1. Trang chủ
  2. » Luận Văn - Báo Cáo

Structure and function of peptide deformylase

76 5 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Dissertation for Degree of Doctor Supervisor: Prof Lin-Woo Kang Structure and Function of Peptide Deformylase Submitted by HO THIEN HOANG February, 2018 Department of Biological Sciences Graduate School of Konkuk University Structure and Function of Peptide Deformylase A Dissertation submitted to the Department of Biological Sciences and the Graduate School of Konkuk University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Submitted by HO THIEN HOANG December, 2017 This certifies that the Dissertation of HO THIEN HOANG is approved Approved by Examination Committee: Chairman Member Member Member Member December, 2017 Graduate School of Konkuk University TABLE OF CONTENTS List of Tables…………………… …………………………………… iii List of Figures……… … …………………………………………… iv Abstract……….……………………………………………………… v Chapter Introduction 1.1 Peptide deformylase 1.1.1 The important of peptide deformylase in cell 1.1.2 Structure and mechanism of peptide deformylase 1.1.3 Xanthomonas oryzae pv oryzae 1.1.4 Acinetobacter baumannii 10 1.1.5 Three-dimensional structure determination methods 12 Chapter Methods 18 2.1 pv oryzae Cloning of peptide deformylase from Xanthomonas oryzae 18 2.2 Overexpression and purification of XoPDF 18 2.3 Crystallization, data collection, and structure determination of substrate- or inhibitor-bound XoPDF 21 2.4 Crystallization, data collection, and structure determination of fragment chemical compound-bound XoPDF 22 2.5 Structure determination and refinement of XoPDF 23 2.6 Cloning of AbPDF 24 2.7 Overexpression and purification of AbPDF 24 i 2.8 Crystallization and X-ray data collection of AbPDF 25 Chapter Results 27 3.1 Overall apo-XoPDF structure 27 3.2 Substrate-complex structure 36 3.3 Inhibitor-complex structure 39 3.4 Fragment chemical-complex structures 41 3.5 Overall apo-AbPDF structure 42 3.6 Inhibitor-complex AbPDF structure 47 Chapter Discussion 49 References 58 Abstract (in Korean) 66 ii List of Tables Table Data collection and refinement statistics 33 Table Data-collection and processing statistics 44 iii List of Figures Figure 1.1 Proposed catalytic mechanism of PDF Figure 1.2.Workflow for solving the protein structure by X-ray crystallography 13 Figure 1.3 Schematic illustration of a protein crystallization phase diagram 16 Figure 1.4 Two methods of preparing A: Hanging drop B: Sitting drop 17 Figure 2.1 Purified XoPDF is shown on a 15% SDS-PAGE gel 20 Figure 3.1 Native structure of XoPDF (a) 28 Figure 3.2 Metal binding and coordination of XoPDF 29 Figure 3.3 Sequence alignment of PDFs 30 Figure 3.4 Superimposed apo-, MA-bound, and MAS-bound XoPDF structures 31 Figure 3.5 Structures of PDF CD-loops 32 Figure 3.6 Refined electron density map of bound substrates and inhibitor actinonin 37 Figure 3.7 Substrate methionine-binding site 39 Figure 3.8 Comparison of actinonin-bound and FCC-bound XoPDF structures 40 Figure 3.9 Chemical structure and refined electron density maps of bound FCCs 42 Figure 3.10 Purified AbPDF on a 12% SDS-PAGE gel Molecular-mass markers are shown in lane M and purified AbPDF is shown in lane P 43 Figure 3.11 Native structure of AbPDF 46 Figure 3.12 Structure of CD-loop AbPDF 47 Figure 3.13 Superimposed apo-, Actinonin-bound AbPDF structure 48 Figure 4.1 Time-resolved transcriptional gene expression of XoPDF (Xoo1 075, def) and Xoo0585 genes 50 Figure 4.2 Sequence alignment of XoPDF and eukaryotic PDFs 52 Figure 4.3 Structure comparison between XoPDF and AtPDFs 53 Figure 4.4 Bottom view of substrate methionine-binding site 56 Figure 4.5 Exposure of Phe134 residue in XoPDF with the flexible open conformation of CD loop 57 Figure 4.6 Actinonin structure in XoPDF 57 iv ABSTRACT Structure and Function of Peptide Deformylase from Acinetobacter baumannii and Xanthomonas oryzae pv oryzae Ho, Thien Hoang Department of Biological Sciences Graduate School of Konkuk University Peptide deformylase (PDF) is an enzyme responsible for catalyzing the removal of the N-formyl group from the N-terminus following translation in bacterial cells and is an important target to develop antibacterial agents I determined crystal structures of two PDFs from Acinetobacter baumannii and Xanthomonas oryzae pv oryzae Acinetobacter baumannii is a Gramnegative opportunistic pathogen and has a high risk infection among immune impairment patients, particularly those who have stayed in hospital longterm Acinetobacter baumannii is one of the most common and serious multidrug-resistant pathogens Xanthomonas oryzae pv oryzae causes bacterial blight on rice; this species is one of the