1. Trang chủ
  2. » Luận Văn - Báo Cáo

Research on media access control protocol for underwater communication networks

134 11 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Nội dung

学校代码: 10286 分类号: TP912.3 密级: 公开 UDC: 621.3 学号: 119737 博 士 学 位 论 文 水声通信网络中的介质访问控制协议研究 研究生姓名:DAO VAN PHUONG 导 师 姓 名:赵力 教 授 申请学位级别 工学博士学位 一级学科名称 信息与通信工程 二级学科名称 信号与信息处理 答辩委员会主席 学位授予单位 论文答辩日期 2014 年 08 月 日 学位授予日期 2014 年 日 评 阅 人 2014 年 08 月 东南大学 日 月 博士学位论文 水声通信网络中的介质访问控制协议研究 专 业 名 称:信号与信息处理 研究生姓名:DAO VAN PHUONG 导 师 姓 名:赵力 教 授 国家自然科学基金资助项目(60872073,60975017,51075068) 和 教育部博士点专项基金资助项 目(20110092130004) Research on Media Access Control Protocol for Underwater Communication Networks A Dissertation Submitted to Southeast University For the Academic Degree of Doctor of Engineering BY Dao Van Phuong Supervised by Professor Zhao Li School of Information Science and Engineering Southeast University August 2014 东南大学学位论文独创性声明 本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。 尽我 所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研 究成果,也不包含为获得东南大学或其它教育机构的学位或证书而使用过的材料。与我一同 工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意 研究生签名: 日期: 东南大学学位论文使用授权声明 东南大学,中国科学技术信息研究所,国家图书馆有权保留本人所送交学位论文的复印件和 电子文档,可以采用影印,缩印或其他复制手段保留存论文。本人电子文档的内容和纸质论 文的内容相一致。除在保密期内的保密论文外,允许论文被查阅和借阅,可以公布(包含刊 登)论文的全部或部分内容。论文的公布(包括刊登)授权东南大学研究生院办理。 研究生签名 导师签名 日期 Abstract ABSTRACT The need for underwater acoustic communication network (UACN) exists in applications such as military, oil industry, collection of scientific data, discovery of new resources, i.e., Because of its important role in practical applications for underwater acoustic communication networks, underwater acoustic communication networks are a rapidly growing field of engineering and research in recent years Unlike terrestrial wireless communication networks that employ radio waves for communication, underwater acoustic communication networks employ acoustic waves, which present many difficulties for the problems of the physical, the data-link layers and battery energy - Long propagation delay and limited bandwidth of underwater channel are the main restrictions which effect on MAC protocol directly As a consequence, underwater channel MAC protocols necessitate a dedicated design of MAC protocols for underwater acoustic networks - The performance of underwater channel is degraded by the characteristics of underwater acoustic channel Only when full understanding of the underwater acoustic channel characteristics, we can gradually make the underwater acoustic transmission system to match with the real marine environment, so as to achieve better performance - The underwater nodes usually carry very limited battery energy, and replace the battery to replenish their energy is not possible How to efficiently use the energy of the underwater acoustic sensor nodes is a key strategy for underwater acoustic communication network design To overcome the above problems of underwater acoustic channel, in this thesis, the following subjects are researched: (1) In this work, the simulation tool OPNET is employed to simulate the characteristics of underwater acoustic I channel, with respect to Abstract Propagation-Delay-Stage, Receiver-Power-Stage and Background-Noise-State, by using the models: the MacKenzie’s speed equation for the speed of sound; Thorp’s, Schulkin and Marsh’s, Francois and Garrison’s models for propagation loss; and four sources for ambient noise are the turbulence, shipping, wind driven waves and thermal noise According to the simulation results of the characteristic of underwater acoustic channel, a suitable channel model is chosen to simulate an underwater acoustic mobile network using MACAW protocol (2) Simulate the performance of P-Aloha, CSMA/CA and MACAW protocols in underwater acoustic channel environment, and the different performance of these protocols in underwater environment is compared in the simulation (3) A new MAC protocol suitable for UACN is proposed and analyzed in this work Some