 x x = √ √ √ x+2 x−1 x−6 x+5 √ Câu [ts294](Chuyên hậu giang 2021-2022) Cho biểu thức A = √ +√ − x−1 x + 2x + x − a) Tìm điều kiện x để biểu thức A có nghĩa b) Tìm tất số ngun x để biểu thức A nhận giá trị số nguyên c) Tìm tất giá trị x để A ≤ Câu [ts303](Chuyên An Giang 2021-2022) Rút gọn A = √ 419 − 40 19 + √ 419 + 40 19 Câu [ts317](Chuyên Bình Phước) Cho biểu thức A= √ √ Å √ ã Å ã 2(x − x + 1) x x−1 x x+1 √ − √ : x−1 x− x x+ x a) Rút gọn biểu thức A b) Tìm x để A nhận giá trị nguyên √ √ x x−8 x x+8 x+2 √ − √ + √ Câu [ts337](Chuyên Huế) Cho biểu thức P = x−2 x x+2 x x a) Tìm điều kiện x để P có nghĩa rút gọn P b) Tìm x để P = √ √ 18 √ − 12 + √ 2− √ √ a+3 a a √ với a > 0, a = Câu [ts386](Chuyên Quảng Nam 2021-2022) Rút gọn biểu thức B = − a−9 a−3 a Câu [ts385](Chuyên Quảng Nam 2021-2022) Thực phép tính A = Vũ Ngọc Thành Phân loại đề thi tuyển sinh vào trường chuyên 2021-2022 √ Å √ ã x x + 14 √ Câu [ts324](Chuyên Gia Lai-2021-2022) Cho biểu thức A = √ 1+ √ + , với x ≥ x+5 x+1 x+3 x+2 a) Rút gọn biểu thức A b) Tìm tất giá trị x để A số nguyên Câu 10 [ts248](Chuyên Tây Ninh 2021-2022) Rút gọn biểu thức P = √ 4−2 √ 1− Câu 11 [ts202](Chuyên Bình Thuận) Rút gọn biểu thức sau: √ √ √ √ a) A = ( 27 + 12 − 3) : Å b) B = √ +√ + x+3 x−3 x−9 ã :√ , với x ≥ x = x−3 Câu 12 [ts236](Chuyên Gia Lai) Cho phương trình ẩn x : (m − 2)x2 + 2x − (m − 1) = (m tham số) Chứng minh với m phương trình cho ln có nghiệm Câu 13 [ts242](ĐHSP HN V1 2021-2022) Cho Ç √ å √ √ √ √ a a−b b b−a ( b − a)2 + ab √ √ P = : √ − √ a−b b− a a+ b (a ≥ 0, b ≥ 0, a = b) a) Rút gọn P b) Chứng minh P ≥ Câu 14 [ts257](Chuyên Ninh Thuận) Cho biểu thức A = √ 2 x +√ − x+4 x − x − 16 Tìm điều kiện x để biểu thức A có nghĩa rút gọn A Câu 15 [ts263](Chuyên Vũng Tàu) Rút gọn biểu thức P = √ √ ã Å√ x x−1 x+1 x−2 √ · √ với x ≥ 0, − x−1 1+x+ x x− x−2 x = 1, x = Ç √ √ √ √ å a a−b b a b+b a √ − √ √ Câu 16 [ts271](chuyênĐồng Nai2021-2022) Rút gọn biểu thức A = : (a + b) (với √ a− b a+ b a ≥ 0, b ≥ 0, a = b) √ √ x+2 x−1+ x−2 x−1 Câu 17 [ts220](Chuyên Bình Dương) Rút gọn biểu thức P = với x ≥ √ √ x + 2x − − x − 2x − Câu 18 [ts312](Chuyên Hà Nam 2021-2022) a) Rút gọn biểu thức A = Å b) Cho biểu thức B = √ 20 − √ 45 + 1 √ +√ x− x x−1 √ + ã √ x+1 : √ , với x > 0, x = ( x − 1) √ Å ã √ 4a + a a−1 √ Câu 19 [ts344](Chuyên Huế) Rút gọn biểu thức P = √ − · với a > 0; a = a2 a−1 a− a √ √ x2 + x 2x + x √ Câu 20 [ts359](Chuyên Lai Châu 2021-2022) Cho biểu thức A = +1− √ với x > x− x+1 x Rút gọn biểu thức B tìm tất giá trị nguyên x cho B ≤ a) Rút gọn biểu thức A Vũ Ngọc Thành Phân loại đề thi tuyển sinh vào trường chuyên 2021-2022 b) Tìm giá trị nhỏ biểu thức A √ √ √ √ a2 + b ab a a − 3a b + 2b a √ √ Câu 21 [ts280](PTNK-TPHCM-2021) Cho P = + với a > b > √ a + ab a− b a) Thu gọn biểu thức P b) Chứng minh P > Câu 22 [ts27](Chuyên Bắc Ninh 2021 - 2022) Cho biểu thức Å P = √ ã √ x+2 x x−1 √ √ √ + : + x x−1 x+ x+1 1− x a) Rút gọn biểu thức P b) Tính giá trị biểu thức P với x = √ Ç √ 3+ 2+ √ 3+ 3− √ +√ 2− √ 3− å √ c) Tìm tất giá trị x để P nhận giá trị nguyên Câu 23 [ts185](Chuyên Vĩnh Long 2021-2022) a) Cho biểu thức A = √ √ √ 2x − x x x+1 x √ B = √ − − với x > 0, x = Rút gọn A chứng minh B > x−1 x− x x+1 A b) So sánh √ 24 + √ 26 10 Câu 24 [ts193](Chuyên Yên Bái 2021-2022) Cho biểu thức P = √ Å √ ã Å ã x x−1 1 √ + √ : √ − với x > x = x−1 x−x x x a) Rút gọn biểu thức P b) Chứng minh P ≤ x + √ x − − + 4x + x − − 7(với x ≥ 2) Å √ ã Å ã x 1 Câu 26 [ts34](Chuyên Bình Định 2021-2022) Cho biểu thức P = √ −√ : √ + x−1 x+1 x+1 x−1 với x > 0; x = Câu 25 [ts3](chuyên Bến Tre 2021-2022) Rút gọn biểu thức A = √ a) Rút gọn biểu thức P √ b) Tìm giá trị P x = − Câu 27 [ts41](Chuyên Tin Bình Định2021-2022) Ç√ √ ã √ √ å Å x− y x+ y 1 √ √ a) Cho biểu thức: A = − √ − √ x y x+ y x− y √ √ √ √ Tính giá trị biểu thức A với x = 2021 + 505, y = 2021 − 505 Vũ Ngọc Thành Phân loại đề thi tuyển sinh vào trường chuyên 2021-2022 b) Cho số thực a , b , c = a + b + c = thỏa mãn Chứng minh rằng: 1 1 + + = a b c a+b+c 1 1 + 2021 + 2021 = 2021 a2021 b c a + b2021 + c2021 Câu 28 [ts71](Chuyên Hịa Bình 2021-2022) a) Rút gọn biểu thức: A = (4 + b) Rút gọn biểu thức: P = √ √ √ √ 15)( 10 − 6) − 15 √ Å √ ãÅ ã √ x x √ x − √ với x > 0, x = +√ x+1 x−1 x Câu 29 [ts46](Chuyên Cà Mau - 2021- 2022) Cho biểu thức: √ √ Å √ ã x x−1 x x+1 2x − x + √ − √ A= : (với x > 0; x = 0) x−1 x− x x+ x a) Rút gọn biểu thức A b) Tìm số nguyên x để biểu thức A có giá trị nguyên Câu 30 [ts77](Chuyên Hải Dương 2021-2022) √ √ 135 135 12 + 12 − a) Cho x = 1+ + 3 Å ã Tính giá trị biểu thức M = x3 − x2 − å3 √ √ a−b √ √ + 2a a + b b √ ab − a a+ b √ √ , với a > 0, b > 0, a = b Chứng minh giá trị b) Cho biểu thức: A = + √ a a−b a 3a + 3b ab biểu thức A không phụ thuộc vào a b Ç √ √ ã Å ã √ x+1 x+5 − x−4+ √ x−1 x x−1 x+1 (với x ≥ 0, x = 1) Rút gọn biểu thức A tìm tất giá trị x để A ≥ Å Câu 31 [ts61](Chuyên Hải Phòng 2021-2022) Cho biểu thức A = √ Câ 32 [ts91](Chun Khánh Hịa 2021-2022) Khơng dùng máy tính bỏ túi, tính giá trị biểu thức T = √ √ ä √ Ä √ ä 2 + 10 + + 10 − + √ √ √ √ 2+ 2+ 2− 2− Câu 33 [ts97](Chuyên Kiên Giang 2021-2022) Cho biểu thức A= √ √ x 2x − x x − √ +√ + (với x ≥ 0, x = 1, x = 4) x−1 x−2 x−3 x+2 a) Rút gọn biểu thức A √ b) Tính giá trị biểu thức A x = + 2 Câu 34 [ts105](Chuyên Kon Tum 2021-2022) Giải tốn sau khơng dùng máy tính cầm tay a) Chứng minh số a = √ 12 + + √ 12 − số nguyên b) Cho hai số thực dương x, y thỏa mãn x + y = 9, xy = 4, tính giá trị biểu thức P = √ √ x − y x2 − y √ √ x x+y y Vũ Ngọc Thành Phân loại đề thi