most devastating disease of rice worldwide In addition to the apo form of PDF structures, substrate and fragment chemical bound PDF structures were also determined, which include two substrate-bound (methionine-alanine or methionine-alaninev serine), an inhibitor-bound (actinonin), and six fragment chemical-bound structures Six fragment chemical compounds were bound in the substratebinding pocket The fragment chemical-bound structures were compared to the natural PDF inhibitor actinonin-bound structure The structural studies will be useful to design new inhibitors specific to AbPDF and XoPDF and potential antibiotics against Acinetobacter baumannii and Xanthomonas oryzae pv oryzae Key words: Acinetobacter baumannii, Xanthomonas oryzae pv oryzae, peptide deformylase, Bacterial blight (BB) disease, opportunistic bacterial pathogen vi Chapter Introduction 1.1 Peptide deformylase 1.1.1 The important of peptide deformylase in cell Peptide deformylase are metalloprotease in bacteria, plants (chloroplast), and humans (mitochondrial) that removes the formyl moiety on the methionine of Nformyl-methionine peptide in newly synthesized polypeptides which is essential process for them (Escobar-Alvarez et al., 2010) The protein synthesis usually stars with an N-formyl-methionine residue In its initiation complex, the key components in protein synthesis are the initiator fMet-tRNAfMet, three initiation protein factors (IF1, IF2, IF3), GTP, mRNA, a large 50S and a small 30S ribosomal subunits (Clark & Marcker, 1966; Laursen, Sorensen, Mortensen, & Sperling-Petersen, 2005; Marcker & Sanger, 1964) Initial there is a esterification of methionyl residue at the 3‟ end of initiator tRNAfMet, the methionine-tRNAfMet molecule is N-formylated by a methionyl-tRNAfMet formyltransformylase, so that the newly synthesized proteins are formylated at the amino terminus (Miesel, Greene, & Black, 2003) The formylation of the methionine tRNAfMet molecule is a crucial role in recognition of IF2 factor, and finally the codon is adjusted in the P site, contributing to the accuracy of translation initiation (Petersen, Roll, Grunberg-Manago, & Clark, 1979; Sundari, Stringer, Schulman, & Maitra, 1976) After the process of initiation, elongation of protein translation lead to the displacement of IF2 factor by EF-Tu molecules and GTP, which protect Met-tRNAfMet against enzymatic hydrolysis and between XoPDF and AtPDFs will provide useful information to develop a specific inhibitor against XoPDF Figure 4.3 Structure comparison between XoPDF and AtPDFs (a) Superimposed structures of actinonin-bound XoPDF (green) and MAS-bound AtPDF1A (brown) Actinonin in XoPDF is shown in yellow CD-loop of AtPDF1A is shaded in purple (b) Superimposed structures of actinonin-bound XoPDF (green) and actinonin-bound AtPDF1B (pale-blue) Actinonin in XoPDF is shown in yellow CD-loop of AtPDF1B is shaded in salmon (c) Superimposed substrate-binding site of actinonin-bound XoPDF (green) and MAS-bound AtPDF1A (brown) with the upper layer residues of the hydrophobic pocket for substrate methionine side chain (d) Superimposed substrate-binding site of actinonin-bound XoPDF (green) and 53 actinonin-bound AtPDF1B (pale-blue) with the upper layer residues of the hydrophobic pocket for substrate methionine side chain We determined crystal structures of XoPDF in complex with six FCCs in the substrate-binding pocket All FCCs were at least partially bound at the hydrophobic substrate methionine binding site, which could accommodate bulkier structural motifs such as rigid aromatic rings with conjugated π-bonds than the aliphatic side chain of methionine The ring structures were mainly stacked between one plane of His141 and Glu97 and another plane of Val45 (Figure 4.4) The binding of elongated ligand-like substrate MAS and actinonin in XoPDF caused opening of the CD loop, which revealed the concealed hydrophobic Phe134 in solution (Figure 4.5) The revealed Phe134 looked for a compensating hydrophobic moiety The terminal Five-member pyrrolidine ring of actinonin provided the compensating hydrophobic moiety and bound to Phe134 The Tyr69 residue in the CD loop had hydrophobic interactions with Phe134 in the closed conformation of the apo structure The angle between two aromatic rings of Phe134 and Tyr69 was approximately 42°, of which the partial and unparalleled interaction had an interaction of moderate strength and allowed plausible switching of the CD loop from closed to open conformation The PDF structure from Leptospira interrogans also showed the closed conformation of the CD loop in the apo structure(Zhou, Song, & Gong, 2005), and the tyrosine residue in the CD loop corresponding to XoPDF Tyr69 