modifications in floor acquisition multiple access (FAMA) of MAC protocol for UACN is proposed in which a time slot is used, which is applied for Clear-To-Send (CTS) packet, thus called Slotted FAMA-CTS An energy optimization strategy for data transmission is also proposed in this paper The goals of this work are to increase throughput rate, decrease packet collisions due to propagation delay of hidden nodes and to provide savings in energy This protocol combines both carrier sensing and a dialogue between the sender and receiver prior to data transmission Simulation results show that the proposed method is more effective than Slotted Medium Access Control Avoidance (MACA) and FAMA– Non-persistent Transmit Request (FAMA-NTR) protocol (4) The long propagation delay and limited bandwidth of UACN pose great challenges for MAC protocol design But the long propagation delay in underwater acoustic channel permits multiple packets to be “pipelined” concurrently in the underwater channel To utilize this characteristic of underwater acoustic channel, in this work a new MACA-based MAC protocol called MACA-C protocol is proposed By combining transmitting data packet and control packet, the proposed protocol is able to overcome the long propagation delay problem of underwater acoustic channel Simulation results show that the MACA-C protocol significantly increase channel utilization, achieve high and II Abstract stable throughput performance, decrease End-to-End delay while maintaining low collision rate (5) How to efficiently use the energy of the underwater acoustic sensor nodes is a key strategy for underwater acoustic communication network design In this work, based on a traditional DVS energy-saving technology, a DVS-DPM energy-saving technology combined with DVS technology and DPM technology is proposed to reduce the energy consumption of the underwater acoustic sensor nodes Finally, the energy-saving effect of the program is compared and analyzed through the simulation Keywords: underwater acoustic channel; MACAW protocol; underwater acoustic sensor node; energy saving technology III Abstract IV Abstract 摘要 水声通信网络越来越广泛地应用于军事、石油工业、科研数据采集、新能源 开发等领域,由于水声通信网络在实际应用中具有重要地位,因此对水声通信的 研究正成为通信领域研究的热点。与陆地无线通信系统使用无线电波有所不同, 水声通信网络依靠水声进行通信,这使得针对水声通信网络的物理层、数据连接 层和电池能量设计存在诸多困难,具体如下: - 水声信道的长传播延迟和有限的带宽是 MAC 协议设计的主要限制因素,因此 需要设计专门的适用于水声通信网络的 MAC 协议。 - 水声信道的特性会使得水下信道的性能下降,只有当我们对水声信道的特性 有了足够的了解,我们才能够设计出与实际海底环境相匹配的水声通信系统, 进而得到更好的通信性能。 - 水下节点携带的电池能量通常是非常有限的,而通过替换电池来补充水下节 点的电池能量是非常困难的。因此,如何有效有效地提高水下节点的能量使 用效率,是水声通信网络研究的重点。 针对上述问题,本论文研究了水声通信网络中的以下几个方面的问题: (1) 本 文 利 用 OPNET 仿 真 工 具 中 的 Propagation-Delay-Stage 、 Receiver-Power-Stage 和 Background-Noise-Stage 函 数 分 别 仿 真 实 现 MacKenzie 水声传输速度公式、损耗传输模型(包括 Thorp 模型、Schulkin & Marsh 模型、Francois & Garrison 模型)、水声噪声(包括紊流、船运、风 波和热噪声四个噪声源),通过这些模型的仿真来模拟和分析水声通信网络 的各种特性。根据水声信道的仿真结果,以 MACAW 协议为基础建立最佳信道 模型来仿真水声通信网络。 (2) 在水声信道环境下对 P-Aloha 协议, CSMA/CA 协议和 MACAW 协议进行了仿真, 并且比较了这三种协议的性能。 (3) 基于 MAC 协议中的 FAMA 协议,提出了一种适用于水声通信网络的时隙 FAMA-CTS 协议,该协议为 CTS 包分配了单独的时隙。同时,还提出了一种能 量优化方法来传输数据。该算法不仅能够增加水声通信网络的吞吐量,减少 数据包的碰撞而且能够降低能量消耗,并且该算法能够有效的将载波侦听与 V Abstract 发射和接收数据前的协商结合在一起。实验结果表明,与时隙 MACA 协议 和 FAMA-NTR 协议相比,本文提出的算法更有效。 (4) 由于水声信道的传播时延长、可用带宽有限,使得设计适合于水声通信网络 的 MAC 协议面临诸多困难。然而,水声信道的长传播时延特性允许在水声信 道中同时发送多个数据包,利用该特性,基于 MACA 协议,本文提出了一种适 用于水声通信网络的介质访问控制协议 MACA-C 协议。通过将发射数据包和 控制包结合在一起,本文提出的协议能够克服水声信道长传输时延的问题。 仿真结果表明,MACA-C 协议能够提高信道使用率,获得较高且稳定的吞吐量, 降低端到端的延迟,并且能够保持较低的碰撞率。 (5) 如何高效地使用水声传感器节点的能量是水声通信网设计的关键环节。在传 统 DVS 节能技术的基础上,本文提出了一种 DVS 技术与 DPM 技术相结合的 DVS-DPM 节能技术,用以降低水声传感器节点的能耗。最后通过实验对该方 案的节能效果进行了仿真和分析。 关键词:水声信道; MACAW 协议; 水声传感器节点; 节能技术。 