tuyển sinh vào trường chuyên 2021-2022 Câu 35 [ts124](Chuyên Lâm Đồng 2021-2022) Tính giá trị biểu thức: A= 4− » √ 10 − − 4+ » √ 10 − Câu 36 [ts118](Chuyên Lào Cai 2021-2022) √ ã Å √ ã Å a a−1 a a+1 a+2 √ − √ với a > ; a = ; a = Tìm tất giá trị : a−2 a− a a+ a nguyên dương a đề P nhận giá trị nguyên a) Cho biểu thức A = b) Cho x = + √ 2021 Tính giá trị biểu thức: x5 − 2x4 − 2021x3 + 3x2 + 2018x − 2021 Câu 37 [ts140](Chuyên Quảng Bình 2021-2022) Cho biểu thức P = √ √ ã Å√ Å√ ã x+1 x−1 x−x−3 x √ : −√ (với x ≥ 0, x = 1) −√ − x−1 x−1 x+1 x−1 x−1 a) Rút gọn biểu thức P b) Tìm tất số thực x để P nhận giá trị nguyên Câu 38 [ts146](Chuyên Quảng Ngãi 2021-2022) Rút gọn biểu thức A= √ a+1 √ √ (a > 0; a = ) √ : a2 − a a+a+a a Câu 39 [ts21](Chuyên Bạc Liêu 2020-2021) Cho biểu thức A = √ x− x 1 +√ +√ với x ≥ 0, x = x−1 x−1 x+1 Rút gọn biểu thức A Tìm giá trị x cho A số nguyên Câu 40 [ts160](Chuyên Thái Nguyên 2021-2022) Cho biểu thức Å A= Rút gọn tính giá trị A x = » x+5 √ √ − x+1 2+ x−x 29 + 12 ã Å : 1− ã 4−x √ − 2 Câu 41 [ts154](Chuyên Thanh Hóa 2021-2022) a) Cho số thực a, b không âm thỏa mãn điều kiện (a + 2)(b + 2) = Tính giá trị biểu thức: P = » ab + a2 + b2 + − (a2 + 4) (b2 + 4) b) Cho số hữu tỉ a, b, cđôi phân biệt Đặt B = 1 + + Chứng minh B (a − b)2 (b − c)2 (c − a)2 số hữu tỉ Câu 42 [ts167](Chuyên Tiền Giang 2021-2022) Tính giá trị biểu thức √ √ 3− 2022 2021 2020 √ P =x − 10x +x + 2021 x = √ 3+ Câu 43 [ts53](Chuyên Cần Thơ 2021 - 2022) Cho biểu thức ñ ô √ (x − 1) x − + x − 1 √ √ P = − : với x > x = x−2 x−1+1 (x − 1) x − − x + Vũ Ngọc Thành Phân loại đề thi tuyển sinh vào trường chuyên 2021-2022 a) Rút gọn biểu thức P b) Tính giá trị P x = √ √ + − ( + 1) √ √ √ 7−4 3+ 3−2 Câu 44 [ts175](Chuyên Trà Vinh 2021-2022) Cho hai biểu thức: A= √ √ √ x−1 x+1 2+ x √ √ (với x > 0) B = √ + x x x+ x a) Tính giá trị A x = 64 b) Rút gọn biểu thức B c) Tìm x để A > B Câu 45 [ts177](Chuyên Trà Vinh 2021-2022) Cho hai biểu thức: √ x−4 x+ x+2 x B = √ + √ (với x ≥ 0, x = 4) A= √ x−2 x x − ( x + 1)2 + √ a) Tính giá trị A x = b) Rút gọn B c) Tìm điều kiện x để A ≤ B Chủ đề Hàm số bậc nhất-bậc hai Câu 46 [ts354](Chuyên Hạ Long, 2022) Cho hai hàm số y = 2x2 y = 4x + m (với m tham số) Tìm giá trị m để đồ thị hai hàm số cắt hai điểm phân biệt có hồnh độ dương Câu 47 [ts388](Chuyên Quảng Nam 2021-2022) Tìm tọa độ giao điểm parabol (P ) : y = x đường thẳng (d) : y = −x + Câu 48 [ts203](Chuyên Bình Thuận) Cho hàm số y = 2x2 có đồ thị (P ) a) Vẽ đồ thị (P ) mặt phẳng tọa độ Oxy b) Tìm tất giá trị tham số m để đường thẳng (d) : y = 2mx + cắt (P ) hai diểm phân biệt có hồnh độ x1 , x2 thỏa mãn x1 < x2 |x2 | − |x1 | = 2021 Câu 49 [ts283](PTNK-TPHCM-2021) Cho (P ) (d) có đồ thị y = x2 y = 2x + m a) Tìm m cho (d) cắt (P ) điểm phân biệt A(x1 ; y1 ) B(x2 ; y2 ) b) Tìm m cho (x1 − x2 )2 + (y1 − y2 )2 = Câu 50 [ts306](An Giang2021-2022) Vũ Ngọc Thành Phân loại đề thi tuyển sinh vào trường chuyên 2021-2022 a) Vẽ đồ thị (P ) hàm số y = −x2 b) Viết phương trình đường thẳng (d) qua điểm A(0; 1) tiếp xúc với (P ) Câu 51 [ts314](Chuyên Hà Nam 2021-2022) Trong mặt phẳng tọa độ Oxy, cho parabol (P ) có phương trình y = x2 đường thẳng (d) có phương trình y = mx + (với m tham số) a) Trên parabol (P ), tìm điểm có tung độ b) Chứng minh đường thẳng (d) cắt parabol (P ) hai điểm phân biệt A, B Gọi x1 , x2 hồnh độ A, B Tìm giá trị m để |x1 − x2 | = Câu 52 [ts282](PTNK-TPHCM-2021) Cho d : y = (m + 1)x + mn d1 : y = 3x + Tìm m, n biết d qua điểm A(0; 2) d ∥ d1 Câu 53 [ts345](Chuyên Huế) Cho hàm số y = (m − 3)x2 , với m tham số Tìm tất giá trị nguyên dương m để hàm số đồng biến x < Câu 54 [ts387](Chuyên Quảng Nam 2021-2022) Xác định hệ số a, b đường thẳng (d) : y = ax + b, biết (d) song song với đường thẳng (d ) : y = 2x − cắt trục hồnh điểm A có hồnh độ Câu 55 [ts249](Chuyên Tây Ninh 2021-2022) Tìm m để hai đường thẳng y = 3x + 2m − y = −4x − m + cắt điểm trục tung Câu 56 [ts298](Chuyên hậu giang 2021-2022) Trong mặt phẳng với hệ tọa độ Oxy, cho hàm số y = ax + b y = 2x − có đồ thị đường thẳng d d Tìm a, b biết d song song với d d qua điểm A(4; −5) Câu 57 [ts1](chuyên Bến Tre) Tìm tất giá trị tham số m để hàm số y = (6 − 7m) x + nghịch biến R Câu 58 [ts70](Chun Hịa Bình 2021-2022) Cho hai đường thẳng (d) : y = (m − 3)x + 16và (d ) : y = x + Tìm m để (d) (d’) cắt điểm có hồnh độ Câu 59 [ts107](Chun Kon Tum 2021-2022) Cho hai đường thẳng (d1 ) : y = (m + 1)x + m + (d2 ) : y = (2m + 1)x − m + với m = Tìm tất giá trị m (m = 0) để (d1 ) (d2 ) cắt điểm M cho M nằm đường thẳng (d) : y = x Câu 60 [ts147](Chuyên Quảng Ngãi 2021-2022) Cho hàm số y = (m − 2) x + ( m tham số ) có đồ thị đường thẳng (d) a) Tìm điều kiện m để hàm số đồng biến R b) Tìm giá trị m để khoảng cách từ gốc tọa độ O đến (d) Câu 61 [ts37](Chuyên Bình Định 2021-2022) Cho Parabol (P ) : y = x2 đường thẳng (d) : y = (2m + 1) x − 2m(m tham số) Tìm m để đường thẳng (d) cắt (P) hai điểm phân biệt A(x1 , y1 ); B(x2 , y2 ) cho: y1 +y2 −x1 x2 = Vũ Ngọc Thành Phân loại đề thi tuyển sinh vào trường chuyên 2021-2022 Câu 62 [ts181](Chuyên Trà Vinh 2021-2022) Cho parabol (P ) : y = x2 đường thẳng (d) : y = (m − 1) x − 2m + (m tham số) Tìm giá trị m để đường thẳng (d) cắt parabol (P ) hai điểm phân biệt có hồnh độ tương ứng √ √ x1 , x2 dương x1 − x2 = Câu 63 [ts186](Chuyên Vĩnh Long 2021-2022) Cho Parabol (P ) : y = x2 đường thẳng (d): y = (m−1)x+m+4 (m tham số) Tìm m để (d) cắt (P) điểm nằm phía trục tung Câu 64 [ts2](chuyên Bến Tre) Cho Parabol (P ) : y = 2x2 đường thẳng (d) : y = −x + Biết (d) cắt (P ) hai điểm phân biệt A (x1 ; y1 ), B (x2 ; y2 ) với x1 < x2 Tính 4x2 + y1 Câu 65 [ts73](Chun Hịa Bình 2021-2022) Trên mặt phẳng tọa độ Oxy, cho parabol (P ) : y = −3x2 hai điểm A (−1; −3), B (2; 3) Tìm tọa độ điểm C thuộc parabol (P ) cho ba điểm A, B, C thẳng hàng ( C khác A) Câu 66 [ts48](Chuyên Cà Mau - 2021- 2022) Trong mặt phẳng tọa độ vng góc Oxy cho parabol (P): y = − x2 a) Vẽ đồ thị (P) b) Tìm tọa độ điểm nằm parabol (P) cách hai trục tọa độ Câu 67 [ts141](Chuyên Quảng Bình 2021-2022) Trong mặt phẳng tọa độ Oxy, cho parabol (P ) : y = x2 đường thẳng (d) : y = 2mx − m + (với m tham số) Tìm tất giá trị m để (d) cắt (P ) hai điểm phân √ biệt có hồnh độ x1 , x2 thỏa mãn |x1 − x2 | > Câu 68 [ts170](Chuyên Tiền Giang 2021-2022) Trong mặt phẳng tọa độ Oxy, cho parabol (P ) : y = x2 đường thẳng (d) : y = − x Gọi A, B hai giao điểm đường thẳng (d) với parabol (P ) Tìm tọa độ điểm M nằm trục hồnh cho chu vi tam giác MAB nhỏ Câu 69 [ts54](Chuyên Cần Thơ 2021 - 2022) Cho parabol (P ) : y = x2 đường thẳng (d) : y = 2mx 2m Tìm tất giá trị tham số m cho (d) cắt (P) hai điểm phân biệt có hồnh độ x1 x2 thỏa mãn √ |x1 | + |x2 | = Chủ đề Phương trình Câu 70 [ts396](Chuyên ĐHSP HN 2021-2022) Cho a, b, c ba số nguyên dương cho số ba số biểu diễn dạng lũy thừa với số mũ tự nhiên Biết phương trình bậc hai ax2 − bx + c = (1) có hai nghiệm số nguyên Chứng minh hai nghiệm phương trình (1) √ Câu 71 [ts297](Chuyên hậu giang 2021-2022) Giải phương trình 4(2x2 +1)−3(x2 −x) 2x + = 2(x3 +x2 +x)+6 Câu 72 [ts361](Chuyên Lai Châu 2021-2022) Giải phương trình Câu 73 [ts355](Chuyên Hạ Long, 2022) Giải phương trình √ √ 3x + − x+1+ √ Câu 74 [ts224](Chuyên Bình Dương) Giải phương trình x2 − 6x + 11 √ − x + 3x2 − 14x − = 3x = + √ √ 4x − x2 − x + = x2 − 4x + √ x − Vũ Ngọc Thành Phân loại đề thi tuyển sinh vào trường chuyên 2021-2022 Câu 75 [ts398](Chuyên Quảng Trị - 2021-2022) Giải phương trình 2x − Câu 76 [ts272](chuyênĐồng Nai2021-2022) Giải phương trình √ Câu 77 [ts347](Chuyên Huế) Giải phương trình x2 − 2x √ x − = √ √ + √ = x ( x + 1) ( x + 1) ( x + 2) − 2(x − 1)2 − = Câu 78 [ts275](chuyênĐồng Nai2021-2022) Cho phương trình x4 − 4(4m − 1)x2 + 9m = (m tham số thực) a) Giải phương trình m = b) Tìm m để phương trình cho có bốn nghiệm phân biệt x1 , x2 , x3 , x4 , có hai nghiệm x1 , x2 thỏa √ x1 = 3x2 √ √ Câu 79 [ts208](Chuyên KHTN) Giải phương trình 13 − x + 18 x + = 61 + x + (5 − x)(x + 8) Câu 80 [ts325](Chuyên Gia Lai-2021-2022) Cho phương trình x2 − mx − 2m2 = , với m tham số Tìm tất giá trị m để phương trình cho có hai nghiệm nguyên x1 , x2 thỏa mãn 5x21 + 8x22 = 252 Câu 81 [ts348](Chuyên Huế) Cho phương trình x2 + 2(m − 2)x + m2 − 4m = (x ẩn số, m tham số) Tìm tất 3 giá trị tham số m để phương trình có hai nghiệm phân biệt x1 , x2 thỏa mãn điều kiện + x2 = + x1 x1 x2 Câu 82 [ts360](Chuyên Lai Châu 2021-2022) Cho phương trình x2 − (m − 1) x + m2 − 3m = 0, với m tham số Tìm m để phương trình có hai nghiệm x1 , x2 thỏa mãn x21 + x22 = 16 Câu 83 [ts221](Chuyên Bình Dương) Cho x số thực dương thỏa mãn x2 + A = x7 + = Tính giá trị biểu thức x2 x7 √ Câu 84 [ts389](Chuyên Quảng Nam 2021-2022) Giải phương trình x − x − = Câu 85 [ts243](ĐHSP HN V1 2021-2022) Chứng minh rằng: với giá trị m, hai phương trình sau có nghiệm: x2 − (2m + 1)x + m2 + = 0; x2 − mx + 4m − 11 = Câu 86 [ts313](Chuyên Hà Nam 2021-2022) a) Giải phương trình x2 − 6x + = 2 (x + 2) = (y − 1) b) Giải hệ phương trình: 3x + y = Câu 87 [ts222](Chuyên Bình Dương) Với a, b, c độ dài ba cạnh tam giác Chứng minh phương trình x c2 (x − 1) + a2 − b2 + b2 = vô nghiệm Câu 88 [ts307](An Giang2021-2022) Cho hai số a, b phân biệt thỏa mãn a2 − 2021a = b2 − 2021b = c, với c 1 2021 số thực dương Chứng minh + + = a b c Câu 89 [ts296](Chuyên hậu giang 2021-2022) Cho phương trình bậc hai x2 + mx + n − = tham số a) Giải phương trình (*) với m = n = −2 10 (*), với m, n Vũ Ngọc Thành Phân loại đề thi tuyển sinh vào trường chuyên 2021-2022 Câu 318 [ts285](PTNK-TPHCM-2021) Cho ABC có AB = cm, AC = cm BC = cm Vẽ phân giác BD ABC (D thuộc cạnh AC) Tính độ dài BD Câu 319 [ts321](Chuyên Bình Phước) Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O), D điểm cung nhỏ BC đường tròn (O), H chân đường cao kẻ từ A tam giác ABC Hai điểm K, L hình chiếu vng góc H lên AB AC a) Chứng minh AL · CB = AB · KL b) Lấy điểm E đoạn AD cho BD = DE Chứng minh E tâm đường tròn nội tiếp tam giác ABC c) Đường thẳng KL cắt đường tròn (O) hai điểm M , N (K nằm M , L) Chứng minh AM = AN = AH Câu 320 [ts342](Chuyên Huế) (Chuyên Huế) Cho nửa đường trịn tâm O đường kính AB, điểm C thuộc nửa đường trịn khơng trùng với A B, D điểm cung AC, hai đường thẳng BC AD cắt E, đường thẳng BD cắt đường thẳng AC F cắt tiếp tuyến A nửa đường tròn G a) Chứng minh tứ giác ABEG nội tiếp b) Chứng minh điểm E ln thuộc đường trịn (S) cố định C thay đổi c) Gọi H giao điểm thứ hai đường thẳng AC với đường tròn (S) Chứng minh tứ giác BF EH nội tiếp Câu 321 [ts350](Chun Huế) Ơng An có mảnh đất hình thang vuông với đáy lớn dài 16 m, đáy bé dài m hai đường chéo vng góc Ơng dự định xây dựng cơng trình tồn diện tích mảnh đất Biết đơn giá xây dựng triệu đồng mét vuông Tính chi phí xây dựng cơng trình Câu 322 [ts351](Chun Huế) Từ tơn hình quạt OAB có OA = dm, AOB = 120◦ , người ta xác định hai điểm M, N trung điểm O OA, OB cắt tơn theo hình chữ nhật M N P Q M (như hình vẽ) Dùng miếng tơn hình chữ nhật M N P Q cuộn N lại tạo thành mặt xung quanh hình trụ cho M Q, N P trùng khít Tính thể tích hình trụ tạo thành A B Q P Câu 323 [ts352](Chuyên Huế) Cho đường tròn (O) có bán kính r Trên tiếp tuyến (O) A lấy điểm M cho AM = r, vẽ cát tuyến M BC (O) (B nằm M, C) cho AM B = α với 45◦ < α < 90◦ Gọi I trung điểm BC 32 Vũ Ngọc Thành Phân loại đề thi tuyển sinh vào trường chuyên 2021-2022 a) Chứng minh OAM I tứ giác nội tiếp b) Tính diện tích tam giác ABC theo r, α Câu 324 [ts369](Chuyên Nam Định 2021-2022) Cho tam giác nhọn ABC (AB < AC) nội tiếp đường trịn (O) Đường phân giác góc BAC cắt đường tròn (O) D (D = A) Trên cung nhỏ AC đường tròn (O) lấy điểm G khác C cho AG > GC; đường tròn có tâm K qua A, G cắt đoạn thẳng AD điểm P nằm bên tam giác ABC Đường thẳng GK cắt đường tròn (O) điểm M M = G a) Chứng minh tam giác KP G, ODG đồng dạng với b) Chứng minh GP , M D hai đường thẳng vuông góc c) Gọi F giao điểm hai đường thẳng OD KP , đường thẳng qua A song song với BC cắt đường tròn (K) điểm E (E = A) Chứng minh tứ giác DGF P tứ giác nội tiếp EGF = 90◦ Câu 325 [ts244](ĐHSP HN V1 2021-2022) Một biển quảng cáo có dạng hình trịn tầm O, bán kính 1, 6m Giả sử hình chữ nhật ABCD nội tiếp đường trịn tâm O bán kính 1, 6m cho A B BOC = 45◦ (hình bên) Người ta cần sơn màu toàn biển quảng cáo sơn mặt hình bên Biết mức chi phí sơn phần tơ đậm 150 nghìn đồng/m O phần cịn lại 200 nghìn đồng/m Hỏi số tiền (làm tròn đến đơn vị nghìn đồng) để sơn tồn biển quảng cáo bao nhiêu? Cho π = 3, 14 D C Câu 326 [ts250](Chuyên Tây Ninh 2021-2022) Cho tam giác ABC vuông A có đường cao AH (H thuộc BC) Biết ABC = 60◦ AH = a Tính theo a độ dài cạnh BC Câu 327 [ts299](Chuyên hậu giang 2021-2022) Cho tam giác ABC nhọn, nội tiếp đường tròn (O), đường kính AD Qua D kẻ đường thẳng vng góc với AD cắt cạnh BC P Đường thẳng P O cắt cạnh AB, AC M N Từ C kẻ đường thẳng song song với P O, cắt đường thẳng AB Q, CQ cắt AD E Gọi I trung điểm BC a) Chứng minh P D tiếp tuyến đường tròn (O) b) Chứng minh E, I, C, D thuộc đường tròn c) Chứng minh O trung điểm M N Câu 328 [ts206](Chun Bình Thuận) Từ điểm A nằm bên ngồi đường tròn (O) vẽ tiếp tuyến AB, AC với đường tròn (O)(B, C tiếp điểm) a) Chứng minh tứ giác ABOC nội tiếp b) Từ A vẽ cát tuyến AEF đến đường tròn (O) (với AE < AF ) Chứng minh AC = AE · AF 33 Vũ Ngọc Thành Phân loại đề thi tuyển sinh vào trường chuyên 2021-2022 c) OA cắt BC H Gọi M trung điểm đoạn thẳng HB, tia OM cắt AB K Đặt AOB = α Chứng KB minh cos2 α = KA Câu 329 [ts259](Chuyên Ninh Thuận) Cho đường tròn (O) ngoại tiếp tam giác nhọn ABC Gọi H chân đường cao hạ từ đỉnh A tam giác ABC Chứng minh BAH = OAC Câu 330 [ts240](Chuyên Gia Lai) Cho đường tròn (O) điểm P ngồi đường trịn Kẻ hai tiếp tuyển P A, P B với đường tròn (O) (A, B hai tiếp điểm) Tia P O cắt đường tròn I (O nằm P I) cắt AB H D điểm đối xứng B qua O C giao điểm thứ hai P D với đường tròn (O) a) Chứng minh P O ⊥ AB tứ giác BHCP nội tiếp b) Chứng minh AC ⊥ CH c) Gọi M giao điểm thứ hai IC với đường tròn ngoại tiếp tam giác ACH Tia AM cắt IB Q Chứng minh M trung điểm AQ Câu 331 [ts255](Chuyên Tây Ninh 2021-2022) Cho tứ giác ABCD có ABD = 29◦ , ADB = 41◦ , DCA = 58◦ ACB = 82◦ Tính ABC Câu 332 [ts278](chuyênĐồng Nai2021-2022) Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O) (CA > CB) Ba đường cao AD, BE, CF cắt H AD BE cắt (O) M N a) Chứng minh tứ giác ABDE nội tiếp, xác định tâm I đường tròn ngoại tiếp tứ giác ABDE chứng minh M N ∥ DE b) Chứng minh AE · AC · CE = CD · AB · EF c) Gọi K trung điểm HC Chứng minh IHKO hình bình hành Câu 333 [ts286](PTNK-TPHCM-2021) Cho ABC nhọn (AB < AC) nội tiếp đường trịn (T ) tâm O, bán kính √ R Cạnh BC = R Tiếp tuyến B, C (T ) cắt P Cát tuyến P A cắt (T ) D (khác A) Đường thẳng OP cắt BC H a) Chứng minh P BC tính tích P A · P D theo R b) Đường thẳng AH cắt (T ) điểm thứ hai E (E khác A) Chứng minh HA · HE = HO · HP P D = P E c) Trên tia AB lấy điểm I cho AI = AC, tia AC lấy điểm J cho AJ = AB Đường thẳng vng góc với AB I đường thẳng vng góc với AC J cắt K Chứng minh IJ = BC, AK vng góc BC tính KP theo R Câu 334 [ts391](Chuyên Quảng Nam 2021-2022) Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O) Kẻ AH vng góc với BC H, BE vng góc với đường kính AD đường trịn (O) E a) Chứng minh tứ giác ABHE nội tiếp đường tròn 34 Vũ Ngọc Thành Phân loại đề thi tuyển sinh vào trường chuyên 2021-2022 b) Chứng minh HE vuông góc với AC c) Tia phân giác góc BAC cắt đường tròn (O) F (F khác A) M giao điểm OF BC Gọi K trung điểm AB, I giao điểm KM HE Chứng minh tam giác M EH cân AE · EM = AB · EI Câu 335 [ts227](Chuyên Bình Dương) Cho hình thoi ABCD (AC > BD), O giao AC BD Đường tròn (O) nội tiếp hình thoi ABCD, tiếp xúc với cạnh AB, BC, CD, DA điểm E, F ,G, H Lấy K đoạn HA điểm L đoạn AE cho KL tiếp xúc với đường tròn (O) a) Chứng minh LOK = LBO BL · DK = OB b) Đường tròn ngoại tiếp tam giác CF L cắt cạnh AB M (khác L) Đường tròn ngoại tiếp tam giác CKG cắt cạnh AD N (khác K) Chứng minh điểm K, L, M , N nằm đường tròn c) Lấy điểm P , Q tương ứng đoạn F C, CG cho LP song song với KQ Chứng minh P Q tiếp xúc với đường tròn (O) Câu 336 [ts245](ĐHSP HN V1 2021-2022) Cho ba điểm A, B, C cố định cho A, B, C thẳng hàng, B nằm A C Gọi (d) đường thẳng qua C vng góc với AB Lấy điểm M tùy ý (d) Đường thẳng qua B vuông góc với AM cắt đường thẳng AM, (d) I, N Đường thẳng M B cắt AN K a) Chứng minh tứ giác M IKN nội tiếp b) Chứng minh CM · CN = AC · BC c) Gọi O tâm đường trịn ngoại tiếp tam giác AM N Vẽ hình bình hành M BN E Gọi H trung điểm đoạn thẳng BE Chứng minh OH vuông góc với đường thẳng (d) OH = AB Câu 337 [ts254](Chuyên Tây Ninh 2021-2022) Cho tứ giác ABCD (ABC, BCD tam