was conserved (Figures 3.2 and 3.3) Most other PDF structures exhibited an open CD loop conformation in the apo structure (Escobar-Alvarez et al., 2010; Moon, Park, & Kim, 2005; Smith et al., 2003) 54 (Figures 3.2) The position of Phe134 could also be an important site for the development of a specific inhibitor against XoPDF FCC5 and FCC6 exhibited different binding than other FCCs Both compounds bound from the methionine-binding site to the exposed Phe134 site as a direct line, which implies that the two binding sites are directly connected (Figures 3.8d) In the actinonin-bound XoPDF structure, the pentyl group and the other chain structure with the pyrrolidine ring of actinonin were ∼4 Å apart, which is a good distance for van der Waals interaction (Figures 4.6) The direct hydrophobic van der Waals interaction could hold actinonin as the same U-shape in water before binding to XoPDF, and the conformational rigidity of actinonin could increase the binding affinity for PDFs In summary, the hydrophobic substrate methionine-binding site is mainly involved in FCC binding via hydrophobic interaction and can accommodate bulky rigid aromatic ring structures The Phe134 residue provides an additional hydrophobic interaction site for ligands Crystal structures of XoPDF in complex with substrates and various FCCs may be useful for the development of new pesticides against Xoo 55 Figure 4.4 Bottom view of substrate methionine-binding site The fragment chemical compounds (FCCs)-bound structures were superimposed to the MA-bound structure and only FCCs and substrate methionine-binding site are shown in the same bottom view of Figure 3.7b 56 Figure 4.5 Exposure of Phe134 residue in XoPDF with the flexible open conformation of CD loop (a) The structure of closed CD loop (b) The structure of opened CD loop Figure 4.6 Actinonin structure in XoPDF The hydrophobic van der Waals interactions between the pentyl group and the other chain structure with the pyrrolidine ring are shown as black dashed lines The hydrophobic van der Waals interactions between Phe134 and the 5-member pyrrolidine ring is shown as blue arcs 57 References Adams, J M (1968) On the release of the formyl group from nascent protein J Mol Biol, 33(3), 571-589 Adams, J M., & Capecchi, M R (1966) N-formylmethionyl-sRNA as the initiator of protein synthesis Proc Natl Acad Sci U S A, 55(1), 147-155 Apfel, C M., Locher, H., Evers, S., Takacs, B., Hubschwerlen, C., Pirson, W., Keck, W (2001) Peptide deformylase as an antibacterial drug target: target validation and resistance development Antimicrob Agents Chemother, 45(4), 10581064 doi: 10.1128/AAC.45.4.1058-1064.2001 Bök, C (2003) Crystallography (2 Ed.): Toronto: Coach House Press Bassetti, M., Ginocchio, F., & Mikulska, M (2011) New treatment options against gram-negative organisms Crit Care, 15(2), 215 doi: 10.1186/cc9997 Becker, A., Schlichting, I., Kabsch, W., Groche, D., Schultz, S., & Wagner, A F (1998) Iron center, substrate recognition and mechanism of peptide deformylase Nat Struct Biol, 5(12), 1053-1058 Becker, A., Schlichting, I., Kabsch, W., Schultz, S., & Wagner, A F (1998) Structure of peptide deformylase and identification of the substrate binding site J Biol Chem, 273(19), 11413-11416 Ben-Bassat, A., Bauer, K., Chang, S Y., Myambo, K., Boosman, A., & Chang, S (1987) Processing of the initiation methionine from proteins: properties of the Escherichia coli methionine aminopeptidase and its gene structure J Bacteriol, 169(2), 751-757 Bergfors, T M (1999) Protein crystallization : techniques, strategies, and tips : a laboratory manual : La Jolla, Calif :International University Line Berruyer, P., Lelli, M., Conley, M P., Silverio, D L., Widdifield, C M., Siddiqi, G., Emsley, L (2017) Three-Dimensional Structure Determination of Surface Sites J Am Chem Soc, 139(2), 849-855 doi: 10.1021/jacs.6b10894 Bouzaidi-Tiali, N., Giglione, C., Bulliard, Y., Pusnik, M., Meinnel, T., & Schneider, A (2007) Type peptide deformylases are required for oxidative phosphorylation in Trypanosoma brucei Mol Microbiol, 65(5), 1218-1228 doi: 10.1111/j.1365-2958.2007.05867.x Bracchi-Ricard, V., Nguyen, K T., Zhou, Y., Rajagopalan, P T., Chakrabarti, D., & Pei, D (2001) Characterization of an eukaryotic peptide deformylase from Plasmodium falciparum Arch Biochem Biophys, 396(2), 162-170 doi: 10.1006/abbi.2001.2631 Brat, D., Boles, E., & Wiedemann, B (2009) Functional expression of a bacterial D-xylose isomerase in Saccharomyces cerevisiae Appl Environ Microbiol, 75(8), 2304-2311 doi: AEM.02522-08 [pii] 10.1128/AEM.02522-08 Centers for Disease, C., & Prevention (2004) Acinetobacter baumannii infections among patients at military medical