VI REFERENCES [12] Proakis J G, Sozer E M, Rice A, et al Shallow water acoustic networks [J] IEEE Communications Magazine, 2001, 39: 114-119 [13] Sozer E M, Stojanovic M, Proakis J G Underwater acoustic networks [J] IEEE Journal of Oceanic Engineering, 2000, 25: 72-83 [14] Han J, Huang J, Ran M Design and simulation of underwater acoustic communication network based on OPENT [J] Journal of System Simulation, 2009, 21(17): 5498-5502 [15] Kemih K, Benslama M, Filali S Synchronization of chen system based on passivity technique for CDMA underwater communication [J] International Journal of Innovative Computing, Information and Control, 2007, 3(5): 1301-1308 [16] Partan J, Kurose J, Levine B N A survey of practical issues in underwater networks [C] Proceedings of ACM International Workshop on Underwater Networks (WUWNet), September 2006: 17– 24 [17] Berkhovskikh L, Lysanov Y Fundamentals of Ocean Acoustics [M] New York: Springer, 1982 [18] Dickey T D Technology and related developments for interdisciplinary global studies [M] Sea Technology, 1993: 47-53 [19] Medwin H, Clay C S Fundamentals of Acoustical Oceanography [M] Academic Press, San Diego, 1998 [20] Catipovic J, Brady D, Etchemendy S Development of underwater acoustic modems and networks [J] Oceanography, 1993, 6: 112–119 [21] Catipovic J, Freitag L, Merriam S Underwater acoustic local area network for ROV and instrument communications [C] Proc AUVS’91, Washington, D.C.1991: 447–460 [22] Stojanovic M Recent advances in high-speed underwater acoustic communications [J] IEEE J Oceanic Eng, 1996, 21: 125–136 [23] Jensen F B, Kuperman W A, Porter M B, et al Computational Ocean Acoustics [M] Springer- Verlag, New York, 2000 [24] Brekhovskikh L M, Yu P, Lysanov Fundamentals of Ocean Acoustics [M] Springer- Verlag, second edition 102 REFERENCES [25] Urban H G Handbook of Underwater Acoustic Engineering [M] STN Atlas Elektronik GmbH, Bremen, 2002 [26] Neugebauer M, Ploennigs J, Kabitzsch K Evaluation of Energy Costs for Single Hop vs Multi Hop with Respect to Topology Parameters [C] Factory Communication Systems, 2006 IEEE International Workshop on, Torino, Italy, 2006: 175-182 [27] Urick R J Principles of Underwater Sound [M] 3rd Edition, McGraw-Hill Publishing Company, New York, NY, 1983 [28] Stojanavic M On the Relationship Between Capacity and Distance in an Underwater Acoustic Communication Channel [C] ACM WUWNet ’06, Los Angeles, CA, USA, 2006: 41 – 47, [29] Park V D, Corson M S A highly adaptive distributed routing algorithm for mobile wireless networks [C] In Proc INFOCOM’97, Kobe, Japan, 1997: 1405–1413 [30] Perkins C E, Bhagwat P Highly dynamic destination sequence distance vector routing (DSDV) for mobile computers [C] Proc SIGCOMM’94, London 1994: 234-244 [31] Zhang C, Zhou M C, Yu M Ad hoc Network Routing and Security: A Review [J] International Journal of Communication Systems, 2007, 20: 909-925 [32] Wang Z, Liu L, Zhou M C An Epidemic Routing Strategy for Vehicular Ad Hoc Wireless Networks in Intelligent Transportation Systems [J] International Journal of Intelligent Control and Systems, 2005, 10(1): 86-93 [33] Perkins C E, Belding-Royer E M, Das S Ad Hoc On Demand Distance Vector (AODV) Routing [R] IETF Experimental RFC, 2003 [34] Johnson D B, Maltz D A Protocols for adaptive wireless and mobile networking [J] IEEE Personal Commun, 1996: 34 – 41 [35] Borja Peleato, Milica Stojanovic A MAC protocol for ad-hoc underwater acoustic sensor networks [C] In WUWNet '06: Proceedings of the 1st ACM international workshop on Underwater networks, New York, USA, 2006: 113-115 [36] Volkan Rodoplu, Min Kyoung Park An energy-efficient MAC protocol for underwater wireless acoustic networks [C] In Proceedings of the MTS/IEEE OCEANS'05 Conference, Washington USA, 2005:1198-1203 103 REFERENCES [37] Luiz F, Vieira M, Jiejun K, et al Analysis of aloha protocols for underwater acoustic sensor networks [C] Poster abstract in WUWNet '06 Los Angeles, CA, USA, 2006 [38] Jack Wills, Wei Ye, John Heidemann Low-power acoustic modem for dense underwater sensor networks [C] In Proceedings of the First ACM International Workshop on UnderWater Networks (WUWNet), California, USA, September 2006: 79-85 [39] Peng Xie, Jun-Hong Cui Exploring random access and handshaking techniques in large-scale underwater wireless acoustic sensor networks [C] In Proceedings of the MTS/IEEE OCEANS