giác nhọn) nội tiếp đường trịn có AC BD cắt E Gọi M , N I trung điểm CD, CE DE a) Chứng minh IAE = EBN b) Gọi J giao điểm AI BN ; đường thẳng JM cắt AC BD K L Chứng minh JE tiếp tuyến đường tròn ngoại tiếp tam giác EKL Câu 338 [ts211](Chuyên KHTN) Cho tam giác nhọn ABC có điểm P nằm tam giác (P không nằm cạnh) Gọi J, K, L tâm đường tròn nội tiếp tam giác P BC, P CA, P AB a) Chứng minh BJC + CKA + ALB = 450◦ b) Giả sử P B = P C P C < P A Gọi X, Y , Z hình chiếu vng góc J, K, L cạnh BC, CA, AB Dựng hình bình hành XY W Z Chứng minh W nằm phân giác BAC 35 Vũ Ngọc Thành Phân loại đề thi tuyển sinh vào trường chuyên 2021-2022 Câu 339 [ts205](Chuyên Bình Thuận) Một cốc nước dạng hình trụ có chiều cao 15 cm, bán kính đáy cm lượng nước ban đầu cốc cao 10 cm Thả chìm hồn tồn vào cốc nước viên bi thủy tinh hình cầu có bán kính cm Hỏi sau thả viên bi, mực nước cốc cách miệng cốc khoảng bao nhiêu? (Giả sử độ dày thành cốc đáy cốc khơng đáng kể; kết qủa làm trịn đến chữ số thập phân thứ hai) Câu 340 [ts329](Chuyên Gia Lai-2021-2022) Cho đường trịn (O) có đường kính AB cố định, I điểm thuộc đoạn OA, (I khác O) qua I kẻ đường thẳng vng góc với AB cắt đường tròn (O) hai điểm phân biệt M N Gọi C điểm thuộc cung lớn M N E giao điểm AC với M N a) Chứng minh tứ giác EIBC nội tiếp đường tròn b) Chứng minh AE · AC = AM AE · AC − AI · IB = AI c) Gọi H, K, P hình chiếu C lên đường thẳng BM, M N BN Xác định vị trí điểm C đường tròn (O) cho độ dài đoạn thẳng HK lớn Câu 341 [ts310](An Giang2021-2022) Cho tam giác ABC có diện tích 36 cm2 Gọi M , N , P ba điểm nằm ba cạnh AB, BC, CA cho M N ⊥ BC, N P ⊥ AC, P M ⊥ AB Chứng tỏ tam giác M N P tính diện tích tam giác M N P Câu 342 [ts315](Chuyên Hà Nam 2021-2022) Cho đường tròn (O) có đường kính AB = 2R Lấy hai điểm phân biệt C D nửa đường tròn (O) cho C thuộc cung AD (C, D không trùng với A, B) Gọi H giao điểm AD BC, E giao điểm AC BD a) Chứng minh tứ giác CEDH nội tiếp b) Chứng minh CE · CA = CH · CB c) Gọi F giao điểm EH AB Chứng minh H tâm đường tròn nội tiếp tam giác CDF √ d) Khi C, D thay đổi nửa đường tròn (O) cho CD = R Chứng minh trung điểm I EH thuộc đường tròn cố định Câu 343 [ts218](Chuyên Hà Tĩnh) Cho nửa đường trịn tâm O đường kính AB Gọi I điểm cung AB Trên cung lớn AB đường trịn tâm I, bán kính IA, lấy điểm C cho tam giác ABC nhọn Gọi M , N giao điểm CA, CB với nửa đường trịn đường kính AB (M khác A, N khác B); J giao điểm AN với BM a) Chứng minh tam giác M BC tam giác N AC tam giác cân b) Chứng minh I trực tâm tam giác CM N c) Gọi K trung điểm IJ, tính tỉ số CJ OK 36 Vũ Ngọc Thành Phân loại đề thi tuyển sinh vào trường chuyên 2021-2022 Câu 344 [ts262](Chuyên Ninh Thuận) Cho tam giác nhọn ABC có trực tâm H đường cao AD, BE, CF Gọi I K hình chiếu vng góc H lên EF ED Hai đường thẳng IK AD cắt M Hai đường thẳng F M DE cắt N Gọi S điểm đối xứng B qua D Chứng minh ba điểm A, N , S thẳng hàng Câu 345 [ts269](Chuyên Vũng Tàu) Cho ABC nhọn (AB < AC) Một đường tròn qua B, C không qua A cắt cạnh AB, AC E, F (E khác B, F khác C); BF cắt CE D Gọi P trung điểm BC K điểm đối xứng với D qua P a) Chứng minh tam giác KBC đồng dạng với tam giác DF E AE DE = AC CK b) Gọi M, N hình chiếu vng góc D AB, AC Chứng minh M N vng góc với AK M A + N K = N A2 + M K c) Gọi I, J trung điểm AD M N Chứng minh ba điểm I, J, P thẳng hàng d) Đường thẳng IJ cắt đường tròn ngoại tiếp tam giác IM N T (T = I) Chứng minh AD tiếp tuyến đường tròn ngoại tiếp tam giác DT J Câu 346 [ts292](Chuyên Vĩnh Phúc) Cho hình thang ABCD (AD song song với BC, AD < BC) Các điểm E, F thuộc cạnh AB, CD Đường tròn ngoại tiếp tam giác AEF cắt đường thẳng AD M (M không trùng với A D, D nằm A M ), đường tròn ngoại tiếp tam giác CEF cắt đường thẳng BC N (N không trùng với B C, B nằm C N ) Đường thẳng AB cắt đường thẳng CD điểm P , đường thẳng EN cắt đường thẳng F M điểm Q Chứng minh rằng: a) Tứ giác EF QB nội tiếp đường tròn b) P Q song song với BC tâm đường tròn ngoại tiếp tam giác P QE, AM F , CEN nằm đường thẳng c) Các đường thẳng M N , BD, EF đồng quy điểm Câu 347 [ts335](Chuyên Hà Nội) Cho tam giác nhọn ABC nội tiếp đường tròn (O) AB < AC Gọi I tâm đường tròn nội tiếp tam giác ABC Đường thẳng AI cắt đường tròn (O) điểm thứ hai M (M khác A) Gọi D, E F hình chiếu điểm I đường thẳng BC, CA AB a) Chứng minh tam giác M BI tam giác cân b) Đường tròn ngoại tiếp tam giác AEF cắt đường tròn (O) điểm thứ hai P (P khác A) Chứng minh P , M D ba điểm thẳng hàng c) Gọi H giao điểm đường thẳng IP đường thẳng EF Chứng minh HD song song với AM 37 Vũ Ngọc Thành Phân loại đề thi tuyển sinh vào trường chuyên 2021-2022 Câu 348 [ts377](Chuyên Ninh Bình 2021-2022) Trên đường tròn tâm O, lấy hai điểm B, C cố định, BC không qua tâm O A điểm di động cung lớn BC cho tam giác ABC nhọn AB < AC Các đường cao AD, BE, CF tam giác ABC cắt H Đường thẳng d qua D song song với EF , cắt đường thằng AB, AC M, N Gọi P giao điểm hai đường thẳng EF BC, I trung điểm đoạn thẳng BC Chứng minh rằng: a) Tứ giác BF EC tứ giác M BN C nội tiếp đường tròn b) Tam giác EDI đồng dạng với tam giác P EI H trực tâm tam giác AP I c) Đường tròn ngoại tiếp tam giác M N P qua điểm cố định Câu 349 [ts270](Chuyên Vũng Tàu) Cho tam giác ABC điểm O thay đổi tam giác Tia Ox song song với AB cắt BC D, tia Oy song song với BC cắt AC E, tia Oz song song với AC cắt AB F Tìm giá trị Å ã Å ã Å ã AB BC AC nhỏ biểu thức S = + + OD OE OF Câu 350 [ts403](Chuyên Quảng Trị - 2021-2022) Cho tam giác nhọn ABC Trên nửa mặt phẳng bờ đường thẳng AC không chứa điểm B, lấy điểm D cho ∠DAB = 