facilities treating injured U.S service members, 2002-2004 MMWR Morb Mortal Wkly Rep, 53(45), 1063-1066 Cerqueira, G M., & Peleg, A Y (2011) Insights into Acinetobacter baumannii pathogenicity IUBMB Life, 63(12), 1055-1060 doi: 10.1002/iub.533 Chan, M K., Gong, W., Rajagopalan, P T., Hao, B., Tsai, C M., & Pei, D (1997) Crystal structure of the Escherichia coli peptide deformylase Biochemistry, 36(45), 13904-13909 doi: 10.1021/bi9711543 Chang, S Y., McGary, E C., & Chang, S (1989) Methionine aminopeptidase 58 gene of Escherichia coli is essential for cell growth J Bacteriol, 171(7), 4071-4072 Chayen, N E (2004) Turning protein crystallisation from an art into a science Curr Opin Struct Biol, 14(5), 577-583 doi: 10.1016/j.sbi.2004.08.002 Chayen, N E., & Saridakis, E (2008) Protein crystallization: from purified protein to diffraction-quality crystal Nat Methods, 5(2), 147-153 doi: 10.1038/nmeth.f.203 Clark, B F., & Marcker, K A (1966) The role of N-formyl-methionyl-sRNA in protein biosynthesis J Mol Biol, 17(2), 394-406 Clements, J M., Beckett, R P., Brown, A., Catlin, G., Lobell, M., Palan, S., Hunter, M G (2001) Antibiotic activity and characterization of BB-3497, a novel peptide deformylase inhibitor Antimicrob Agents Chemother, 45(2), 563-570 doi: 10.1128/AAC.45.2.563-570.2001 crystallography, X.-r (2017a) from http://www.absoluteastronomy.com/topics/X-ray_crystallography Crystallography, X.-r (2017b, November 21, 2017) X-ray Crystallography from https://en.wikipedia.org/wiki/X-ray_crystallography Cynamon, M H., Alvirez-Freites, E., & Yeo, A E (2004) BB-3497, a peptide deformylase inhibitor, is active against Mycobacterium tuberculosis J Antimicrob Chemother, 53(2), 403-405 doi: 10.1093/jac/dkh054 Dardel, F., Ragusa, S., Lazennec, C., Blanquet, S., & Meinnel, T (1998) Solution structure of nickel-peptide deformylase J Mol Biol, 280(3), 501-513 doi: 10.1006/jmbi.1998.1882 Dessau, M A., & Modis, Y (2011) Protein crystallization for X-ray crystallography J Vis Exp(47) doi: 10.3791/2285 Dirk, L M., Schmidt, J J., Cai, Y., Barnes, J C., Hanger, K M., Nayak, N R., Rodgers, D W (2008) Insights into the substrate specificity of plant peptide deformylase, an essential enzyme with potential for the development of novel biotechnology applications in agriculture Biochem J, 413(3), 417-427 Dirk, L M., Williams, M A., & Houtz, R L (2001) Eukaryotic peptide deformylases Nuclear-encoded and chloroplast-targeted enzymes in Arabidopsis Plant Physiol, 127(1), 97-107 Doan, T T., Kim, J K., Ngo, H P., Tran, H T., Cha, S S., Min Chung, K., Kang, L W (2014) Crystal structures of d-alanine-d-alanine ligase from Xanthomonas oryzae pv oryzae alone and in complex with nucleotides Arch Biochem Biophys, 545C, 92-99 doi: 10.1016/j.abb.2014.01.009 Dohmen, R J (2015) Starting with a degron: N-terminal formyl-methionine of nascent bacterial proteins contributes to their proteolytic control Microb Cell, 2(10), 356-359 doi: 10.15698/mic2015.10.235 Emsley, P., Lohkamp, B., Scott, W G., & Cowtan, K (2010) Features and development of Coot Acta Crystallogr D Biol Crystallogr, 66(Pt 4), 486-501 doi: 10.1107/S0907444910007493 Escobar-Alvarez, S., Gardner, J., Sheth, A., Manfredi, G., Yang, G., Ouerfelli, O., Scheinberg, D A (2010) Inhibition of human peptide deformylase disrupts mitochondrial function Mol Cell Biol, 30(21), 5099-5109 doi: 10.1128/MCB.00469-10 Fieulaine, S., Boularot, A., Artaud, I., Desmadril, M., Dardel, F., Meinnel, T., & Giglione, C (2011) Trapping conformational states along ligand-binding dynamics of peptide deformylase: the impact of induced fit on enzyme catalysis PLoS Biol, 9(5), e1001066 doi: 10.1371/journal.pbio.1001066 Fieulaine, S., Juillan-Binard, C., Serero, A., Dardel, F., Giglione, C., Meinnel, T., & Ferrer, J L (2005) The crystal structure of mitochondrial (Type 1A) peptide 59 deformylase provides clear guidelines for the design of inhibitors specific for the bacterial forms J Biol Chem, 280(51), 42315-42324 Fournier, P E., Vallenet, D., Barbe, V., Audic, S., Ogata, H., Poirel, L., Claverie, J M (2006) Comparative genomics of multidrug resistance in Acinetobacter baumannii PLoS Genet, 2(1), e7 doi: 10.1371/journal.pgen.0020007 Frank, J A., Lorimer, D., Youle, M., Witte, P., Craig, T., Abendroth, J., Burgin, A B., Jr (2013) Structure and function of a cyanophage-encoded peptide deformylase ISME J, 7(6), 1150-1160 doi: 10.1038/ismej.2013.4 Fry, K T., & Lamborg, M R (1967) Amidohydrolase activity of Escherichia coli extracts with formylated amino acids and dipeptides as substrates J Mol Biol, 28(3), 423-433 Giglione, C., Boularot, A., & Meinnel, T (2004) Protein N-terminal methionine excision Cell Mol Life Sci, 61(12), 1455-1474 