Conference, Boston, Massachusetts, 2006: 1-6 [40] King P, Venkatesan R, Li C An improved communications model for underwater sensor networks [C] IEEE Global Telecommunications Conference New Orleans, USA, 2008: 32-37 [41] Harris A F, Zorzi M Modeling the underwater acoustic channel in ns2 [C] The 2nd International Conference on Performance Evaluation Methodolgies and Tools Brussels, Belgium, 2007: 18-1-18-8 [42] Fan G, Wang D, Chen H, et al Simulation research on P-Aloha protocol in underwater acoustic network based on OPNET [C] International Conference on Communications, Circuits and Systems Xiamen, China, 2008: 153-156 [43] Wang C, Fang Y J Channel model simulation for underwater acoustic sensor networks using OPNET [C] The 12th IEEE International Conference on Communication Technology Nanjing, China, 2010: 141 – 144 [44] Pan C S, Jia L C, Cai R Y, et al Modeling and simulation of channel for underwater communication network [J] International Journal of Innovative Computing, Information and Control, 2012, (3B): 1349 - 4198 [45] Bouzoualegh A, Val T, Campo E, et al Modelling and simulation of underwater acoustics communication based on stateflow and simulink models [C] 3rd International Conference: Sciences of Electronic, Technologies of Information and Telecommunications Setit, Tunisia, 2005: 1-7 [46] MacKenzie K V Nine-term equation for sound speed in the oceans [J] Acoustical Society of America Journal, 1981, 70(3): 807–812 104 REFERENCES [47] Bai J, Liang Q, Yu H Research on the channel simulation of underwater acoustic networks [J] Journal of Chinese Computer Systems, 2008, 29(1): 185-188 [48] Francois R E, Garrison G R Sound absorption based on ocean measurements – 1, pure water and magnesium sulfate contributions [J] Journal of the Acoustical Society of America, 1982, 72(3): 896-907 [49] Marsh H W, Schulkin M Colossus II Shallow-Water Acoustic Propagation Studies [R] New York , USA: USL Report No 550, 1962 [50] Coates R Underwater acoustic systems [M] New York, USA: John Wiley & Sons Press, 1989 [51] Bharghavan V, Demers A, Shenker S, et al MACAW: a media access protocol for wireless LAN’s [J] Computer Communications Review , 1994, 24(4): 212-255 [52] Borowski B Characterization of a very shallow water acoustic communication channel [C] OCEANS 2009, Biloxi, MS, USA, 2009 [53] Walree P, Jenserud T, Otnes R Stretched-exponential Doppler spectra in underwater acoustic communication channels [J] JASA Express Lett, 2010, 128: 329–334 [54] Tomasi B, Preisig J, Deane G B, et al A study on the wide-sense stationarity of the underwater acoustic channel for non-coherent communication systems [C] European Wireless 2011, Vienna, Austria, 2011 [55] Brady D, Preisig J C Wireless communications: a signal processing perspective [C] Prentice-Hall, March 1998: 290-330 [56] Weston D E, Stevens K J, Pengelly M Multiple frequency studies of sound transmission fluctuations in shallow water [J] Sound Vib, 1971, 18(4):487–497 [57] Weston D E, Ching P A Wind effects in shallow-water acoustic transmission [J] Acoust Soc Am, 1989, 86(4): 1530–1545 [58] Roderick W I, Deavenport R L Doppler characteristics of sea surface reflected and scattered acoustic signals induced by surface wave motion [C] OCEANS 1993, Victoria, BC, Canada, 1993: I287–I292 [59] Preisig J C, Deane G B Surface wave focusing and acoustic communications in the surf zone [J] Acoust Soc Am, 2004, 116(4): 2067–2080 105 REFERENCES [60] Wen L, Mao, En C, Fei Y A MACA-based MAC protocol for underwater acoustic sensor networks [J] Journal of communications, 2011, 6(2):179-184 [61] Han S, Noh Y, Uichin L M-FAMA: A multi-session MAC protocol for reliable underwater acoustic treams [C] INFOCOM, Proceedings IEEE, 2013: 665-673 [62] Nan J, Wei H B, Qing Y Attack Simulation Model and Channel Statistics in Underwater Acoustic Sensor Networks [J] Tsinghua Science & Technology, 2011, 16(6): 611-621 [63] Yang T C Properties of underwater acoustic communication channels in shallow water [J] Journal of the Acoustical Society of America, 2012, 131(1): 129-145 [64] Abramson N The ALOHA system-Another alternative for computer communication [C] In 1970 fall joint comput Conf., AFIPS Conf Proc, 1970, 37: 281-285 [65] Kleirock L, Tobagi F A Packet switching in radio channels: Part I – carrier sense multiple – access modes and their throughput-delay characteristics [J] IEEE Trans Communication, 1975, 28(12): 1400-1416 [66] Karn P MACA - A new channel access method for packet radio (C) ARRL/CRRL Amateur Radio 9th Computer Networking Conference, 1990:1-5 [67] Dao V P, Bao Y Q, Fang S L, et al Slotted FAMA-CTS in MAC Protocol for Underwater Acoustic Networks [J] Journal of Nanjing University (Natural Sciences), 2013, 49 (1): 78-85 [68] Cerpa A, Estrin D ASCENT: Adaptive self-configuring sensor networks topologies [C] In Proceedings of the IEEE Infocom, New York, USA, June, 2002 [69] Chen B, Jamieson K, Balakrishnan H, et al Span: an energyefficient coordination algorithm for topology maintenance in ad hoc wireless networks [C] In Proceedings of the ACM International Conference on Mobile Computing and Networking, Rome, Italy, July 2001 [70] Chen C T, Millero F Speed of sound in seawater at high pressures [J] Journal of the Acoustic Society America, 1977, 62(5):1129–1135 [71] Codiga D L, Rice J A, Baxley P A Networked acoustic modems for real-time data delivery from distributed subsurface instruments in the coastal ocean: 106 REFERENCES Initial system deployments and performance [J] Journal of Atmospheric and Oceanic Technology, 2004, 21(2):331–346 [72] Crossbow Technologies [Z] Inc http://www.xbow.com/ [73] Delaney J R, Chave A D Neptune: A fiber-optic ‘telescope’ to inner space [J] Oceanus, 2000, 42(1):10–11 [74] El-Hoiydi A Spatial TDMA and CSMA with preamble sampling for low power ad hoc wireless sensor networks [C] In Proceedings of the Seventh International Symposium on Computers and Communications (ISCC), 2002: 685–692 [75] Elson J, Girod L, Estrin D Fine-grained network time synchronization using reference broadcast [C] In Proceedings of the fifth USENIX Symposium on Operating System Design and Implementation (OSDI), Boston, MA, 2002 [76] Li X J, Zhang Y, Du G H, et al An investigation on chaotic behavior of two forms of ray equations [J] Journal of Nanjing University (Natural Sciences), 2000, 36(3): 383-386 [77] Li X J, Zhang Y, Du G H Study on chaotic behavior of underwater acoustic ray model [J] Journal of Nanjing University (Natural Sciences), 1999, 35(4): 454-460 [78] Heidemann J, Wei Y, Wills J et al Research challenges and applications for underwater sensor networking [C] IEEE Conference on Wireless Communications and Networking, 2006, 228-235 [79] Syed A A, Ye W, Heidemenn J T-Lohi: A new class of MAC protocols for underwater acoustic sensor networks [C] IEEE Conference on Computer Communications, 2008, 231-235 [80] Nguyen H H, Soh W S, Motani M On the Throughput comparisons of MAC protocols in Multi-hop wireless networks [J] IEEE Communications Letters, 2011, 15(12): 1398-1401 [81] Nguyen H H, Soh W S and Motani M BiC-MAC: Bidirectional-Concurrent MAC protocol with packet bursting for underwater acoustic networks [C] OCEANS, Seattle WA, 2010: 1-7 [82] Shahabudeen S, Chitre M A Design of networking protocols for shallow water peer-to-peer acoustic networks [C] IEEE Conference on OCEANS, 2005, 1: 628-633 107 REFERENCES [83] Chirdchoo N, Soh W S, Chua K C Aloha-based MAC protocols with collision avoidance for underwater acoustic networks [C] IEEE Conference on Computer Communications, 2007, 2271-2275 [84] Molins M, Stojanovic M Slotted FAMA: a MAC protocol for underwater acoustic networks [C] IEEE Conference on Oceans – Asia Pacific, 2007, 1-7 [85] Chirdchoo N, Soh W S, Chua K C MACA-MN: A MACA-based MAC protocol for underwater acoustic networks with packet train for multiple neighbors [C] IEEE Conference on Vehicular Technology, 2008, 46-50 [86] Nguyen H H, Soh W S, Motani M MACA-U: A Media access