90◦ ∠DCB < 90◦ Gọi E hình chiếu vng góc C lên AB, F hình chiếu vng góc A lên BC Đường thẳng qua E vng góc với BD cắt BD, AF G, H a) Chứng minh ADGE, ACF E tứ giác nội tiếp Từ suy BG · BD = BF · BC b) Chứng minh đường thẳng BH vng góc với đường thẳng CD c) Đường thẳng AB cắt đường tròn ngoại tiếp tam giác BCD lần J Gọi K L hình chiếu vng góc J lên BD BC Chứng minh K, H, L thẳng hàng Câu 351 [ts309](An Giang2021-2022) Cho tam giác ABC (AB < BC) nội tiếp đường trịn (O) đường kính AC Gọi I điểm thuộc đoạn OC (I khác O C) Qua I kẻ đường vng góc với AC cắt BC E AB kéo dài D Gọi K điểm đối xứng C qua điểm I a) Chứng minh tứ giác BDCI AKED nội tiếp b) Chứng minh IC · IA = IE · ID Câu 352 [ts382](Chuyên Phú Yên 2021-2022) Cho tam giác ABC nội tiếp đường trịn (O) có BC < CA < AB Đường phân giác góc A cắt BC D cắt (O) điểm thứ hai E Trên cung AB (không chứa C) lấy điểm F (F khác A, khác B) Gọi G giao điểm EF với BC Trên hai cạnh AB, AC lấy hai điểm H, K cho AH = GC, AK = GB Gọi M , N giao điểm HK với AE EF Chứng minh a) AKH F BC hai tam giác đồng dạng b) F AKN hình thang 38 Vũ Ngọc Thành Phân loại đề thi tuyển sinh vào trường chuyên 2021-2022 c) M N GD tứ giác nội tiếp Câu 353 [ts394](Chuyên ĐHSP HN 2021-2022) Cho A, B hai điểm cố định nằm đường trịn tâm O, bán kính R Giả sử C điểm cố định tia đối tia BA Một cát tuyến thay đổi qua C cắt đường tròn (O) D E(D nằm C, E) Các đường tròn ngoại tiếp tam giác BCD ACE cắt giao điểm thứ hai M Biết bốn điểm O, B, M, E tạo thành tứ giác OBM E a) Tứ giác OBM E nội tiếp b) CD · CE = CO2 − R2 c) M ln di chuyển đường trịn cố định Câu 354 [ts184](Chuyên Trà Vinh 2021-2022) Cho hình chữ nhật ABCD, kẻ CM vng góc với BD (M ∈ BD) Gọi I, J trung điểm MB AD Chứng minh IJ IC vng góc với Câu 355 [ts190](Chun Vĩnh Long 2021-2022) Cho hình vng ABCD điểm E cạnh BC biết AB = cm, BE = BC Tia Ax vng góc với AE A cắt tia CD F a) Tính diện tích ∆AEF b) Gọi I trung điểm đoạn thẳng EF, tia AI cắt CD K Chứng minh: AE = KF.CF Câu 356 [ts9](chuyên Bến Tre) Cho tam giác ABC vng A với (AB > AC), có đường cao AH Biết 12 BC = 1dm AH = dm 25 a) Tính độ dài hai cạnh AB AC b) Kẻ HD ⊥ AB; HE ⊥ AC (với D ∈ AB, E ∈ AC) Gọi I trung điểm BC Chứng minh IA ⊥ DE Câu 357 [ts100](Chuyên Kiên Giang 2021-2022) Cho hình vng ABCD có cạnh Trên cạnh BC, lấy điểm M cho BM = Gọi N giao điểm đường thẳng CD đường thẳng vng góc với AM A Gọi I trung điểm M N Hãy tính độ dài đoạn thẳng DI Câu 358 [ts126](Chuyên Lâm Đồng 2021-2022) Cho tam giácABC, đường cao AH (H ∈ BC) Biết BC −AB = 2cm,AC = 10cm CAH = 30◦ Tính diện tích tam giác ABC Câu 359 [ts133](Chuyên Lâm Đồng 2021-2022) Cho hình bình hành ABCD có BAD > 90◦ Gọi Hlà chân đường vng góc kẻ từ A đến BC Đường trung tuyến kẻ từ C tam giác ABCcắt đường tròn ngoại tiếp tam giác ABC K Chứng minh bốn điểm K, H, D, C thuộc đường tròn Câu 360 [ts26](Chun Bạc Liêu 2020-2021) Cho hình vng ABCD cố định; M điểm di chuyển đoạn BC (M khác B); đường thẳng AM cắt đường thẳng CD E, đường thẳng vng góc với đường thẳng AM A cắt đường thẳng BC F a) Chứng minh tam giác AEF vuông cân 39 Vũ Ngọc Thành Phân loại đề thi tuyển sinh vào trường chuyên 2021-2022 b) Gọi I tâm đường tròn ngoại tiếp tam giác AEF Chứng minh I di chuyển đường thẳng cố định M di động BC CB CD S1 + = Tìm giá trị nhỏ (trong S, S1 lần CM CN S lượt diện tích hình vng ABCD đa giác ABM N D) c) Gọi N điểm thuộc đoạn CD cho · Câu 361 [ts164](Chuyên Thái Nguyên 2021-2022) Bạn Nam dự định dùng hình vng cạnh 2cm 3cm để ghép lại thành hình vng cạnh 2021cm Hỏi bạn Nam có thực khơng? Giải thích? Câu 362 [ts183](Chun Trà Vinh 2021-2022) Cho điểm M thuộc nửa đường tròn (O) đường kính AB = 2R(M khác A B) Kẻ tiếp tuyến Ax, By với nửa đường tròn (Ax By thuộc nửa mặt phẳng bờ AB chứa nửa đường tròn) Tiếp tuyến M (O) cắt Ax, By E F, AF cắt BE K a) Chứng minh: AE.BF = R2 b) Kéo dài MK cắt AB H Chứng minh K trung điểm MH Câu 363 [ts32](Chuyên Bắc Ninh 2021 - 2022) Cho tam giác ABC nhọn cố định, nội tiếp đường tròn tâm O Điểm P điểm thay đổi cung nhỏ AB (O) (P không trùng với A B) Đường thẳng qua P vng góc với OA cắt đường thẳng AB, AC theo thứ tự điểm Q R; đường thẳng qua P vng góc với OB cắt đường thẳng AB, BC theo thứ tự điểm S T a) Chứng minh tam giác PQS tam giác cân b) Giả sử tam giác ABC cân C, gọi giao điểm hai đường thẳng AB PC M Chứng minh hai tam PC giác CPA CAM đồng dạng P thay đổi cung nhỏ AB tỉ số có giá trị khơng đổi PA + PB c) Tìm vị trí điểm P cung nhỏ AB để tích QR.ST đạt giá trị lớn Câu 364 [ts191](Chuyên Vĩnh Long 2021-2022) Cho (O; R) điểm M cho OM = 2R Kẻ tiếp tuyến MA, MB với (O) (A, B tiếp điểm) Trên đoạn thẳng AB lấy điểm I (với AI < BI I khác A) Qua I vẽ dây CD cho IC = ID C thuộc cung nhỏ AB Tiếp tuyến (O) C cắt OI Q Chứng minh: a) Tứ giác OCQD nội tiếp đường tròn b) ∆AM B tam giác c) OQ ⊥ M Q Câu 365 [ts196](Chuyên Yên Bái 2021-2022) Cho hai đường tròn (O1 ) (O2 ) cắt hai điểm A B Một tiếp tuyến hai đường tròn tiếp xúc với (O1 ) (O2 ) M N Qua A kẻ đường thẳng song song với M N cắt (O1 ) (O2 ) C D ( C D khác A) Tia CM cắt DN E a) Chứng minh M N tia phân giác EM A b) Gọi I giao điểm AB M N Chứng minh IM = IA.IB 40 Vũ Ngọc Thành Phân loại đề thi tuyển sinh vào trường chuyên 2021-2022 c) CD cắt BM BN P Q Chứng minh A trung điểm P Q d) Chứng minh EP = EQ Câu 366 [ts10](chuyên Bến Tre) Cho tam giác ABC có đường phân giác ngồi góc A cắt đường thẳng BC điểm D Gọi M trung điểm BC Đường tròn ngoại tiếp ∆ADM cắt đường thẳng AB, AC E F (với E, F khác A) Gọi N trung điểm EF Chứng minh M N //AD Chuyên toán Câu 367 [ts39](Chuyên Bình Định 2021-2022) Cho tam giác ABC có ACB > 90◦ nội tiếp đường tròn tâm O Gọi M trung điểm BC, đường thẳng OM cắt cung nhỏ BC D, cắt cung lớn BC E Gọi F chân đường vng góc hạ từ E xuống AB; H chân đường vng góc hạ từ B xuống AE a) Chứng minh tứ giác BEHF nội tiếp b) Chứng minh M F ⊥ AE c) Đường thẳng MF cắt AC Q Đường thẳng EC cắt AD, AB I K Chứng minh EQA = 90◦ EC EK = IC IK Câu 368 [ts59](Chuyên Cần Thơ 2021 - 2022) Cho tam giác ABC (AB > BC > AC) có ba góc nhọn nội tiếp đường trịn (O) Vẽ đường trịn tâm C, bán kính CB cắt đường thẳng AB điểm D cắt đường tròn (O) điểm thứ hai E a) Chứng minh đường thẳng DE vng góc với đường thẳng AC b) Đường thẳng DE cắt đường tròn (O) điểm thứ hai F Các đường thẳng CO, AB cắt điểm H đường thẳng BE, CF cắt điểm K Chứng minh CKH = CBH c) Gọi I giao điểm đường thẳng AB CE Chứng minh IA.IB = ID.IH Câu 369 [ts44](Chuyên Tin Bình Định2021 - 2022) Cho tam giác ABC nội tiếp đường tròn tâm O, D điểm thuộc cạnh BC (D khác B C) Gọi M , N trung điểm cạnh AB AC Đường thẳng M N cắt đường tròn (O) P , Q (theo thứ tự P , M , N , Q) Đường tròn ngoại tiếp tam giác BDP cắt AB I (khác B) Các đường thẳng DI AC cắt K a) Chứng minh điểm A, I, P , K nằm đường tròn b) Chứng minh QA PD = QB PK c) Đường thẳng CP cắt đường tròn ngoại tiếp tam giác BDP G (khác P ) Đường thẳng IG cắt đường thẳng CD BC E Chứng minh D di chuyển đoạn BC tỉ số khơng đổi CE Câu 370 [ts72](Chun Hịa Bình 2021-2022) Cho đường trịn tâm O đường kính AB, kẻ đường thẳng d tiếp tuyến (O) B Qua A kẻ đường thẳng cắt đường thẳng d E F (B nằm E F), AE cắt (O) điểm thứ hai C, AF cắt (O) điểm thứ hai D Chứng minh tứ giác CDFE nội tiếp 41 Vũ Ngọc Thành Phân loại đề thi tuyển sinh vào trường chun 2021-2022 Câu 371 [ts74](Chun Hịa Bình 2021-2022) Cho tam giác ABC nhọn có ba đường cao AD, BE, CF cắt điểm H Gọi M trung điểm đoạn AH a) Chứng minh rằng:CA.CE = CB.CD b) Chứng minh EM tiếp tuyến đường tròn ngoại tiếp tam giác BEF c) Gọi I J tâm đường tròn nội tiếp hai tam giác BDF EDC Chứng minh rằng: DIJ = DF C Câu 372 [ts90](Chuyên Đăk Lăk 2021 - 2022) Cho nửa đường trịn (O; R) đường kính AB Lấy điểm C tùy ý nửa đường tròn (C khác A B) Gọi M, N điểm cung AC cung BC Hai đường thẳng AC BN cắt D Hai dây cung AN BC cắt H a) Chứng minh tứ giác CDN H nội tiếp b) Gọi I trung điểm DH Chứng minh IN tiếp tuyến nửa đường tròn (O; R) c) Chứng minh C di động nửa đường trịn (O; R) đường thẳng M N ln tiếp xúc với đường tròn cố định d) Trên nửa đường trịn (O; R) khơng chứa C lấy điểm P tùy ý (P khác A B) Gọi Q, R, S hình AB BC CA chiếu vng góc P AB, BC, CA Tìm vị trí P để tổng + + đạt giá trị nhỏ PQ PR PS Câu 373 [ts82](Chuyên Hải Dương 2021-2022) a) Cho hai đường tròn (O;R) (O’;R’) cắt hai điểm phân biệt A B (AB < 2R) Từ điểm C thay đổi tia đối tia AB, vẽ tiếp tuyến CD, CE với đường tròn tâm O (D, E tiếp điểm E nằm đường tròn tâm O ) Hai đường thẳng AD AE cắt đường tròn tâm O M N (M N khác với điểm A) Đường thẳng DE cắt MN I Chứng minh rằng: (a) MI.BE = BI.AE; (b) Khi điểm C thay đổi đường thẳng DE ln qua điểm cố định b) Cho đoạn thẳng AB cố định có độ dài AB = a (a > 0), I điểm nằm A B (IA > IB) Trên tia Ix vng góc với AB lấy hai điểm M N cho IA = IM, IB = IN, AN cắt MB K (K∈MB), BN cắt MA L (L∈MA) Tìm vị trí điểm I AB cho AN.NK có giá trị lớn Câu 374 [ts65](Chuyên Hải Phòng 2021-2022) Cho tam giác nhọn ABC (AB = AC) nội tiếp đường tròn (O) Gọi I tâm đường tròn bàng tiếp góc BAC tam giác ABC Đường thẳng AI cắt BC D, cắt đường tròn (O) E (E = A) a) Chứng minh E tâm đường tròn ngoại tiếp tam giác IBC b) Kẻ IH vng góc với BC H Đường thẳng EH cắt đường tròn (O) F (F = E) Chứng minh AF ⊥ F I 42 Vũ Ngọc Thành Phân loại đề thi tuyển sinh vào trường chuyên 2021-2022 c) Đường thẳng F D cắt đường tròn (O) M (M = F ), đường thẳng IM cắt đường tròn (O) N (N = M ) Đường thẳng qua O song song với F I cắt AI J, đường thẳng qua J song song với AH cắt IH P Chứng minh ba điểm N, E, P thẳng hàng Câu 375 [ts95](Chun Khánh Hịa 2021-2022) Cho ∆ABC vng A Các đường trịn (O)đường kínhAB, (I) đường kính AC cắt điểm thứ hai H (H = A) Đường thẳng (d) thay đổi qua A cắt đường tròn (O)tại M cắt đường tròn (I)tại N ( A nằm hai điểm M N ) a) Đoạn thẳng OI cắt đường tròn (O), ( I) tạiD, E Chứng minh OI đường trung trực đoạn thẳng AH AB + AC − BC = 2DE b) Chứng minh giao điểm S hai đường thẳng OM IN di chuyển đường tròn cố định đường thẳng (d) quay quanhA c) Giả sử đường thẳng M H cắt đường (I) điểm thứ hai T (T = H) Chứng minh ba điểm N, I, T thẳng hàng ba đường thẳng M S, AT, N H đồng quy Câu 376 [ts101](Chuyên Kiên Giang 2021-2022) Cho (O1 ) , (O2 ) hai đường tròn, cắt điểm A, M , cho ∠O1 AO2 góc tù Tiếp tuyến A (O1 ) cắt (O2 ) điểm thứ hai B (khác A) Tiếp tuyến A (O2 ) cắt (O1 ) điểm thứ hai D (khác A) a) Trên cung AD không chứa M (O1 ), lấy điểm K, khác A D, cho đường thẳng KM cắt cung AB không chứa M (O2 ) điểm L, khác A B Chứng minh đường thẳng AK song song với đường thẳng BL b) Gọi C điểm đối xứng A qua M Chứng minh ABCD tứ giác nội tiếp Câu 377 [ts108](Chuyên Kon Tum 2021-2022) Cho tam giác ABC tam giác nhọn có AB < AC, đường trịn (O) đường tròn ngoại tiếp tam giác ABC Các đường phân giác góc ABC, ACB cắt đường trịn (O) điểm N, M (trong N khác B M khác C) Hai dây cung BN CM cắt I Dây cung M N cắt cạnh AB, AC E, F a) Chứng minh tứ giác BM EI nội tiếp NE N B.N C = MF M B.M C b) Chứng minh tứ giác AEIF hình thoi c) Cho biết BAC = 60◦ , gọi R giao điểm hai đường thẳng BC, M N Chứng minh ba điểm I, O, R thẳng hàng Câu 378 [ts131](Chuyên Lâm Đồng 