doi: 10.1007/s00018004-3466-8 Giglione, C., Pierre, M., & Meinnel, T (2000) Peptide deformylase as a target for new generation, broad spectrum antimicrobial agents Mol Microbiol, 36(6), 1197-1205 Giglione, C., Serero, A., Pierre, M., Boisson, B., & Meinnel, T (2000) Identification of eukaryotic peptide deformylases reveals universality of N-terminal protein processing mechanisms EMBO J, 19(21), 5916-5929 doi: 10.1093/emboj/19.21.5916 Gordon, J J., Kelly, B K., & Miller, G A (1962) Actinonin: an antibiotic substance produced by an actinomycete Nature, 195, 701-702 Groche, D., Becker, A., Schlichting, I., Kabsch, W., Schultz, S., & Wagner, A F (1998) Isolation and crystallization of functionally competent Escherichia coli peptide deformylase forms containing either iron or nickel in the active site Biochem Biophys Res Commun, 246(2), 342-346 doi: 10.1006/bbrc.1998.8616 Guillon, J M., Mechulam, Y., Schmitter, J M., Blanquet, S., & Fayat, G (1992) Disruption of the gene for Met-tRNA(fMet) formyltransferase severely impairs growth of Escherichia coli J Bacteriol, 174(13), 4294-4301 Guilloteau, J P., Mathieu, M., Giglione, C., Blanc, V., Dupuy, A., Chevrier, M., Mikol, V (2002) The crystal structures of four peptide deformylases bound to the antibiotic actinonin reveal two distinct types: a platform for the structurebased design of antibacterial agents J Mol Biol, 320(5), 951-962 doi: S0022283602005491 [pii] Hansen, P K., Wikman, F., Clark, B F., Hershey, J W., & Uffe Petersen, H (1986) Interaction between initiator Met-tRNAfMet and elongation factor EF-Tu from E coli Biochimie, 68(5), 697-703 Hao, B., Gong, W., Rajagopalan, P T., Zhou, Y., Pei, D., & Chan, M K (1999) Structural basis for the design of antibiotics targeting peptide deformylase Biochemistry, 38(15), 4712-4719 doi: 10.1021/bi982594c Hauska, G., Nitschke, W., & Herrmann, R G (1988) Amino acid identities in the three redox center-carrying polypeptides of cytochrome bc1/b6f complexes J Bioenerg Biomembr, 20(2), 211-228 Hirel, P H., Schmitter, M J., Dessen, P., Fayat, G., & Blanquet, S (1989) Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid Proc Natl Acad Sci U S A, 86(21), 8247-8251 Ho, T H., Hong, M K., Ngo, H P., & Kang, L W (2014) Expression, crystallization and preliminary X-ray crystallographic analysis of DNA-directed RNA polymerase subunit L from Thermococcus onnurineus NA1 Acta Crystallogr 60 F Struct Biol Commun, 70(Pt 5), 639-642 doi: 10.1107/S2053230X14007304 Hoover, J., Lewandowski, T., Straub, R J., Novick, S J., DeMarsh, P., Aubart, K., Zalacain, M (2015) Pharmacokinetics/Pharmacodynamics of Peptide Deformylase Inhibitor GSK1322322 against Streptococcus pneumoniae, Haemophilus influenzae, and Staphylococcus aureus in Rodent Models of Infection Antimicrob Agents Chemother, 60(1), 180-189 doi: 10.1128/AAC.01842-15 J., D (1999) Crystallizing a Protein in : Principles of Protein X-ray Crystallography: pringer, New York, NY Jain, R., Chen, D., White, R J., Patel, D V., & Yuan, Z (2005) Bacterial Peptide deformylase inhibitors: a new class of antibacterial agents Curr Med Chem, 12(14), 1607-1621 Kaczanowska, M., & Ryden-Aulin, M (2007) Ribosome biogenesis and the translation process in Escherichia coli Microbiol Mol Biol Rev, 71(3), 477-494 doi: 10.1128/MMBR.00013-07 Kim, J K., Natarajan, S., Park, H., Huynh, K H., Lee, S H., Kim, J G., Kang, L W (2013) Crystal structure of XoLAP, a leucine aminopeptidase, from Xanthomonas oryzae pv oryzae J Microbiol, 51(5), 627-632 doi: 10.1007/s12275013-3234-2 Kim, S., Cho, Y J., Song, E S., Lee, S H., Kim, J G., & Kang, L W (2016) Time-resolved pathogenic gene expression analysis of the plant pathogen Xanthomonas oryzae pv oryzae BMC Genomics, 17(1), 345 doi: 10.1186/s12864016-2657-7 Kim, S., Nguyen, T D., Lee, J., Hong, M K., Pham, T V., Ahn, Y J., Kang, L W (2013) Homologous expression and T3SS-dependent secretion of TAPtagged Xo2276 in Xanthomonas oryzae pv oryzae induced by rice leaf extract and its direct in vitro recognition of putative target DNA sequence J Microbiol Biotechnol, 23(1), 22-28 Kim, S H., Lee, S E., Hong, M K., Song, N H., Yoon, B., Viet, P., Kang, L W (2011) Homologous expression and quantitative analysis of T3SS-dependent secretion of TAP-tagged XoAvrBs2 in Xanthomonas oryzae pv oryzae induced by rice leaf extract J Microbiol Biotechnol, 21(7), 679-685 Kumar, A., Nguyen, K T., Srivathsan, S., Ornstein, B., Turley, S., Hirsh, I., Hol, W G (2002) Crystals of peptide deformylase from Plasmodium falciparum reveal critical characteristics of the active site for drug design Structure, 10(3), 357367 Kumari, T., Issar, U., & Kakkar, R (2014) Docking modes of BB-3497 into the PDF active site a comparison