protocol for underwater acoustic networks [C] IEEE Conference on Global Telecommunications, 2008, 1-5 [87] Lin W, Cheng E, Yuan F A MACA-based MAC protocol for underwater acoustic sensor networks [J] IEEE Journal of Communications, 2011, 6(2): 179-184 [88] Fullmer C L,Garcia J J Floor acquisition multiple access (FAMA) for packet-radio networks [C] IEEE Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, 1995, 25(4): 262-273 [89] Fall K A delay-tolerant network architecture for challenged internets [C] In Proceedings of the ACM SIGCOMM Conference, Karlsruhe, Germany, 2003, 27–34 [90] Freitag L, Stojanovic M, Grund M, et al Acoustic communications for regional undersea observatories [C] In Proceedings of the Oceanology International, London, Mar 2002 [91] Ganeriwal S, Kumar R, Srivastava M B Timing-sync protocol for sensor networks [C] In Proceedings of the first ACM Conference on Embedded Networked Sensor Systems (SenSys), Los Angeles, 2003, 138–149 [92] Girod L, Estrin D Robust range estimation using acoustic and multimodal sensing [C] In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Hawaii, 2001 [93] Hill J, Culler D Mica: a wireless platform for deeply embedded networks [J] IEEE Micro, 2002, 22(6):12–24 108 REFERENCES [94] Hill J, Szewczyk R, Woo A, et al System architecture directions for networked sensors [C] In Proceedings of the 9th International Conference on Architectural Support for Programming Languages and Operating Systems, Cambridge, USA, 2000, 93–104 [95] Knudsen V, Alford R, Emling J Digital communications [J] Journal of Marine Research, 1948, 7(12):410-417 [96] Kong J, Cui J H, Wu D, et al Building underwater ad-hoc networks and sensor networks for large scale real-time aquatic applications [C] In Proceedings of the IEEE MILCOM, Atlantic, USA, Oct, 2005 [97] Li Y, Ye W, Heidemann J Energy and latency control in low duty cycle MAC protocols [C] In Proceedings of the IEEE Wireless Communications and Networking Conference, New Orleans, USA, Mar, 2005 [98] Link Quest, Inc Underwater Acoustic Modems [Z] http://www link-quest.com/html/uwm hr.pdf [99] Lynn W 3D, 4D, and beyond [J] Journal of Petroleum Engineering, 1998: 115-122 [100] Mainwaring A, Polastre J, Szewczyk R, et al Wireless sensor networks for habitat monitoring [C] In Proceedings of the ACM Workshop on Sensor Networks and Applications, Atlanta, USA, 2002 [101] Merrill W, Girod L, Elson J, et al Autonomous position location in distributed, embedded, wireless systems [C] In IEEE CAS Workshop on Wireless Communications and Networking, Pasadena, 2002 [102] Polastre J, Hill J, Culler D Versatile low power media access for wireless sensor networks [C] In Proceedings of the 2nd ACM Conference on Embedded Networked Sensor Systems, Baltimore, USA, 2004, 95–107 [103] Priyantha N B, Chakraborty A, Balakrishnan H The cricket location-support system [C] In Proceedings of the 6th ACM International [104] 左加阔, 陶文凤, 包永强 等 联合稀疏信号恢复中的分布式路径协同优化 算法 [J] 信号处理, 2013, 29(8): 964-970 ZUO Jia-Kuo, DAO Van-Phuong, BAO Yong-Qiang, et al Distributed Pathwise Coordinate Optimization in Joint-Sparse Signal Recovery [J] Signal Processing, 2013, 29(8): 964-970 (in Chinese) 109 REFERENCES [105] 王彪, 陈艳, 刘光杰 等 压缩采样匹配追踪在水声 MIMO-OFDM 信道估 计的应用 [J] 信号处理,2013, 29(8):984-989 WANG Biao, CHEN Yan, LIU Guang-Jie, et al The application of Compressive Sampling Matching Pursuit in Underwater Acoustic MIMO-OFDM Communication System Channel Estimation [J] Signal Processing, 2013, 29(8):984-989 (in Chinese) [106] 王晓燕, 方世良, 朱志峰 基于 ST-FRFT 的非合作水声脉冲信号检测方法 [J] 信号处理,2011, 27(8):1271-1278 WANG Xiao-Yan, FANG Shi-Liang, ZHU Zhi-Feng Detection of Non-cooperative Underwater Acoustic Pulse Signal Based on ST-FRFT [J] Signal Processing, 2011, 27(8):1271-1278 (in Chinese) [107] Ainslie M A and McColm J G A simplified formula for viscous and chemical absorption in seawater [J] Acoust Soc Amer, Mar,1998, 103: 1671-1672 [108] Peleato B and Stojanovic M Distance aware collision avoidance protocol