1. Trang chủ
  2. » Luận Văn - Báo Cáo

Phân cụm dựa trên tri thức theo từng cặp

53 7 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 53
Dung lượng 2,03 MB

Nội dung

Ngày đăng: 20/07/2021, 09:30

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[2] Jiawei Han, Micheline Kamber and Jian Pei (2012), Data Mining. Concepts and Techniques, 3rd Edition, Elsevier, Waltham Sách, tạp chí
Tiêu đề: Data Mining. "Concepts and Techniques, 3rd Edition
Tác giả: Jiawei Han, Micheline Kamber and Jian Pei
Năm: 2012
[3] Josh Patterson, Adam Gibson (2017), Deep Learning: A Practitioner’s Approach, O’Reilly Media, Sevastopol Sách, tạp chí
Tiêu đề: Deep Learning: A Practitioner’s Approach
Tác giả: Josh Patterson, Adam Gibson
Năm: 2017
[1] M. Śmieja, Ł. Struski, and M. Figueiredo (2020), A Classification-Based Approach to Semi-Supervised Clustering with Pairwise Constraints, Neural Networks, vol.127, pp.193-203 Khác
[4] Rajul Anand, Chandan K. Reddy (2011), Graph-Based Clustering with Constraints, Advances in Knowledge Discovery and Data Mining, vol.6635, pp.51-62 Khác
[5] Viet-Vu Vu (2018), An Efficient Semi-Supervised Graph Based Clustering, Intelligent Data Analysis, vol.22, pp.297-307 Khác
[6] Viet-Vu Vu, Hong-Quan Do (2017), Graph-based Clustering with Background Knowlegde, In Proceedings of the Eighth International Symposium on Information and Communication Technology (SoICT 2017), pp.167-172 Khác
[7] D. Cheng, V. Murino, M. Figueiredo (2007), Clustering under prior knowledge with application to image segmentation, in: Advances in Neural Information Processing Systems (NIPS), pp.401-408 Khác
[8] M. Law, A. Topchy, A. Jain (2005), Model-based clustering with probabilistic constraints, in: SIAM Conference on Data Mining (SDM), pp.641-645 Khác
[9] Z. Lu, T. Leen (2004), Semi-supervised learning with penalized probabilistic clustering., in: Advances in Neural Information Processing Systems (NIPS), pp.849-856 Khác
[10] V. Melnykov, I. Melnykov, S. Michael (2016), Semi-supervised model- based clustering with positive and negative constraints, Advances in data analysis and classification 10 (3), pp.327-349 Khác
[11] M. Bilenko, S. Basu, R. Mooney (2004), Integrating constraints and metric learning in semi-supervised clustering, in: International Conference on Machine Learning (ICML), p.11 Khác
[12] P. Qian, Y. Jiang, S. Wang, K. Su, J. Wang, L. Hu, R. Muzic (2017), Affinity and penalty jointly constrained spectral clustering with all- compatibility, flexibility, and robustness, IEEE Transactions on Neural Networks and Learning Systems 28 (5), pp.1123-1138 Khác
[13] L. Hubert, P. Arabie (1985), Comparing partitions, Journal of Classification, vol.2, pp.193-218 Khác
[14] Strehl, Alexander, and Joydeep Ghosh (2002), Cluster ensembles – a knowledge reuse framework for combining multiple partitions, Journal of Machine Learning Research, vol.3, pp.583-617 Khác
[15] Y. Pei, X. Fern, T. Tjahja, R. Rosales (2016), Comparing clustering with pairwise and relative constraints: A unified framework, ACM Transactions on Knowledge Discovery from Data (TKDD) 11 (2) Khác
[16] M. Smieja, O. Myronov, J. Tabor (2018), Semi-supervised discriminative clustering with graph regularization, Knowledge-Based Systems 151, pp.24–36 Khác
[17] H. Zhang, S. Basu, I. Davidson (2019), Deep constrained clustering- algorithms and advances, in: Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML-EKDD), p.17 Khác

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w