of the pure MM and QM/MM based docking strategies Curr Comput Aided Drug Des, 10(4), 315-326 Laursen, B S., Sorensen, H P., Mortensen, K K., & Sperling-Petersen, H U (2005) Initiation of protein synthesis in bacteria Microbiol Mol Biol Rev, 69(1), 101-123 doi: 10.1128/MMBR.69.1.101-123.2005 Lee, B M., Park, Y J., Park, D S., Kang, H W., Kim, J G., Song, E S., Go, S J (2005) The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice Nucleic Acids Res, 33(2), 577586 Lee, H Y., An, K M., Jung, J., Koo, J M., Kim, J G., Yoon, J M., Kang, J H (2016) Identification of novel aminopiperidine derivatives for antibacterial activity against Gram-positive bacteria Bioorg Med Chem Lett, 26(13), 3148-3152 doi: 10.1016/j.bmcl.2016.04.086 Lee, M D., Antczak, C., Li, Y., Sirotnak, F M., Bornmann, W G., & Scheinberg, D A (2003) A new human peptide deformylase inhibitable by 61 actinonin Biochem Biophys Res Commun, 312(2), 309-315 Lee, M D., She, Y., Soskis, M J., Borella, C P., Gardner, J R., Hayes, P A., Scheinberg, D A (2004) Human mitochondrial peptide deformylase, a new anticancer target of actinonin-based antibiotics J Clin Invest, 114(8), 1107-1116 doi: 10.1172/JCI22269 Li, J Y., Wang, J., & Zeigler, R S (2014) The 3,000 rice genomes project: new opportunities and challenges for future rice research Gigascience, 3, doi: 10.1186/2047-217X-3-8 Lucchini, G., & Bianchetti, R (1980) Initiation of protein synthesis in isolated mitochondria and chloroplasts Biochim Biophys Acta, 608(1), 54-61 Marcker, K., & Sanger, F (1964) N-Formyl-Methionyl-S-Rna J Mol Biol, 8, 835-840 Margolis, P S., Hackbarth, C J., Young, D C., Wang, W., Chen, D., Yuan, Z., Trias, J (2000) Peptide deformylase in Staphylococcus aureus: resistance to inhibition is mediated by mutations in the formyltransferase gene Antimicrob Agents Chemother, 44(7), 1825-1831 Mathews, B W (1968) Solvent content of protein crystals J Mol Biol, 32(2), 491-497 Mazel, D., Coic, E., Blanchard, S., Saurin, W., & Marliere, P (1997) A survey of polypeptide deformylase function throughout the eubacterial lineage J Mol Biol, 266(5), 939-949 McCoy, A J., Grosse-Kunstleve, R W., Adams, P D., Winn, M D., Storoni, L C., & Read, R J (2007) Phaser crystallographic software J Appl Cryst, 40, 658674 McPherson, A (2004) Introduction to protein crystallization Methods, 34(3), 254-265 doi: 10.1016/j.ymeth.2004.03.019 McRee, D E (1999) Practical Protein Crystallography San Diego: Academic Press Meinnel, T., & Blanquet, S (1993) Evidence that peptide deformylase and methionyl-tRNA(fMet) formyltransferase are encoded within the same operon in Escherichia coli J Bacteriol, 175(23), 7737-7740 Meinnel, T., & Blanquet, S (1995) Enzymatic properties of Escherichia coli peptide deformylase J Bacteriol, 177(7), 1883-1887 Meinnel, T., Blanquet, S., & Dardel, F (1996) A new subclass of the zinc metalloproteases superfamily revealed by the solution structure of peptide deformylase J Mol Biol, 262(3), 375-386 doi: 10.1006/jmbi.1996.0521 Meinnel, T., Lazennec, C., Villoing, S., & Blanquet, S (1997) Structurefunction relationships within the peptide deformylase family Evidence for a conserved architecture of the active site involving three conserved motifs and a metal ion J Mol Biol, 267(3), 749-761 Miesel, L., Greene, J., & Black, T A (2003) Genetic strategies for antibacterial drug discovery Nat Rev Genet, 4(6), 442-456 doi: 10.1038/nrg1086 Miller, C G., Kukral, A M., Miller, J L., & Movva, N R (1989) pepM is an essential gene in Salmonella typhimurium J Bacteriol, 171(9), 5215-5217 Montefour, K., Frieden, J., Hurst, S., Helmich, C., Headley, D., Martin, M., & Boyle, D A (2008) Acinetobacter baumannii: an emerging multidrug-resistant pathogen in critical care Crit Care Nurse, 28(1), 15-25; quiz 26 Moon, J H., Park, J K., & Kim, E E (2005) Structure analysis of peptide deformylase from Bacillus cereus Proteins, 61(1), 217-220 doi: 10.1002/prot.20526 Murshudov, G N., Skubak, P., Lebedev, A A., Pannu, N S., Steiner, R A., 62 Nicholls, R A., Vagin, A A (2011) REFMAC5 for the refinement of macromolecular crystal structures Acta Crystallogr D Biol Crystallogr, 67(Pt 4), 355-367 doi: 10.1107/S0907444911001314 Natarajan, S., Kim, J K., Jung, T K., Doan, T T., Ngo, H P., Hong, M K., Kang, L W (2012) Crystal structure of malonyl CoA-Acyl carrier protein transacylase from Xanthomanous oryzae pv oryzae and its proposed binding with ACP Mol Cells, 33(1), 19-25 doi: 10.1007/s10059-012-2155-y Ngo, H P., Ho, T H., Lee, I., Tran, H T., Sur, B., Kim, S., Kang, L W (2016) Crystal Structures of Peptide Deformylase from Rice Pathogen Xanthomonas oryzae pv oryzae in Complex with Substrate Peptides, Actinonin, and Fragment Chemical