2021-2022) Cho hình vng ABCD Vẽ đường trịn tâm O đường kính BCvà đường tròn (A; AB) chúng cắt điểm thứ hai E(E khácB) Tia CEcắtAD điểm F Chứng minh F trung điểm củaAD 43 Vũ Ngọc Thành Phân loại đề thi tuyển sinh vào trường chuyên 2021-2022 Câu 379 [ts121](Chuyên Lào Cai 2021-2022) Cho tam giác nhọn ∆ ABC khơng cân (AB < AC) có đường tròn ngoại tiếp (O; R) đường tròn nội tiếp (I; r) Đường tròn (I; r) tiếp xúc với cạnh BC , CA , AB D, E, F Kéo dài AI cắt BC M cắt đường tròn (O;R) điểm thứ N (N khác A) Gọi Q giao điểm AI FE Nối AD cắt đường tròn (I; r) điểm thứ P (P khác D) Kéo dài DQ cắt đường tròn (I; r) điểm thứ T (T khác D) Chứng minh rằng: a) AF = AP.AD b) Tứ giác PQID nội tiếp N B = N M.N A c) QA phân giác P QT d) ADF = QDE Câu 380 [ts138](Chuyên Phú Thọ 2021-2022) Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O) Các đường cao BE, CF cắt H Gọi G giao điểm EF, BC Đường thẳng qua A vng góc với GH I cắt BC M Các tiếp tuyến với (O) B, C cắt S a) Chứng minh tứ giác GF IC nội tiếp b) Chứng minh M trung điểm BCvà tam giác AEM đồng dạng với tam giác ABS c) Gọi K giao điểm M H EF Chứng minh KE = KF Å HE HF ã2 Câu 381 [ts145](Chuyên Quảng Bình 2021-2022) Cho tam giác nhọn ABC nội tiếp đường trịn (O) đường kính AE Gọi D điểm cung BE không chứa điểm A (D khác B E) Gọi H, I, K hình chiếu vng góc D lên đường thẳng BC, CA AB a) Chứng minh ba điểm H, I, K thẳng hàng b) Chứng minh AB BC AC + = DI DK DH c) Gọi P trực tâm ∆ABC, chứng minh đường thẳng HK qua trung điểm đoạn thẳng DP Câu 382 [ts51](Chuyên Cà Mau - 2021- 2022) Cho tam giác ABC có ba góc nhọn Các đường cao AM, BN, CP cắt H Gọi I điểm đối xứng H qua BC a) Chứng minh tứ giác ABIC nội tiếp đường tròn (O) b) Gọi K trung điểm AB, chứng minh NK tiếp tuyến đường tròn ngoại tiếp tam giác NHC c) Biết BN cắt đường tròn (O) điểm thứ hai E CP cắt đường tròn (O) điểm thứ hai F Tính giá trị AI BE CF biểu thức G = + + AM BN CP Câu 383 [ts152](Chuyên Quảng Ngãi 2021-2022) Cho đường trịn tâm O, bán kính R = 4cm hai điểm B, C cố định (O), BC khơng đường kính Điểm A thay đổi (O) cho tam giác ABC nhọn Gọi D, E, F chân đường cao kẻ từ A, B, C tam giác ABC 44 Vũ Ngọc Thành Phân loại đề thi tuyển sinh vào trường chuyên 2021-2022 a) Chứng minh BAD = CAO b) Gọi M điểm đối xứng A qua BC, N điểm đối xứng B qua AC Chứng minh : CD.CN = CE.CM c) Trong trường hợp điểm C, M, N thẳng hàng, tính độ dài đoạn thẳng AB d) Gọi I trung điểm BC Đường thẳng AI cắt EF K Gọi H hình chiếu vng góc K BC CHứng minh đường thẳng AH qua điểm cố định A thay đổi Câu 384 [ts25](Chuyên Bạc Liêu 2020-2021) Cho nửa đường trịn (O) đường kính AB Lấy điểm E tia đối tia AB Kẻ tiếp tuyến EC với nửa đường tròn (O) (C tiếp điểm), tia EC cắt tia tiếp tuyến Bx nửa đường tròn (O) D (tia tiếp tuyến Bx nằm nửa mặt phẳng AB chứa nửa đường tròn (O) Gọi H giao điểm BC với DO; K giao điểm thứ hai AD với nửa đường tròn (O) a) Chứng minh rằng: EO.EB = EC.ED b) Chứng minh BKH = BDH tứ giác KHOA nội tiếp c) Qua O kẻ đường thẳng song song với BD cắt CD M Chứng minh BD DM − = DM EM Câu 385 [ts165](Chuyên Thái Nguyên 2021-2022) Cho hai đường tròn (O)và (O ) cắt hai điểm A, B (O O nằm hai phía đường thẳng AB) Từ điểm C thuộc tia đối tia ABvẽ tiếp tuyến CD, CE với đường tròn (O), D, E tiếp điểm điểm E nằm đường tròn (O ) Đường thẳng AD, AE cắt đường tròn (O) điểm M, N (M = A, N = B) Gọi K giao điểm hai đường thẳng DE M N Chứng minh: a) Tam giác CDA tam giác CBD đồng dạng, từ dó suy AD.BE = BD.AE b) K trung điểm đoạn thẳng M N Câu 386 [ts166](Chuyên Thái Nguyên 2021-2022) Cho điểm A cố định nằm ngồi đường trịn (O) Kẻ tiếp tuyến AE, AF với đường tròn (O), (E, F tiếp điểm) Điểm D di động cung lớn EF cho tam giác DEF nhọn Tiếp tuyến D đường tròn (O) cắt tia AE, AF B, C Gọi M, N giao điểm đường thẳng EF với đường thẳng OB, OC a) Chứng minh bốn điểmB, M, N, C thuộc đường tròn b) Gọi DK, OI đường phân giác góc EDF , BOC (K thuộc EF , I thuộc BC) Chứng minh đường thẳng IK qua điểm cố định Câu 387 [ts158](Chuyên Thanh Hóa 2021-2022) Cho hai đường tròn (O) (O ) cắt hai điểm A B Tiếp tuyến A đường tròn tâm O cắt đường tròn tâm O P (P = A) Tiếp tuyến A đường tròn tâm O cắt đường tròn tâm O Q(Q = A) Gọi I điểm cho tứ giác AOIO hình bình hành D đối xứng với A qua B 45 Vũ Ngọc Thành Phân loại đề thi tuyển sinh vào trường chuyên 2021-2022 a) Chứng minh I tâm đường tròn ngoại tiếp tam giác A P Q Từ suy tứ giác A D P Q nội tiếp ? b) Gọi M trung điểm đoạn PQ Chứng minh ADP = QDM c) Giả sử hai đường thẳng IBvà P Qcắt S Gọi K giao điểm ADvà P Q Chứng minh: = SK 1 + SP SQ Câu 388 [ts174](Chuyên Tiền Giang 2021-2022) Cho tam giác ABC vng A (AC < AB) có đường cao AH Gọi D điểm nằm đoạn thẳng AH (D khác A H) Đường thẳng BD cắt đường trịn tâm C bán kính CA E F (F nằm B D) Qua F vẽ đường thẳng song song với AE cắt hai đường thẳng AB AH M N a) Chứng minh BH.BC = BE.BF b) Chứng minh HD tia phân giác góc EHF c) Chứng minh F trung điểm MN 46 ... Ngọc Thành Phân loại đề thi tuyển sinh vào trường chuyên 2021- 2022 PHÂN LOẠI THEO CHỦ ĐỀ ĐỀ THI TUYỂN SINH VÀO TRƯỜNG CHUYÊN 2021- 2022 Tài liệu tổng hợp từ 50 đề thi tuyển sinh vào trường chuyên; ... Câu [ts385] (Chuyên Quảng Nam 2021- 2022) Thực phép tính A = Vũ Ngọc Thành Phân loại đề thi tuyển sinh vào trường chuyên 2021- 2022 √ Å √ ã x x + 14 √ Câu [ts324] (Chuyên Gia Lai -2021- 2022) Cho biểu... Thành Phân loại đề thi tuyển sinh vào trường chuyên 2021- 2022 Câu 35 [ts124] (Chuyên Lâm Đồng 2021- 2022) Tính giá trị biểu thức: A= 4− » √ 10 − − 4+ » √ 10 − Câu 36 [ts118] (Chuyên Lào Cai 2021- 2022)