for Ad-hoc underwater acoustic sensor networks [J] IEEE Communications Letters, 2007, 11(12): 1025-1027 [109] Chen Y D, Lien C Y, Fang Y S, et al TLPC: A Two-Level power control MAC protocol for collision avoidance in underwater acoustic networks [C] OCEANS - Bergen, MTS/IEEE 2013: 1-6 [110] Azar Z, Manzuri M T A Latency-Tolerant MAC protocol for underwater acoustic sensor networks [C] Control automation and systems (ICCAS), international conference 2010: 849 - 854 [111] Liao W H, and Huang C C SF-MAC: A spatially fair MAC protocol for underwater acoustic sensor networks [J] IEEE sensors journal, 2012, 12(6): 1686-1694 110 REFERENCES [112] Yang J, Guo P, Jiang T, et al SRCR: A novel MAC protocol for underwater acoustic networks with concurrent reservation [C] Communications (ICC), IEEE international conference,2012: 435-439 [113] Hai H N, Soh W S, Motani M A Bidirectional-Concurrent MAC protocol with packet bursting for underwater acoustic networks [J] IEEE journal of oceanic engineering, 2013, 38(3): 547-565 [114] Guo X, Frater M R, Ryan M J Design of a propagation-delay-tolerant MAC protocol for underwater acoustic sensor networks [J] IEEE journal of oceanic engineering, 2009, 34: 170-180 [115] Sozer E M, Stojanovic M, Proakis J G Underwater acoustic networks[J].IEEE Journal of Oceanic Engineering, 2000, 25(1): 72-83 [116] Sinha A, Chandrakasan A P Dynamic power management in wireless sensor network [J] IEEE Design Test Computers, 2001,18(2):62-74 [117] Pering T, Burd T, Broderson R The simulation and evaluation of dynamic voltage scaling algorithms: Proceedings of the ACM International Symposium on Low Power Electronics and Design, Monterey, CA, USA, 1998[C] New York: ACM Press, 1998:76-81 [118] Benini L, Bogliolo A, De Micheli G A survey of design techniques for system-level dynamic power management [J] IEEE Transaction on Vert Large Scale Integration (VLSI) System, 2000, 8(3): 299-316 [119] Wills J, Ye W, Heidemamn J Low-power acoustic modem for dense underwater sensor networks [C] Proceedings of ACM WUWNet06 2006 111 REFERENCES 112 ACKNOWLEDGEMENTS ACKNOWLEDGEMENTS First and foremost, I am deeply indebted to my thesis supervisor, Prof Dr.-Zhao Li, for his support, encouragement, effort, his valuable advices and guidances throughout my doctoral program at School of Information Science and Engineering, Southeast University This work would not have been made possible without his knowledgeable guidances and generous support I cannot thank him enough for all he did for me, and I am really lucky to work with him I would like to thanks fellow Zuo Jia Kuo, who is very friendly and provided advice about the Chinese, knowledge of researches in our papers I would like to give many thanks to all my current and former labmates for their dear help and kind assistance through the years, their cheerful and lively companionship has been a real pleasure They have relieved my struggle and refreshed my view on life I would like to give a thank-you to all my Vietnamese friends for the selfless help and encouragement during my study in China Finally, a special appreciation goes to my dear mother and my dear father, two older sisters and younger brother Without their understanding, endless encouragement and support over the years, I could have achieved nothing I would like to dedicate this dissertation to them Dao Van Phuong August 2014 113 ACKNOWLEDGEMENTS 114 SUBMITTED PAPERS SUBMITTED PAPERS [1] Dao Van-phuong, Zuo Jia-kuo, Zhao Li, Zou Cai-rong, Sun Jian Modeling and Simulation of P-Aloha, CSMA/CA and MACAW Protocols for Underwater Acoustic Channel Journal of Donghua University ISSN 1672-5220/ CN 31-1920/TS (EI 收录) [2] Dao Van Phuong, 左加阔, Bui Thi Oanh, 方世良, 赵力 水声通信信道中的 OPNET 建模与仿真 东南大学学报。 (In Chinese)。 ISSN 1001-0505/ CN 32-1178/N Dao Van Phuong, Zuo Jiakuo, Bui Thi Oanh, Fang Shiliang, Zhao Li Modeling and Simulation of Underwater Acoustic Communication Channel Using OPNET Journal of Southeast University (EI 收录) [3] DAO Van-Phuong,赵力,左加阔,邹采荣 水声通信网络中的 MACA-C 介质访问 控制协议 信号处理。 (In Chinese) ISSN 1003-0530/ CN 11-2406/ TN Dao Van-Phuong, Zhao Li, Zuo Jia-kuo, Zou Cai-rong MACA-C MAC Protocol for Underwater Acoustic Networks Journal of Signal Processing (EI,A 类收录) [4] Van Phuong Dao, Bao Yong-Qiang, Zhao Li, Zou Cai-Rong, Zuo Jia-Kuo Slotted floor Acquisition Multiple Access in Medium Access Control Protocol for Underwater Acoustic Communication Networks Journal of Nanjing University (Natural Sciences), Vol 49 (1), 2013 ISSN 0469-5097/ CN 32-1169/N (EI,B 类 收录) [5] Dao Van Phuong (陶文凤),包永强,赵力 一种用于水声传感器节点的改进节能算 法 声学技术 2012, 31(4): 256-260 (In Chinese) ISSN 1000-3630/ CN 31-1449/TB DAO Van Phuong, BAO Yong-qiang, ZHAO Li An Improved Energy-saving Algorithm for Underwater Acoustic Sensor Node Technical Acoustics 2012, 31(4): 256-260 (EI,B 类 收录) [6] Jiakuo Zuo, Van Phuong Dao, Yongqiang Bao, Li Zhao and Cairong Zou Robust Energy Efficiency Power Allocation for Uplink OFDM-based Cognitive Radio Networks ETRI Journal (SCI, 录用) [7] Jiakuo Zuo, Van Phuong Dao, Yongqiang Bao, Li Zhao and Cairong Zou Energy Efficient Power Allocation for Cognitive Radio MIMO-OFDM System ETRI Journal (SCI, 录用) [8] N D NAM, Q V BUI, H T NHAN, M Z BIAN, Dao Van-phuong Effect of Pd Interlayer on Electrochemical Properties of ENIG Surface Finish in 3.5 wt.% NaCl Solution, Journal of Electronic Materials (SCI, 录用) [9] 左加阔, 陶文凤, 包永强, 方世良, 赵力, 邹采荣 联合稀疏信号恢复中的分布式路径 协同优化算法 信号处理, 2013, 29(8):964-970 Jiakuo Zuo, Van Phuong Dao, Yongqiang Bao, Fang Shiliang, Li Zhao and Cairong Zou Distributed Pathwise Coordinate Optimization in Joint-Sparse Signal Recovery Signal Pr 115 SUBMITTED PAPERS ocessing (In Chinese) (IE,A 类收录) [10] 左加阔, 陶文凤, 包永强, 方世良, 赵力, 邹采荣 多跳认知水声通信中的分布式稀疏 频谱检测算法 电子与信息学报, 2013, 35(10): 6-13 Jiakuo Zuo, Van Phuong Dao, Yongqiang Bao, Fang Shiliang, Li Zhao and Cairong Zo u Distributed Sparse Spectrum Detection in Multihop Cognitive Underwater Acoustict C ommunication Networks Journal of Electronics&Information Technology 2013, 35(10): 6-13 (In Chinese) (EI,A 类收录) [11] Jiakuo Zuo, Van Phuong Dao, Yongqiang Bao, Li Zhao and Cairong Zou Optimal Power Allocation and Relay Selection for Relay Aided Cognitive Radio Network: An Energy Efficiency Perspective 2014 International Conference on Information Technology and Management Science (ICITMS 2014) (录用) [12] 罗武骏,陶文凤 (Dao Van Phuong),左加阔,赵力.自适应语音压缩感知方法 声 学技术 2012, 42(6): 1027-1030 (EI,B 类 收录) La Vu Tuan, Dao Van Phuong, Zuo Jia Kuo,Zhao Li Adaptive Compressed Sensing Method for Speech Technical Acoustics 2012, 42(6): 1027-1030 [13] La Vu Tuan, Van Phuong Dao, Xi Ji Study on Method of Emotion Recognition of Speed based on Simulated Annealing Genetic Algorithm and Support Vector Machine International Journal of Advancements in Computing Technology 2012, 4(20): 141-146 (EI 收录) [14] Zuo Jiakuo, Bao yongqiang, Zhaoli, Zou cairong and Van Phuong Dao Distributed Co mpressive Spectrum Sensing in Cognitive Underwater Acoustic Communicatio Journal of Nanjing University, 2012, 48(5):582-591 (EI B 类) [15] Dao Van-phuong, Zuo Jia-kuo, Zhao Li Slotted Aloha-FAMA: An Aloha and FAMA-Based MAC protocol for Underwater Acoustic Networks Chinese Journal of Electronics (EI A 类, 审稿中) [16] Dao Van-phuong,Zuo Jia-kuo,Zhao Li,Nguyen Dang-Nam FAMA-C MAC protocol for Underwater Acoustic Networks Journal of Signal Processing Systems (SCI, 审稿中) 116 ... floor acquisition multiple access in medium access control protocol for underwater acoustic communication networks 98 8.1.4 MACA-C MAC protocol for underwater acoustic networks 99... applications for underwater acoustic communication networks Underwater seismic monitoring: Underwater seismic monitoring is a promising application for underwater sensor networks, which is seismic monitoring... PHUONG 导 师 姓 名:赵力 教 授 国家自然科学基金资助项目(60872073,60975017,51075068) 和 教育部博士点专项基金资助项 目(20110092130004) Research on Media Access Control Protocol for Underwater Communication Networks A Dissertation

Ngày đăng: 01/08/2021, 10:04