Compounds J Agric Food Chem, 64(39), 7307-7314 doi: 10.1021/acs.jafc.6b02976 Ngo, P T., Kim, J K., Kim, H., Jung, J., Ahn, Y J., Kim, J G., Kang, L W (2008) Expression, crystallization and preliminary X-ray crystallographic analysis of peptide deformylase from Xanthomonas oryzae pv oryzae Acta Crystallogr Sect F Struct Biol Cryst Commun, 64(Pt 11), 1031-1033 doi: 10.1107/S1744309108031631 Nguyen, K T., Hu, X., Colton, C., Chakrabarti, R., Zhu, M X., & Pei, D (2003) Characterization of a human peptide deformylase: implications for antibacterial drug design Biochemistry, 42(33), 9952-9958 doi: 10.1021/bi0346446 Ochiai, H., Inoue, Y., Takeya, M., Sasaki, A., & Kaku, H (2005) Genome Sequence of Xanthomonas oryzae pv oryzae Suggests Contribution of Large Numbers of Effector Genes and Insertion Sequences to Its Race Diversity JARQ, 39, 275-287 Otwinowski, Z., & Minor, W (1997a) Processing of X-ray diffraction data collected in oscillation mode Methods Enzymol, 276, 307-326 Otwinowski, Z., & Minor, W (1997b) Processing of X-ray diffraction data collected in oscillation mode Methods Enzymol, 277, 307-326 Pan, B B., Yang, F., Ye, Y., Wu, Q., Li, C., Huber, T., & Su, X C (2016) 3D structure determination of a protein in living cells using paramagnetic NMR spectroscopy Chem Commun (Camb), 52(67), 10237-10240 doi: 10.1039/c6cc05490k Pei, D (2001) Peptide deformylase: a target for novel antibiotics? Expert Opin Ther Targets, 5(1), 23-40 Peleg, A Y., Seifert, H., & Paterson, D L (2008) Acinetobacter baumannii: emergence of a successful pathogen Clin Microbiol Rev, 21(3), 538-582 doi: 10.1128/CMR.00058-07 Petersen, H U., Roll, T., Grunberg-Manago, M., & Clark, B F (1979) Specific interaction of initiation factor IF2 of E coli with formylmethionyl-tRNA f Met Biochem Biophys Res Commun, 91(3), 1068-1074 Polz, G., & Kreil, G (1970) Presence of N-formyl- and N-acetyl-methionine in the proteins of honey bee thorax Biochem Biophys Res Commun, 39(3), 516-521 Ragusa, S., Blanquet, S., & Meinnel, T (1998) Control of peptide deformylase activity by metal cations J Mol Biol, 280(3), 515-523 Raines, K S., Salha, S., Sandberg, R L., Jiang, H., Rodriguez, J A., Fahimian, B P., Miao, J (2010) Three-dimensional structure determination from a single view Nature, 463(7278), 214-217 doi: 10.1038/nature08705 Rajagopalan P T Ravi , Y X C., and Pei Dehua (1997) Peptide Deformylase:  A New Type of Mononuclear Iron Protein Journal American Chemical Society, 119 Rajagopalan, P T., Datta, A., & Pei, D (1997) Purification, characterization, 63 and inhibition of peptide deformylase from Escherichia coli Biochemistry, 36(45), 13910-13918 doi: 10.1021/bi971155v Rajagopalan, P T., Grimme, S., & Pei, D (2000) Characterization of cobalt(II)-substituted peptide deformylase: function of the metal ion and the catalytic residue Glu-133 Biochemistry, 39(4), 779-790 Rajagopalan, P T., & Pei, D (1998) Oxygen-mediated inactivation of peptide deformylase J Biol Chem, 273(35), 22305-22310 Ranjan, A., Mercier, E., Bhatt, A., & Wintermeyer, W (2017) Signal recognition particle prevents N-terminal processing of bacterial membrane proteins Nat Commun, 8, 15562 doi: 10.1038/ncomms15562 Rhodes, G (2006) Crystallography Made Crystal Clear, Third Edition: A Guide for Users of Macromolecular Models (3rd ed.): Academic Press Rice, L B (2008) Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE J Infect Dis, 197(8), 1079-1081 doi: 10.1086/533452 Sanderson, M., & Skelly, J V (2007) Macromolecular Crystallography doi: 10 Schmidt, J., Herfurth, E., & Subramanian, A R (1992) Purification and characterization of seven chloroplast ribosomal proteins: evidence that organelle ribosomal protein genes are functional and that NH2-terminal processing occurs via multiple pathways in chloroplasts Plant Mol Biol, 20(3), 459-465 Schrodinger, L (2010) The PyMOL Molecular Graphics System, Version 1.3r1 Sebeny, P J., Riddle, M S., & Petersen, K (2008) Acinetobacter baumannii skin and soft-tissue infection associated with war trauma Clin Infect Dis, 47(4), 444-449 doi: 10.1086/590568 Serero, A., Giglione, C., Sardini, A., Martinez-Sanz, J., & Meinnel, T (2003) An unusual peptide deformylase features in the human mitochondrial N-terminal methionine excision pathway J Biol Chem, 278(52), 52953-52963 doi: 10.1074/jbc.M309770200 Shanklin, J., DeWitt, N D., & Flanagan, J M (1995) The stroma of higher plant plastids contain ClpP and ClpC, functional homologs of Escherichia coli ClpP and ClpA: an archetypal two-component ATP-dependent protease Plant Cell, 7(10), 1713-1722 doi: 10.1105/tpc.7.10.1713 Smith, K J., Petit, C M., Aubart, K., Smyth, M., McManus, E., Jones, J., Christensen, S B (2003) Structural variation and inhibitor binding in polypeptide deformylase from four different bacterial species Protein Sci, 12(2), 349-360 doi: 10.1110/ps.0229303 Solbiati, J., Chapman-Smith, A., Miller, J L., Miller, C G., & Cronan, J E., Jr (1999) Processing of the N termini of nascent polypeptide chains requires deformylation prior to methionine removal J Mol Biol, 290(3), 607-614 doi: 10.1006/jmbi.1999.2913 Steffens, G., & Buse, G (1976) [Studies on cytochrome c oxidase, I Purification and characterization of bovine myocardial enzyme and identification of peptide chains in the complex] Hoppe Seylers Z Physiol Chem, 357(8), 1125-1137 Stout, G H., and Jensen, L H (1989) X-Ray structure determination: A Practical guide Sundari, R M., Stringer, E A., Schulman, L H., & Maitra, U (1976) Interaction of bacterial initiation factor with initiator tRNA J Biol Chem, 251(11), 3338-3345 Teo, J W., Thayalan, P., Beer, D., Yap, A S., Nanjundappa, M., Ngew, X., 64 Mukherjee, K (2006) Peptide deformylase inhibitors as potent antimycobacterial agents Antimicrob Agents Chemother, 50(11), 3665-3673 Thien-Hoang Ho, H J., Inho Lee, Kim-Hung Huynh, Diem-Quyen Nguyen, Hyungjae Park, Sang Hee Lee, and Lin-Woo Kang (2017) Expression, crysatallization, and preliminary X-ray crystallographic analysis of peptide deformylase from Acinetobacter baumanii Biodesign, 5, Turton, J F., Kaufmann, M E., Gill, M J., Pike, R., Scott, P T., Fishbain, J., Pitt, T L (2006) Comparison of Acinetobacter baumannii isolates from the United Kingdom and the United States that were associated with repatriated casualties of the Iraq conflict J Clin Microbiol, 44(7), 2630-2634 doi: 10.1128/JCM.00547-06 Vallee, B L., & Auld, D S (1990) Zinc coordination, function, and structure of zinc enzymes and other proteins Biochemistry, 29(24), 5647-5659 Vriend, G (1990) WHAT IF: a molecular modeling and drug design program J Mol Graph, 8(1), 52-56, 29 Waller, A S., & Clements, J M (2002) Novel approaches to antimicrobial therapy: peptide deformylase Curr Opin Drug Discov Devel, 5(5), 785-792 Waller, J P (1963) The Nh2-Terminal Residues of the Proteins from Cell-Free Extracts of E Coli J Mol Biol, 7, 483-496 Yang, S., Shi, W., Xing, D., Zhao, Z., Lv, F., Yang, L., Hu, W (2014) Synthesis, antibacterial activity, and biological evaluation of formyl hydroxyamino derivatives as novel potent peptide deformylase inhibitors against drug-resistant bacteria Eur J Med Chem, 86, 133-152 doi: 10.1016/j.ejmech.2014.07.106 Yuan, Z., Trias, J., & White, R J (2001) Deformylase as a novel antibacterial target Drug Discov Today, 6(18), 954-961 Zbyszek Otwinowski, W M (1997) Processing of X-ray diffraction data collected in oscillation mode Methods Enzymol, 276, 307-326 Zhang, H., & Wang, S (2013) Rice versus Xanthomonas oryzae pv oryzae: a unique pathosystem Curr Opin Plant Biol, 16(2), 188-195 doi: 10.1016/j.pbi.2013.02.008 Zhou, Z., Song, X., & Gong, W (2005) Novel conformational states of peptide deformylase from pathogenic bacterium Leptospira interrogans: implications for population shift J Biol Chem, 280(51), 42391-42396 doi: 10.1074/jbc.M506370200 65 ABSTRACT (in Korean) 펩타이드 디포밀라아제의 구조와 기능 연구 Ho, Thien-Hoang 생명과학과 건국대학교 대학원 Peptide deformylase (PDF)은 세균이 합성하는 새로운 polypeptide의 N말단에 존재하는 formyl group를 제거하는 역할을 하며, 이는 항균제 개발에 중요한 목표가 되는 효소로 여겨지고 있다 이번연구에서는 Acinetobacter baumannii 와 Xanthomonas oryzae pv Oryzae에 존재하는 2가지의 PDF들의 결정구조를 밝혔다 Acinetobacter baumannii는 가장 흔하고, 심각한 다중 약제 저항성 병원균이며, 그람음성의 기회주의적 병원균이며, 면역체계가 손상된 환자 중 특히, 병원에서 오랜 치료를 받은 환자에서 높은 감염률을 보여준다 세계의 쌀생산에서 가장 큰 파괴적 영향을 끼치는 병원체중 하나인 Xanthomonas oryzae pv Oryzae는 벼에 대하여 벼흰잎마른병을 일으킨다 이번연구에서는 PDF의 apo구조, 억제제, 기질, 화학물질 조각이 결합된 구조를 결정하였으며, 이에는 두가지 종류의 기질(methionine-alanine 이나 methionine-alanine-serine), 억제제(actinonin), 6가지의 화학물질 조각이 결합되는 구조가 있다 66 6가지의 화학물질 조각은 기질의 결합부위에 결합되었으며, 이 화학물질 조각들이 결합된 구조는 자연유래의 PDF 저해제인 actinonin이 결합된 구조와 비교할 수 있었다 이 구조적연구는 AbPDF와, XoPDF에 특이적인 새로운 억제제와, Acinetobacter baumannii 와 Xanthomonas oryzae pv Oryzae에 대한 항생제 개발에 용이하게 사용될 것이다 주제어: Acinetobacter baumannii, Xanthomonas oryzae pv oryzae, peptide deformylase, 세균성 마름병, 기회주의적 세균성 병원균 67 ... binding and coordination of XoPDF (a) Cd2+ ion in the metal site of MAS-bound XoPDF structure with 2Fofc and FoFc maps (b) Zn2+ ion in the metal site of MAS-bound XoPDF structure with 2Fofc and FoFc... Chapter Introduction 1.1 Peptide deformylase 1.1.1 The important of peptide deformylase in cell 1.1.2 Structure and mechanism of peptide deformylase 1.1.3 Xanthomonas oryzae.. .Structure and Function of Peptide Deformylase A Dissertation submitted to the Department of Biological Sciences and the Graduate School of Konkuk University in partial fulfillment of the

Ngày đăng: 08/08/2021, 17:34

Xem thêm: